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Abstract—Recent work has shown how to train Convolutional
Neural Networks (CNNs) rapidly on large image datasets [1], then
transfer the knowledge gained from these models to a variety of
tasks [2]. Following [3], in this work, we demonstrate similar
scalability and transfer for Recurrent Neural Networks (RNNs)
for Natural Language tasks.

By utilizing mixed precision arithmetic and a 32k batch size
distributed across 128 NVIDIA Tesla V100 GPUs, we are able
to train a character-level 4096-dimension multiplicative LSTM
(mLSTM) [4] for unsupervised text reconstruction over 3 epochs
of the 40 GB Amazon Reviews dataset [5] in four hours. This
runtime compares favorably with previous work taking one
month to train the same size and configuration for one epoch
over the same dataset [3].

Converging large batch RNN models can be challenging.
Recent work has suggested scaling the learning rate as a function
of batch size, but we find that simply scaling the learning
rate as a function of batch size leads either to significantly
worse convergence or immediate divergence for this problem.
We provide a learning rate schedule that allows our model to
converge with a 32k batch size.

Since our model converges over the Amazon Reviews dataset
in hours, and our compute requirement of 128 Tesla V100 GPUs,
while substantial, is commercially available, this work opens
up large scale unsupervised NLP training to most commercial
applications and deep learning researchers1. A model can be
trained over most public or private text datasets overnight.

I. INTRODUCTION

In recent years, deep learning has been successfully applied
to many problems. The successful use of transfer learning
for computer vision problems has enabled many applications:
large CNNs such as VGG [6] and ResNets [7] are pre-trained
on a large image dataset such as ImageNet [8], [9] and then
utilized as the backbone for other computer vision tasks. These
models are able to extract meaningful features for new tasks
without needing to be trained from scratch for each task [2],
[10]–[12].

Recent work has shown promising results from unsuper-
vised language modeling, followed by transfer learning to
natural language tasks [3], [13]. However, neural language
models have not benefited from scale and transfer learning
in the same way as convolutional image models. Historically,
natural language leverages large scale transfer learning through
the use of word embedding pretraining on large corpora [14]–
[16]. Transferring only the embeddings limits the scope of

1Our code is publicly available: https://github.com/NVIDIA/sentiment-
discovery

the transfer, since word embeddings do not capture sequential
information in a section of text. We would like to transfer
whole NLP models capable of processing a text sequence.

However, transfer learning in this context is difficult because
of the time it takes to train large language models on large
datasets. Several recent publications seek to address long
training times by leveraging distributed data parallelism and
increasing the effective batch size during training [1], [17]–
[20], taking advantage of advances in distributed deep learning
and improvements in the memory size and compute capability
of available high performance computing (HPC) resources.
This work often focuses on computer vision and rarely on
natural language tasks, let alone RNN-based language models,
which are numerically difficult to train and suffer from poor
parallelization due to their sequential nature. We do have evi-
dence that RNNs for language modeling, speech recognition,
and neural machine translation continue to provide accuracy
improvements as they are trained on larger datasets [21].
Accordingly, techniques for efficiently training large RNN
models will lead to improved accuracy on many natural
language tasks.

We focus on training a single-layer 4096 neuron multi-
plicative LSTM-based character language model [4] on the
Amazon Reviews dataset, one of the largest publicly-available
NLP datasets, and transfer the model to the downstream tasks
of sentiment classification on the Binary Stanford Sentiment
Treebank (SST) and IMDB movie review datasets. We train
our recurrent models with mixed precision FP16/FP32 arith-
metic, which speeds up training on a single V100 by 4.2X
over training in FP32.

We then train the mixed precision model using a 32k batch
size via distributed data parallelism across 128 GPUs. This
achieves a 109x increase in training data throughput relative
to the single GPU case. However, with such a large batch size,
we require additional epochs to train the model to a similar
level of accuracy, bringing the total training time to 4 hours.

In addition, we train a 8192 neuron mLSTM capable of
beating state of the art performance in Amazon review lan-
guage modeling with a bits per character (BPC) of 1.038 and
SST classification accuracy of 93.8%.

We analyze how distributed data parallelism scales with
larger models. While utilizing distributed data parallelism
for training RNNs, we observe some problems common to
training with large batches. We investigate the relationship
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between dataset size, batch size, and learning rate schedule
to investigate how to effectively use large batch training to
train models on commonly available large NLP datasets.

II. LANGUAGE MODEL PRETRAINING AND TRANSFER

Separately trained word embeddings [14]–[16] are com-
monly used to transfer learning from large datasets to specific
tasks. However, word embeddings function only as a lookup
table for in-vocabulary words. They do not transfer well to
multi-word sequences and contexts.

Works such as Semi-supervised Sequence Learning [22],
context2vec [23], Contextualized Word Vectors (CoVe) [24],
and Deep Contextualized Word Representations (ELMo) [25]
seek to remedy this by computing embeddings of words in a
sequence using a pretrained recurrent neural language model.
In these approaches, the surrounding words provide context
which is used to produce an embedding that represents the
meaning of a given word. These works approach the transfer
learning problem with a whole neural language model capable
of modeling the compositional nature of language rather than
a lookup table that considers all words independently.

This pretraining and transfer work has motivated follow
on works trying to increase the scope of neural language
model pretraining and transfer [3], [13], [26]–[29], in which
the authors explore new types of language models, multiple
types of language model pretraining, and the effect these
two have on a wide variety of down stream language tasks.
A common theme between these different research efforts,
however, is that downstream transfer success is predicated
on the pretraining corpus size. Larger text corpora produce
more powerful language models, which then improve transfer
learning.

A. Pretraining Tasks and Datasets

As part of pretraining there are three components that
determine pretraining success: the task used for pretraining,
pretraining dataset quality, and pretraining dataset size.

The former requires careful consideration as it affects the
other two. A number of language pretraining tasks can be
considered generative pretraining tasks, where the language
models are trained to generate some language as output. Some
of these include sequence to sequence (Seq2Seq) tasks such
as Skip-Thought pretraining [27], [30] and Neural Machine
Translation [27], [31]. However, we instead choose to focus
on unsupervised text reconstruction as our pretraining task:
predict the next character of text, given the previous characters.
Text reconstruction captures the fundamental components of
sequence modeling required by other language modeling tasks.

With text reconstruction, the data provides its own labels,
and given the data has undergone reasonable cleaning, we can
focus on dataset size rather than dataset type or quality. Several
corpora successfully utilized for unsupervised text pretraining
in prior work are the BooksCorpus [32], GigaWord [33], 1-
Billion Word [34], and Amazon Reviews [5] datasets. Similar
to [3], [35], we focus our pretraining efforts on the largest
of the four datasets (see Fig. 1), by training a mLSTM on

Dataset corpus size (GBs)

1-Billion Word 3
BooksCorpus 5
GigaWord 26
Amazon Reviews Dataset 41

Fig. 1: Various large language corpora and their size

an aggressively deduplicated copy of the Amazon Reviews
dataset totaling 82 million reviews (40GB). The generality
of our task and the size of our dataset allow the insights
developed in this work to be applied to other large scale
language tasks.

III. LARGE BATCH TRAINING

Given the size of the Amazon corpus, pretraining a large
state of the art neural language model is a time consuming
process. Running such a workload on a single GPU is not
practical, as state of the art models tend to be large and can
only fit a modest training batch size per GPU. In order to
enable effective pretraining and transfer of large language
models, we employ multi-GPU parallelism. We focus on
scaling to multiple GPUs with data parallelism, meaning that
we partition the batch during training across multiple GPUs.
We don’t use model parallelism, which partitions the neural
network itself across multiple processors, because it’s less
flexible and places more constraints on software, although it
remains an interesting avenue for further parallelism.

We use synchronous data parallelism, where a large batch is
distributed evenly amongst all participating worker processes,
at which point the worker processes run forward and backward
propagation, communicate the resulting gradients with each
other, and update the model before receiving a new data
batch. Depending on model size and communication latency,
data parallelism allows for near linear speed up by scaling
batch size linearly with respect to the number of available
GPUs. Taking advantage of such scaling, the Computer Vision
community has been able to reduce the training time of
AlexNet and ResNet-50 models on the ImageNet benchmark
from hours to the order of minutes [1], [17]–[19].

However, these projects have focused on convolutional
networks for image classification, and comparatively less work
has been published on large batch training of language models.
Ott et. al [20] employ data parallelism to speed up Seq2Seq
neural machine translation. However, similar to prior work,
Ott et. al train convolutional models with large batches.

In order to enable large batch pretraining of an arbitrary
language model it is important to explicitly analyze the effects
of large batch training with RNN-based language models.
The sequential nature of recurrent neural networks makes
the training landscape difficult to optimize, due to saddle
points, local minima, and numerical instabilities in the RNN
computation itself [36]–[38]. These complexities necessitate
analysis of large batch training with RNNs.



Large batch training is itself not without difficulties. Identi-
cal hyperparameters at different batch sizes regularly produce
models which generalize differently. Recent work analyzes
the relationship between large batch size, learning rates, and
generalization, showing how to achieve similar evaluation
results when training across different batch sizes [17], [39],
[40].

By analyzing the noise scale of gradient-descent optimiza-
tion, these methods modify learning rate ε proportionally to
batch size B, with a linear scaling rule ε ∝ B provided
that B � N , where N is the dataset size. The authors find
that learning rate scaling leads to models that generalize well
across various batch sizes. Additionally, Smith et. al [39],
[40] proposed scaling momentum as a function of batch size;
however, we do not investigate such scaling in this work.

In order to enable large batch training of RNN language
models, we explore the effects of this linear scaling rule as
well as a softer square root scaling rule ε ∝

√
B proposed by

Hoffer et. al [41].
Additionally, we investigate the scalability of data paral-

lelism with different interconnects and model sizes, so as to
assess the effectiveness of data parallelism for an arbitrary
neural language model.

IV. DISTRIBUTED DEEP LEARNING SETUP

We use NVIDIA DGX1-V systems built from 16 GB Tesla
V100 GPUs. For intra-node and inter-node communication we
leverage the NCCL2 (NVIDIA Collective Communications)
library which uses the DGX1-V’s underlying NVLink and
InfiniBand connections for GPU to GPU communication.

We do not use a central parameter server for managing gra-
dient reduction and updating the model. In order to efficiently
perform updates to the model, the group of worker processes
perform a ring reduce of the gradients, and each worker
independently updates the model parameters. Crucial to reduc-
ing the necessary communication bandwidth, the library also
supports communication of FP16 values natively with no FP16
emulation overhead when reducing FP16 parameter gradients
across GPUs.

V. MIXED PRECISION TRAINING

FP16 is not only useful for reducing communication over-
head, it also plays a key role in directly accelerating training
on processors like the V100 that support higher throughput
mixed-precision arithmetic. The V100 provides 15.6 TFlops
in single precision, but 125 TFlops with mixed-precision
arithmetic (FP16 storage and multiplication, FP32 accumu-
lation). Using FP16 reduces the dynamic range and precision
of the computations being performed. This presents a unique
set of training difficulties, which, if not addressed, lead to
convergence issues while training.

Drawing from [42], [43], we use automatic loss scaling
to effectively increase the dynamic range of the training
process. Automatic loss scaling seeks to ameliorate numerical
underflow by multiplying the training loss by a scalar ”loss
scale” factor α > 1, performing backpropagation with all

intermediary gradients multiplied by α, and dividing the final
weight gradients by α. This multiplication shifts small gradient
values into the range permitted by FP16, thereby ensuring that
they do not vanish during back propagation.

We choose α dynamically by starting at a large value,
performing backpropagation, and checking for an overflow
in the weight gradients. If an overflow is detected, then the
weight update for the batch is skipped, and α is halved. After
the algorithm finds a suitable α, it tries to increase α after a
sufficient number of iterations have passed without overflow,
and again backs off if overflow occurs. The algorithm repeats
this process throughout training, iteratively updating the loss
scale, hence the name automatic loss scaling.

Without automatic loss scaling, we found that our models
did not train to convergence. Although the computationally
intensive parts of training were performed in mixed precision,
a minority of the work still remained in FP32 in order to
converge properly:

• Gradients are accumulated into a “master” FP32 copy of
the parameters. The division by α occurs on the gradients
of these master copies.

• Reductions are performed in FP32; it only takes a few
large values to cause an overflow in FP16.

• Accumulation of the summation in the `2 norm compu-
tation required by weight normalization should be done
in FP32 to avoid overflow. The final norm value is output
in FP16.

• Softmax loss is computed in FP32, operating on FP32
logits in order to avoid numerical issues when exponen-
tiating FP16 values.

These techniques working in conjunction allowed for suc-
cessful training of the mLSTM language model in mixed
precision.

VI. EXPERIMENTS

All experiments are set up following [3] and run with
Pytorch’s v0.4 release [44]. The Amazon Reviews dataset is
shuffled and split into training, validation, and test sets. The
model is trained using truncated backpropagation through time
(TBTT) [45] on sequences of 256 characters. We persist hid-
den state across each minibatch during training and evaluation.

A. Data Sharding

In order to create the training, validation, and test sets,
the dataset is split proportionally by a ratio of 1000, 1, and
1 allocated for train, validation, and test sets respectively.
Within these sets we create batch size B number of shards for
evaluation, and max(1000, B) shards for training. A shard is
defined as a subset of strings sampled without replacement
from one of the dataset splits; this subset is concatenated
together into one large string to form a shard. These shards are
used for all training epochs with no further shuffling. Hidden
state is initialized to zero at the beginning of a shard and
persisted throughout the shard.



When constructing a minibatch Dij , data is sampled such
that between two consecutive minibatches i and i + 1, mini-
batch index j contains contiguous subsequences from within a
shard. This contiguity across minibatches enables hidden state
persistence across truncated subsequences in TBTT.

B. Weight Normalization

In order to aid with convergence during training time, we
applied weight normalization [46] to the LSTM parameters
only, following [3]. This includes the 4 hidden→hidden and
input→hidden parameters of the multiplicative LSTM. Weight
normalization was not applied to the bias terms.

C. Optimization and Learning Rate (LR) schedule

As in [3], Adam [47] is utilized for optimization, along with
a learning rate schedule that decays linearly to zero over the
course of training. For a global batch size of 128 a learning
rate of 5e-4 is used, and is scaled up according to the batch
size using either the linear or square root scaling rule.

D. Evaluation

Two metrics for evaluating training are considered:
1) A bits per character (BPC) metric calculated on the

immediate task of predicting the next character given
the current character on the Amazon Reviews test set.
We calculate the average BPC across 16 random shards
of the test set by using an evaluation batch size B of
16. Since our model operates directly on character-level
tokens, calculation of BPC is simply l· log2 e where l is
the softmax cross entropy loss averaged over the entire
sequence.

2) Accuracy from the downstream tasks of binary sentiment
classification on the Binary SST, and IMDB Movie
Review datasets. To perform transfer the model weights
are taken at the end of Amazon training, frozen, and
used to featurize text samples from the classification
dataset. A simple binary logistic regression classifier
from scikit-learn [48] is trained to classify these text
features as having positive or negative sentiment. The
transfer process is negligible computationally because
of the simple model we use on the downstream task.

VII. ANALYSIS OF MIXED PRECISION VS FP32 TRAINING

Mixed precision training allows for faster computation as
well as a 2x increase in effective batch size during training,
because FP16 storage is 2x smaller. In this section we analyze
performance gains and convergence for training networks with
mixed precision arithmetic, comparing it to single precision
training. This allows us to validate the correctness of the re-
maining experiments, which are all trained in mixed precision.

Using the techniques described in section IV & V, we train
a model on the Amazon Reviews dataset using a full DGX1-V
node with 8 GPUs. We initially begin with a batch size of 128
per GPU, for a global batch size of 1024, and compare the
relative speedup granted by mixed precision arithmetic. Next,
we quantify the benefits of the reduced memory footprint by

(a)

(b)

Type Batch LR Time BPC SST IMDB

SP 128 5e-4 1 month 1.12 91.9 92.8
SP 1024 1.2e-3 73.8 hr 1.104 90.8 92.5
MP 1024 1.2e-3 24.2 hr 1.108 91.5 91.7
MP 2048 2e-3 17.4 hr 1.117 90.2 91.9

Fig. 2: a) Training curves for mixed precision (MP) and single
precision (SP) training b) Test set evaluation comparison of
single precision vs mixed precision training w.r.t. the Amazon
BPC and binary sentiment classification accuracy baselines set
by Radford et. al [3]

doubling the batch size to 256 per GPU (2048 global) in order
to better saturate the GPU. Additionally, we utilize the softer
square root scaling rule [41] to modify the learning rate as a
function of batch size.

Figure 2 shows that training in mixed precision and single
precision both produce similar training curves and converge
to similar numbers for both language modeling and transfer
evaluation. We find that moving to mixed precision not only
achieves similar training results, but it also provides a 3x
speedup in training. By taking advantage of the reduced
memory footprint of FP16 storage, we increase the batch size
two-fold to 256 per GPU, better saturating the GPU, and
achieve an additional speedup of 40% on top of our original
speedup. This provides approximately a 4.2x speedup when
switching from single precision arithmetic to mixed precision.

Overall, this yields a speed up from one month of training
as in [3] to 18 hours. We have accomplished this using 8 Tesla
V100 GPUs, larger batch size, and mixed precision arithmetic.

VIII. DISTRIBUTED DATA PARALLEL SCALING

To train a language model in hours, not in days, we
further parallelize the training process by using multiple nodes
and additional data parallelism. We first analyze the effect
of communication overhead on the scalability of multi-GPU
training at various batch sizes and processor counts.



The model is trained in mixed precision on 1, 8, 16, 32, 64,
and 128 GPUs with a local batch size of 256 batches/GPU and
8 GPUs/DGX1-V node. In Fig. 3 we observe that NCCL2 pro-
vides near linear scaling with minimal overhead when scaling
from 1 to 8 GPUs within a node. Infiniband efficiently handles
inter-node communication for the 4096 neuron mLSTM with
effectively constant overhead with respect to the number of
participating nodes. This allows for a total speedup of 109x
when scaling to 128 GPUs across 16 DGX1-V Nodes. More
concretely, we complete one epoch of training on the Amazon
reviews dataset in only 1.2 hours.

(a)

(b)

GPUs w/o I.band w/ I.band 8192-d + I.band
s/iter speed s/iter speed s/iter speed

1 .81 1x .81 1x 2.01 1x
8 .85 7.6x .85 7.6x 2.02 7.9x
16 1.09 14.3x .91 13.6x 2.08 15.5x
32 1.11 23.4x .91 27.2x 2.05 31.4x
64 1.13 55.7x .93 55.7x 2.10 61.3x
128 1.12 92.6x .91 109x 2.13 120.8x

Fig. 3: a) Training time for 1 epoch of Amazon Reviews
exhibits linear scaling relative to the single GPU case. b)
Average per iteration times and relative speedup for distributed
data parallel training with (and without) Infiniband.

A. Scaling Large Model Training

Not every problem calls for training a 4096-d mLSTM.
Smaller models will train faster and may converge to a good
enough BPC, while larger models may be necessary for state
of the art performance. To illustrate this, we train an mLSTM
with hidden state sizes of 256, 1024, 4096, and 8192 and a
global training batch size of 2048 split across 1 DGX1-V node
and learning rate of 2e-3. In the case of the 8192-d hidden state
mLSTM we use a per GPU batch size of 96 (768 total) due
to memory constraints. In this experiment, we use a learning
rate of 7.8e-4 that observes the square root scaling rule. In Fig.

Fig. 4: Training progress over one epoch of Amazon Reviews
for mLSTM models at a particular dimension and batch size.
Dashed lines indicate the evaluation BPC after one epoch of
training, with State Of The Art (SOTA) evaluation results set
by Gray et. al [35].

4 we can see the benefit of training larger models, with the
8192-d mLSTM achieving state of the art language modeling
comparable to [35], albeit at the cost of additional compute
and memory.

We investigate the scalability of a larger 8192-d mLSTM
model compared to the baseline 4096-d mLSTM model in Fig.
3. The 8192-d model has 0.72 GB of parameters in FP16,
while the 4096-d model has 0.18 GB of parameters. While
training the 8192-d model on 128 GPUs, we see a speedup
factor of 120.8x across 128 GPUs. Even though the larger
model has correspondingly larger gradients, it is also more
computationally intensive, leading to better scaling than the
baseline model on the same hardware.

IX. ANALYSIS OF LARGE BATCH TRAINING

Distributed data parallel training allows for near linear
scalability with respect to available GPUs by increasing the
batch size. However, as seen already in this work (see section
VII), training with large batches may run faster than training
with small batches, but it may not converge to the same
validation accuracy. Using the same setup as section VIII and
8, 16, 32, 64, and 128 GPUs we take a look at how the learning
rate schedule affects convergence.

A. Learning Rate Scaling

Former work in this space trained a 4096-d mLSTM with
an initial learning rate of 5e-4, batches of 128, and a linear
learning rate that decays to zero over one epoch of training
[3]. As expected and shown in Fig. 5, keeping this same
learning rate schedule as we increase batch size leads to worse
accuracy, or a higher BPC2.

2We train our models to convergence, not for one epoch, but results over
one epoch are representative, and easier to compare.



Recent work scaling image CNN models with SGD suggest
that learning rates could be scaled linearly as batch size
increases without a noticeable loss in model accuracy [39].
However, we found that our mLSTM model, optimized with
Adam, diverged for large batches when we scaled up the 5e-4
initial learning rate with either a linear or a square root rule,
as we increased the batch size.

We observed that for batch sizes of 2k-8k, the model
converged reasonably well with an initial learning rate of 3e-3
decayed to zero over one epoch. Thus we kept 3e-3 as the
initial learning rate for all other experiments.

Batch Iters Rule LR BPC SST IMDB

2048 72.6k

linear 8e-3 1.280 79.4 77.6
sqrt 2e-3 1.117 90.2 91.9

- 5e-4 1.130 89.1 90.8
- 3e-3 1.110 89.0 92.1

4096 37.3k

linear 1.6e-2 1.275 78.3 77.6
sqrt 2.8e-3 1.122 89.6 91.0

- 5e-4 1.146 89.3 90.9
- 3e-3 1.119 89.2 91.8

8192 18.6k

linear 3.2e-2 1.476 65.4 67.3
sqrt 4e-3 1.133 89.7 90.8

- 5e-4 1.175 87.3 89.6
- 3e-3 1.132 89.5 91.4

16384 9.3k

linear 6.4e-2 Div - -
sqrt 5.8e-3 Div - -

- 5e-4 1.254 85.1 86.4
- 3e-3 1.162 89.0 90.1

32768 4.6k

linear 1.3e-1 Div - -
sqrt 8e-3 Div - -

- 5e-4 1.380 75.2 74.8
- 3e-3 1.218 87.1 87.9

Fig. 5: Evaluation results for various initial learning rates with
a schedule decaying to zero over 1 epoch. Some initial rates
are set by a linear or square root scaling rule based on a 5e-4
rate for a batch of 128. Div indicates that training diverged.

B. Learning Rate Schedule

When training to convergence, we used the same learning
rate schedule for all batch sizes:

• Set an initial learning rate of 3e-3.
• Linearly decay learning rate to zero over 100,000 itera-

tions.
• Stop training at 3 epochs over the dataset, if fewer than

100,000 iterations.
This schedule, constant across all batch sizes, avoided the

divergence observed in Fig. 5, from scaling learning rate too
much, but it also performed better than if we had instead kept
the initial 5e-4 learning rate constant across batch sizes.

Using this learning rate schedule for the model with dif-
ferent batch sizes, Fig. 6 shows that large batch training
for this problem can converge to a similar evaluation BPC

(a)

(b)

Batch GPU Iters Ep hrs BPC SST IMDB

2048 8 100k 1.4 23.7 1.102 90.6 92.1
4096 16 100k 2.7 25.3 1.090 90.6 92.7
8192 32 55k 3.0 14.0 1.104 91.2 92.3

16384 64 28k 3.0 7.1 1.116 90.3 92.3
32768 128 14k 3.0 3.5 1.132 90.1 90.4

Fig. 6: a) Training progress as a function of time for a 3e-
3 initial learning rate decaying to zero over 100k iterations.
Various batch sizes are trained with distributed data parallelism
with a batch size of 256 per GPU. b) Comparison of model
convergence, hardware used, time taken, and iterations and
epochs (Ep) trained for a particular batch size. Batch sizes that
have not reached 100k iterations after 3 epochs did not fully
decay their learning rate and may benefit from more training.

as smaller batch training given a good training schedule.
However, adjusting the learning rate schedule is not as simple
as modifying the learning rate according to batch size. In our
experiments we found that controlling the steepness of decay
was also required.

X. DISCUSSION

We were able to converge our model in mixed precision, to
a similar value as the FP32 baseline. This speeds up training,
and substantially reduces our memory footprint, without a
measurable change in accuracy, as shown in Fig. 2. We
further speed up training by saturating up to 128 GPUs with
distributed data parallelism, which we can do with a near-
linear scaling factor Fig. 3.

However, as batch size increases from 128 in [3] to 32k, the
model needs more training steps to converge, and it does not
converge to to quite as good a validation BPC as the low-batch
model Fig. 6.

With longer training: 3 epochs of the Amazon Reviews
dataset rather than 1, we do converge the 32k batch model
close to the small batch model, doing so in a few hours instead



of days or weeks. We also show that downstream task transfer
to sentiment extraction is comparable when using converged
large batch models (Fig. 6b).

Smith et. al [39] suggest that to scale the learning rate
without a loss in generalization quality, given a batch size
B and total amount of data N , B must be sufficiently large
so that N � B. It is possible that a batch size ≥ 32k
and the amount of available Amazon data do not satisfy this
requirement since the Amazon Reviews dataset is reduced to
fewer than 5000 iterations when we scale up to a 32k batch
size. This observation opens up new research questions for
future work.

XI. FUTURE WORK

We have shown that distributed data parallelism scales for
large RNN text models. However, we start to see diminish-
ing returns on wall time convergence at very large batches,
possibly because each epoch is reduced to a small number of
training iterations. Now that we can train a language model on
the 40 GB Amazon reviews dataset in hours, a next step could
be to train on larger text datasets. Orders of magnitude larger
text datasets could be constructed by collecting web pages,
news articles, Reddit comments, and tweets, for example.

In addition to larger text datasets, we could further improve
Amazon Reviews BPC (and presumably accuracy on transfer
tasks) with some of the following:

• Training for more than 3 epochs.
• Data shuffling between epochs.
• Larger RNN models, with more layers and larger hidden

states.
• Alternative language models, such as the Transformer

network [49].
• Hyper-parameter search for an ideal large batch learning

rate schedule.
As shown in Fig. 6b, our best large batch training runs did

not decay the learning rate to zero by the end of 3 epochs.
As long as the initial learning rate is low enough not to cause
training divergence, it may be possible to keep the learning
rate high through several epochs of training. Recent language
modeling work with the Transformer network has shown that
triangular learning rate warmup and non-linear learning rate
decay (cosine annealing) can lead to a better learning rate
schedule with the Adam optimizer [13]. We showed that a
simple learning rate schedule can work for large batch training,
but further work on learning rate schedules will likely improve
convergence.

Increasing the mLSTM size from 4096 to 8192-d reduces
the per-GPU batch size by a factor of four. Using gradient
checkpointing [50] would allow training larger models with
larger batches without being constrained by memory capacity.

In order to get maximal text understanding from these larger
models, we could modify the unsupervised task to include
additional objectives, along with language modeling. Auxiliary
tasks may include predicting a review’s star rating, the title or
topic of a piece of text, or any other freely available structural
text label. Since the purpose of unsupervised training is to

build a model with deep conceptual understanding of the text,
auxiliary tasks that leverage metadata available with the text
could provide additional understanding.

XII. CONCLUSION

We set out to investigate large scale training for recurrent
models in the Natural Language domain. With mixed precision
training we can successfully converge a model 4.2x faster with
double the batch size compared to FP32 training. By lever-
aging distributed deep learning with NCCL2, NVLINK, and
Infiniband interconnect, we achieve near linear scaling of 109x
with 128 GPUs, as we grow the batch size proportionately to
the number of available machines.

In addition to pushing wall time scalability by decreasing
the time needed to converge a language model on the Amazon
Reviews dataset, we analyze the convergence of models trained
with large batches. We find that training with very large
batches leads to somewhat worse generalization, requiring
more data to converge to a similar validation BPC and transfer
accuracy as small batch training. Learning rate schedule modi-
fications are necessary to help with convergence. Without such
techniques evaluation quality begins to decline as batch size
increases, or the model fails to converge if the learning rate is
scaled too high.

With further modification to the learning rate schedule and
additional training it is possible to train models with large
batches comparable to models trained with smaller batches.
Our experiments lead to two insights:

• The relationship between batch size and learning regime
is complex and learning rate scaling alone is not always
enough to converge a model.

• Even with the largest public text corpus available, it
may not be feasible to satisfy the B � N batch size
requirement needed to effectively train with the largest
batches that modern hardware allows.

We look forward to more work investigating large scale
language model training and using it in transferred tasks to
solve difficult natural language problems.
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