1609.09333v1 [cs.DC] 29 Sep 2016

arxXiv

Towards performance portability through
locality-awareness for applications using one-sided
communication primitives

Huan Zhou
High Performance Computing Center Stuttgart (HLRS)
University of Stuttgart

Germany
zhou@hlrs.de

Abstract—MPI is the most widely used data transfer and
communication model in High Performance Computing. The
latest version of the standard, MPI-3, allows skilled pro-
grammers to exploit all hardware capabilities of the latest
and future supercomputing systems. The revised asynchronous
remote-memory-access model in combination with the shared-
memory window extension, in particular, allow writing code
that hides communication latencies and optimizes communication
paths according to the locality of data origin and destination.
The latter is particularly important for today’s multi- and
many-core systems. However, writing such efficient code is
highly complex and error-prone. In this paper we evaluate a
recent remote-memory-access model, namely DART-MPI. This
model claims to hide the aforementioned complexities from the
programmer, but deliver locality-aware remote-memory-access
semantics which outperforms MPI-3 one-sided communication
primitives on multi-core systems. Conceptually, the DART-MPI
interface is simple; at the same time it takes care of the
complexities of the underlying MPI-3 and system topology. This
makes DART-MPI an interesting candidate for porting legacy
applications. We evaluate these claims using a realistic scientific
application, specifically a finite-difference stencil code which
solves the heat diffusion equation, on a large-scale Cray XC40
installation.

Keywords—DART-MPI; one-sided; application porting; data-
locality

I. INTRODUCTION

Numerical simulation using distributed and parallel applica-
tions, e.g., studying aerodynamics, fluid dynamics, molecular
dynamics, weather forecasting and so on, provides researchers
with insight into complex natural phenomena. Various parallel
programming models are developed for implementing efficient
and scalable distributed simulations. The Message Passing
Interface (MPI, [1]) remains as the dominant communication
model as a result of its high performance, portability and
standardization on cutting-edge computing systems.

Multi- or many-core processors are commonly deployed
in today’s computation clusters due to it fuels an explosive
growth of processing capability. According to the new TOP500
Supercomputer report [2], the most powerful supercomputer as
of June 2016 — Sunway — exemplifies this fact with core counts
exceeding 10,000,000. However, taking into account additional

José Gracia
High Performance Computing Center Stuttgart (HLRS)
University of Stuttgart
Germany
gracia@hlrs.de

resource sharing, communication and synchronization within
a node of multi- and many-core clusters poses new challenge
for design of parallel applications. To get the optimal intra-
node performance, researchers need to design their parallel
programs to be aware of data-locality and exploit all available
communication paths. For instance, data exchange within a
node should bypass the MPI communication primitives and
use direct memory load/store operations.

The MPI standard has been evolving to keep up with
the scalable and productive computation hardware. MPI-2
incorporates the one-sided interfaces to avoid the matching
affairs inherent in the two-sided operation. Moreover, in MPI-3
remote-memory-access (RMA) is extended to support shared
memory windows. The results provided in earlier works [3],
[4] have proved that the MPI-integrated shared memory win-
dow is a promising alternative since it allows co-existence
of RMA operations and direct load/store accesses. However,
note that MPI does not intuitively expose data locality to user
applications. Thus, the programmer needs to have profound
knowledge of the details in MPI to be able to write efficient,
data-locality aware applications based on MPI. In addition,
the MPI interfaces for RMA and shared-memory extensions
are very complex, making the development error-prone and
time-consuming.

DART-MPI [5] is an MPI-3 based implementation of the
runtime system for the hierarchical PGAS-like C++ program-
ming model DASH [6]. However, in this paper DART-MPI is
treated as a programming model in its own right. It provides
a number of communication primitives including one-sided
and collective operations through a plain C-based interface.
One fundamental goal of DART-MPI is to support data-
locality aware communication schemes while keeping the
user away from MPI complexities. In particular, DART-MPI
internally takes responsibility over all those details related to
the correctness and performance mentioned above. Therefore,
DART-MPI enables portable and efficient parallel program-
ming for todays multi- and many-core clusters. Besides, the
DART RMA communication performance penalties for wrap-
ping the underlying MPI-3 and system topology are shown

in the dissertation [7] and they become negligible when the
larger messages are transferred.

We briefly discuss some background used in this paper
in section II, explain how DART-MPI hides detail and com-
plexities of MPI-3 RMA from the user and demonstrate the
terseness and clarity of DART-MPI code in comparison to
locality aware MPI-3 code in section III. Finally, in section IV
we demonstrate the performance of DART-MPI using a heat
diffusion problem, which is a representation for a wide class
of numerical simulation schemes. In particular, we present
a comprehensive picture of the comparative results between
the DART-MPI and MPI-3 RMA implementations of this
application on large-scale, supercomputers such as Cray XC40
systems.

II. BACKGROUND
A. DART-MPI

DART [5] defines common concepts, terminology and
abstracts from the underlying communication substrate and
hardware. DART establishes a partitioned global address space
and provides functions to handle memory efficiently, such as
memory allocation and data movement. In addition, DART
also provides functions for initialization, synchronization and
management of teams, which are similar to the MPI com-
municators. In a DART program an individual participate
is called unit. DART provides the functions of dart_init
and dart_exit for initialization and finalization. Importantly,
providing and working with a global memory (collective or
non-collective) is the focus of DART. The global address space
is a virtual abstraction, with each unit contributing a part of
its local memory. Remote data items are addressed by global
pointers provided by DART. The complete DART specifica-
tion is available on-line at https://dl.dropboxusercontent.com/
u/408013/dart_spec_v2.1.html.

When possible (i.e., intra-node), the shmem-win (shared
memory window object) described in the paper [8] are always
used by DART-MPI blocking RMA operations to perform
load or store instructions. Additionally, the DART-MPI intra-
node non-blocking RMA operations are designed as the MPI
RMA operations on shmem-win, whilst all the DART-MPI
inter-node RMA operations turn to the MPI RMA oper-
ations on d-win (MPI dynamically-created window object)
or win (MPI-created window object). Hence we can ob-
serve that DART-MPI spontaneously has data locality in
mind when performing the RMA operations. DART block-
ing and non-blocking RMA operations are represented as
dart_get/put_blocking and dart_get/put, respectively.

B. Heat conduction

The heat conduction [9] is a mode of heat transfer ow-
ing to molecular activity and occurs in any material (e.g.,
solids, fluids and gases). We used the application source code
parallelized with MPI at [10]. This application simulates the
phenomenon of 3D heat conduction in solids with temperature-
dependent thermal diffusivity. The Partial Differential Equa-
tion (PDE) for unsteady 3D heat conduction is obtained in

Halo (outer) cells
@ Border (inner) cells

Fig. 1. Halo cells exchange in 3D grid. Exchange of the matrix data (a total of
xcellx ycell grid cells) happen on Oxy plane between neighboring processes
in the direction of z-axis, where sub-domain 29 is the Down neighbor of
sub-domain €27.

the Cartesian coordinate system. Here, unsteady means the
temperatures may change during the process of heat conduc-
tion. This application solves the PDE over a 3D grid by using
the Finite Difference Method (FDM). Boundary conditions are
constant temperatures at the edges of the 3D grid.

Moreover, parallelization is done based on the checkerboard
domain decomposition. After the decomposition each process
has six neighbors located in the direction of East-West (x-
axis), North-South (y-axis) and Up-Down (z-axis) according
to the Cartesian process topology. The exceptional case is the
processes owning the edge cells will not have all of the six
neighbors. Each process sends each face of its sub-domain (a
3D sub-grid), i.e., matrix, to its corresponding neighbor for
the computation.

Each process exchanges the border data with its correspond-
ing neighbors and the halo cells are reserved to receive the
exchanged data. The original 3D heat conduction application
fills the halo cells in each iteration using the point-to-point
communication operation (i.e., MPI_Sendrecv). Each cell of
the grid is a 8-byte double-precision floating-point number.
The abort-criterion convergence is achieved by invoking the
collective operation, such as all-to-all reduce. Figure 1, takes
the direction of z-axis for example, to explain the way of
boundary data exchange between two neighboring processes.

III. METHOD OF WRAPPING MPI COMPLEXITY INSIDE
DART INTERFACES

Figure 2 shows the MPI code that is used to consciously
send a message from the origin to another random target
process with the data locality in mind. It is clearly observed
that in MPI code, the window creation/destroy operations as
well as the access epoch start/end operations should be dealt
with explicitly and carefully. In detail, the MPI programmer
first needs to allocate a shared-memory window along with a
region of memory with specified size and then creates another
RMA window spanning the same region of memory. Besides
the creation of these two nested windows, a hash table (named

MPI_Init (...);

MPI_Comm_size (MPI_COMM_WORLD,
MPI_Comm_split_type
(MPI_COMM_WORLD,..., &sharedmem_comm) ;
MPI_Win_create_dynamic (MPI_COMM_WORLD,
MPI_Win_lock_all (d-win);

if (sharedmem_comm!=MPI_COMM_NULL) {

MPI_Win_allocate_shared

(nbytes,..., &membase, &sharedmem_win);

MPI_Win_lock_all (sharedmemﬁwin);}
MPI_Win_attach (d-win, membase, nbytes);
MPI_Get_address (membase, &disp);
disp_s = (MPI_Aint*)malloc (size x

(sizeof (MPI_Aint)));
MPI_Allgather (&disp, 1,
MPI_COMM_WOLRD) ;

dest = randomdst_generator ();

/* The array is_shmem indicates the position of

the given target process with respect to the
origin =/

if ((j=is_shmem[dest])>=0){//on-node communication

/* The j is the relative target rank in the

corresponding sharedmem_comm x/

MPI_Win_shared_query

(sharedmem_win, j,..., &baseptr);

memcpy (baseptr, srcptr, nbytes);}
else{//across—-node communication

MPI_Put (srcptr, nbytes, dest,

d-win) ;

MPI_Win_flush (dest, d-win);}
MPI_Win_detach (d-win, membase);
if (sharedmem_comm!=MPI_COMM_NULL) {

MPI_Win_unlock_all (sharedmemﬁwin);}

&size);

&d-win) ;

MPI_AINT, disp_s,...,

disp_s[dest],...,

MPI_Win_unlock_all (d-win);
MPI_Win_free (&sharedmem_win);
MPI_Win_free (&d-win);

free (disp_s);
MPI_Finalize ();

Fig. 2. An example for MPI code. This example shows the MPI code for
transferring data from an origin process to another random target process with
data locality in mind.

dart_init ();

dart_team memalloc_aligned
(DART_TEAM_ALL, nbytes, &gptr);

dest = randomdst_generator ();
dart_gptr_setunit (&gptr, dest);
dart_put_blocking (gptr, srcptr, nbytes);
dart_team_memfree (DART_TEAM_ALL, gptr);
dart_exit ();

Fig. 3. An example for DART code. This example shows the DART code
for transferring data from an origin unit to another random target unit with
data locality in mind.

as is_shmem) is entailed to indicate the data locality. Finally,
different communication paths are taken according to the data
locality information (on-node or across-node). Regarding the
on-node communications, direct load or write accesses are
allowed. Otherwise, the MPI RMA communication operations
are employed. Figure 3 shows the corresponding data-locality
aware code of DART. Revisiting Fig. 2, the red code lines
are required for handling the intra-node data transfers. In
comparison to the MPI code, the DART code is obviously
more concise and easier-to-read. This is due to that DART-MPI
has internally taken over the responsibility for the locality-

awareness and manipulation of access epoch by hiding the
complexity from the user.

PO P1 P2
| |

lock-all(d-win) lock-all(d-win)
| | DART collective global
[lock-all(shmem-win)|[lock-all(shmem-win)|[lock-all(shmem-win) .—— memory alloation
onteam T
dart_put put

Store Synch

lock-all(d-win)<——DART team T creation

dart_put_blocking

dart_get Jer \oad dart_get_blocking

Synch DART collective global

memory dealloation
onteam T

unlock-all(s|

unlock-all(shmem-win)
unlock-all(shmem-win)
unlock-all(d-win)
unlock-all(d-win)

Fig. 4. Example of DART-MPI RMA operations within two passive epochs.
Here, the two passive epochs are started by a call to MPI_Win_lock_all and
ended by a call to MPI_Win_unlock_all. The Synch means the operation of
dart_wait.

DART team T destroy

The MPI RMA communication operations coupled with
explicit passive synchronization operations (with shared lock)
form a theoretic foundation for building the DART-MPI RMA
model [5]. In fact, each MPI RMA communication call must
proceed within an access epoch for this window at a pro-
cess to start and complete the issued RMA communications.
Superficially, the RMA semantics in MPI and DART both
require the independent management of synchronization and
communication. However, the concept of access epoch is
not relevant in the DART RMA semantics according to the
DART specification. Therefore, all primitives pertaining to
MPI access epoch need to be hidden from DART programmer.
Importantly, this focus creates the illusion that all DART
global memory regions are protected and exposed once al-
located and also the expected processes are allowed to access
those global memory regions directly.

MPI-3 supports a global lock mechanism providing
the lock_all/unlock_all routines (i.e., MPI_Win_lock_all
IMPI_Win_unlock_all) to allow locking/unlocking multiple
targets simultaneously. lL.e., the pair of MPI_Win_lock_all
and MPI_Win_unlock_all enables programmer to lock/unlock
all processes in a certain window with a shared lock. This
mechanism avoids the proneness to error and repeated open
or closure operations on the access epoch. Thus, it is applied
to build up DART-MPI RMA model by leveraging the global
lock/unlock routines. Given the DART collective and non-
collective global memory managements differ in concept and
design, we will explain how to safely expose these two types
of global memory independently based on the global lock
mechanism.

A global win and a global shmem-win are created once a
DART program is initiated [8]. Therefore, each process/unit
needs to add two MPI_Win_lock_all calls for the global win
and shmem-win to start two protected shared access epochs to
all other units. Prior to freeing up the global win and shmem-
win (done inside dart_exit), each unit issues two matched

MPI_Win_unlock_all calls to end the above two access epochs.
Unlike non-collective global memory allocations, collective
global memory allocations always involve all units in the given
team. Thus, there are two scenarios where the creation of
d-win [8] takes place:
1) When a DART program is launched, a d-win for
DART _TEAM_ALL is created.
2) When a new team (e.g., team 1) is created, a d-win for
team 7T is created.

In each of the above scenarios, a shared lock all epoch for the
d-win is started. Additionally, we associate a shmem-win with a
region of allocated collective global memory. This necessitates
the call to MPI_Win_lock_all for the shmem-win.

Likewise, we can complete the lock all epoch by a call to
MPI_Win_unlock_all when the DART program is finalized or
team T is destroyed. A call to MPI_Win_unlock_all is also
entailed to complete a shared RMA access epoch along with
the deallocation of the collective global memory region.

Remote completion of communications without ending the
access epoch can be achieved with the flush routines (i.e.,
MPI_Win_flush and its all-, any- and local-variants). An
MPI_Win_flush specifies a certain target and ensures that all
previous operations to the target are locally and remotely
finished.

The DART synchronization routines (dart_wait and
dart_waitall) are expected to ensure the remote and local
completion of DART non-blocking RMA communications.
Therefore, the explicit MPI bulk synchronization using flush is
integrated into dart_wait. Likewise, the dart_waitall performs
a series of related calls to MPI_Win_flush. Figure 4 thoroughly
shows the exemplary DART RMA events happening on the
collective global memory region across team 7' with MPI
global lock mechanism. Here we assume that the team T
consists of three processes locating within one node.

IV. EXPERIMENTAL EVALUATION

In this section we present a comprehensive picture of
the comparative results between DART-MPI RMA and MPI
RMA through a numerical simulation of 3D heat conduction
problem. In this experiment, we stop the calculation after
5000 iterations and collect and analyze the time results of
the computation (update the inner grid cells) and halo cells
exchange for different grid sizes and participating processes.
We plot the average data results of 25 runs with small
execution time variation reported.

A. Experimental testbed

The experimental environment was the Cray XC40 sys-
tem [11]. Cray XC40 system is equipped with 7,712 compute
nodes made up of dual twelve-core Intel Haswell E5-2680v3
processor (one processor per socket), which has exclusive
256 KB L2 unified cache for each core. Therefore, each
compute node has 24 cores running at 2.5GHZ with 128 GB of
DDR4 (Double Data Rate) RAM (Random Access Memory).
The different compute nodes are interconnected via a Cray
Aries network using Dragonfly topology. The Cray XC40

/* Communicate matrix data on Oxz plane x/
if (South neighbor exists)

for (1 = 0; i < =zcell; i++)
get (zcell, South); // Get zcell consecutive
grid cells from South neighbor
barrier;
if (North neighbor exists)
for (1 = 0; i < =zcell; i++)
get (zcell, North);
barrier;

/+ Communicate matrix data on Oyz plane =/
if (West neighbor exists)
for (1 = 0; 1 < ycell; i++)
get (zcell, West); // Get zcell consecutive grid
cells from West neighbor
barrier;
if (East neighbor exists)

for (1 = 0; 1 < ycell; i++)
get (zcell, East);
barrier;

/* Communicate matrix data on Oxy plane */
if (Up neighbor exists)

for (1 = 0; 1 < mcell; i++)
for (j = 0; J < ycell; J++)
get (1, Up); // Get one grid cell from Up
neighbor
barrier;

if (Down neighbor exists)
for (1 = 0; i < zcell; i++)
for (3 = 0; 3 < ycell; F++)
get (1, Down);
barrier;

Fig. 5.
operations.

Pseudo-code for the halo cells exchange with get and barrier

system features a hierarchical network topology. Detailedly,
the Cray XC Rank-1 network is used for communications
happening across different compute blades within a chassis
over backplane. Each chassis consists of 16 compute blades.
Communications happening across different chassis within a
2-cabinet group over copper cables are supported with the
Cray XC Rank-2 network. Further, the Cray XC Rank-3
network is employed for communications happening between
the groups over the optical cables. All the experiments in this
paper are based on the Cray Programming Environment 5.2.56.
Moreover, the tasks are assigned to cores in SMP style [12],
which means one node needs to be filled before going to next.

B. DART-MPI and MPI RMA port of 3D heat conduction
application

For our test, we first implement the above mentioned 3D
heat conduction algorithm based on MPI one-sided interfaces
using passive target mode. We then port it to DART one-
sided directives, where just several (~ 14) modified code lines
are required. The porting procedure is thus straightforward
and economic. The halo cells exchange is achieved by using
blocking get operation. We can deduce that six blocking
get operations will be invoked for each process. Particularly,
MPI_Rget is invoked first and then followed by MPI_Wait in
MPI implementation and dart_get_blocking is used in DART
implementation. Note that, within each calculation iteration,
after one round of halo cells exchange with certain neighbor an

explicit process synchronization, such as barrier (MPI_Barrier
in MPI and dart_barrier in DART-MPI), is naively inserted
in our code due to an implicit synchronization is ideally
supported by point-to-point communication model. Therefore,
the halo cells exchange time measured below includes the
overhead brought by process synchronization. Regarding the
process synchronization, we only measure the overhead in-
troduced by the barrier operations instead of the time to
wait between processes. Figure 5 concisely shows the critical
part of the halo cells exchange code within each calculation
iteration.

C. Performance results

Figure 6 gives the quantitative results showing the perfor-
mance of DART-MPI RMA and MPI RMA on Cray XC40
system over the number of cores (from 16 to 4096). A
weak scaling evaluation, where the number of grid cells
per core is fixed and is applied with grid sizes varying
from (64x64x128) to (256x2048x256). The domain size
is chosen such, that overall execution is dominated by the
time to exchange halo cells in order to increase the statistical
significance of the latter. As expected from a weak scaling
experiment, the total execution time increases only slowly
due to larger relative communication cost. In fact, the actual
computation time, i.e. the time to update the inner grid cells,
stays nearly constant with the increasing core count and is
the same for the MPI RMA and DART-MPI version within
the observed statistical variance. However, the DART-MPI
implementation can provide a relative speedup of ~1.38x
over MPI on average in terms of the halo cells exchange
time performance. Such speedup is mostly attributed to the
enabling of direct load/store access within one node in the
DART-MPI. Particularly, when only the on-node performance
is considered, that is 16 cores, then the improvement can be
obviously seen, cf. 0.76s for DART-MPI, and 1.85s for MPI. In
addition, the consistent improvement seen is expected because
most of the data exchanges are still local to a node in this
evaluation. Such fact highlights and visualizes the advantage of
the memory sharing mechanism in intra-node case employed
by DART-MPI implementation. Furthermore, we can observe
that the performance speedup gets decreased as the number of
cores is increased, which is not surprising given the number
of across-node data exchanges is accordingly increased and
DART RMA uses the same communication infrastructure as
MPI RMA internally in the inter-node case.

On the other hand, shown in Fig. 6, the halo cells ex-
change time gets sustained growth over the number of cores.
Specifically, a sudden rise occurs when the communications
go beyond one node and start crossing nodes (32 cores).
The fact, that is, several inter-node data transfers start to be
involved accordingly, creates big difference in performance.
Besides that, the process synchronization may also be a part
of the growth of the halo cells exchange time, as hinted above.
Therefore, Figure 7 breaks down the halo cells exchange time
in terms of pure data exchange and process synchronization,
which can help us understand how the two components affect

the amount of time the halo cells exchange takes to run.
Observing this figure, it is immediately clear that both the
process synchronization and pure data exchange overhead
increase gradually over the number of cores. The breakdown
information tells us that the pure data exchange component
plays an important role in the halo cells exchange time rise
especially when the number of cores reaches up to 1024.
In this experiment, inter-group communications through Cray
XC Rank-3 optical network take place when 1024 cores
are launched, which would greatly degrade data exchange
performance, in comparison to the inter-blade (intra-chassis)
communications through Cray XC Rank-1 backplane network
and inter-chassis (intra-group) communications through Cray
XC Rank-2 copper network. This is the reason for the sudden
rise in the pure data exchange time when ranging the number
of cores from 512 to 1024.

Here, we would add that the Fig. 7 sufficiently illustrates
that the data-locality aware RMA operations in the DART-MPI
result in the improvement in the halo cells exchange time.

V. RELATED WORK

A heuristic study [13] conducted on Cray XE6 shows
that one-sided MPI-2 has relatively inferior scaling behavior
compared to UPC and Cray SHMEM RMA. This is due
to that random allocated memory can be specified to be
remotely accessible in MPI-2. Unlike MPI-2, the memory for
RMA operation is somehow customized for Cray SHMEM
(symmetric memory) and UPC (shared memory). Further,
MPI-3 RMA enables direct load/store accesses by supporting
a shared-memory window [3], [4], which is employed in
DART-MPI to enhance the intra-node RMA communication
performance.

Additionally, MPI researchers conduct long-term optimiza-
tion works on the MPI RMA [14]-[17] and collective op-
erations [18]-[21]. Those optimizations are also liable to be
applied onto DART-MPI and then benefit the performance of
applications.

VI. CONCLUSION

We depicted the approach of leveraging the existing MPI
RMA synchronization interfaces (global lock mechanism) for
the related DART interfaces. The DART code of data locality-
awareness is more concise and easier-to-read than MPI code.
This is due to that DART-MPI has internally taken over the
responsibility for the locality-awareness and manipulation of
epoch access. We then described the rewriting structures for
porting a 3D heat conduction application onto one-sided MPI
and then onto DART-MPI. The DART-MPI port is proved to be
efficient for different number of cores and grid sizes on Cray
XC40 system and speeds up the communication performance
(halo cells exchange) by 27% on average over MPI port in this
application level evaluation. Such performance improvement
is induced by the fact that one-sided DART is implemented
using the feature of MPI-3 integrated shared memory window
in the intra-node case while retaining the MPI inter-node RMA
performance. Therefore, DART-MPI has basically reached

1.79
20
1.82 1_77-
1.76 I [|
15 152 il
1.83
©
2 10
E
=
5
=L ﬂ
0 0.76 1.85 2.75 3.81 3.94 52 4.86 6.23 5.18 6.68 5.98 7.66 11.5 12.97 14.42 16.32 15.92 18.29
anifone 41 “n, 4’44 Sty /1/ 4¢ M/I/’ M/I«/ M/I«/ CaaFons Mt
16 / 4 30 R4 g4 4 128 %4 556 R4 512 774 1024 4 2048 4 4006 4
Number of cores

Halo cells exchange 1
Computation B

Fig. 6. Weak scaling for one-sided DART and MPI. The grey bar signifies the halo cells exchange time, the value of which is written on the bottom. The
brown bar signifies the computation overhead, the value of which is written on the top.
20
11.56
15
9.13
- 7.52
)
£ 10 6.16
i= .
5.52 575 433
4.8 4.07 4.1
5 371 3.55 D D E
2 59
1.81
0 006 0.04 016 0.1 0.39 0.4 79 0.71 1.08 0.93 1.65 1.5 3.98 3.84 555 5.74 6.18 6.73
4, /Il W, Y 04, . 4, W, '11 W,
4Ry, 'h 1 "6“7 b, "‘M,,':’w ""M,Z’w,h “% ~,,";/ , "‘77 L "‘77 it '9/,,,
16 /“’32 274 6a P74 128 174 356 M 512 74 1024 /“'2048 %4 4096 4

Number of cores

Process synchronization IR
Pure data exchange 1

Fig. 7. Breakdown of halo cells exchange time for the weak scaling problem. The blue bar signifies the overall process synchronization overhead, the value
of which is written on the bottom. The pink bar signifies the pure data exchange overhead, the value of which is written on the top. The sum equals to the

halo cells exchange overhead that we measured in this benchmark.

the goal of making itself easier for programmers to write
efficient applications with the data locality in mind. Further,
the DART-MPI applications can be executed on different com-
puters with hierarchical memory architecture (like Cray XC40
system) without any code change. Meantime, the performance
advantages brought by the factor of locality awareness will
also be retained since the underlying MPI communication
conduit is highly supported and tuned by a wide range of
hardware systems.

ACKNOWLEDGMENT

This work has been supported by the European Com-
munity through the project Polca (FP7 programme under
grant agreement number 610686) and Mont Blanc 3 (H2020
programme under grant agreement number 671697). We grate-
fully acknowledge funding by the German Research Foun-
dation (DFG) through the German Priority Programme 1648
Software for Exascale Computing (SPPEXA) and the project
DASH.

REFERENCES
[1] MPI Forum, “MPI: A Message-Passing Interface Standard. Version 3.0,”

[2]

[3]

[4]

[5]

[6]

[8]

[9]
[10]
(1]
[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

Tech. Rep., Sep. 2012, available at: http://www.mpi-forum.org.
“TOP500 - List Statistics - Jun. 2016,” http://www.top500.org/statistics/
list/, accessed: Jun. 2016.

T. Hoefler, J. Dinan, D. Buntinas, P. Balaji, B. W. Barrett, R. Brightwell,
W. Gropp, V. Kale, and R. Thakur, “Leveraging MPI’s One-
Sided Communication Interface for Shared-Memory Programming.”
in EuroMPI, ser. Lecture Notes in Computer Science, J. L. Triff,
S. Benkner, and J. J. Dongarra, Eds., vol. 7490. Springer, 2012, pp. 132—
141. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-33518-1
J. R. Hammond, S. Ghosh, and B. M. Chapman, “Implementing Open-
SHMEM Using MPI-3 One-Sided Communication.” in OpenSHMEM,
ser. Lecture Notes in Computer Science, S. W. Poole, O. R. Hernandez,
and P. Shamis, Eds., vol. 8356. Springer, 2014, pp. 44-58.

H. Zhou, Y. Mhedheb, K. Idrees, C. W. Glass, J. Gracia, and
K. Firlinger, “DART-MPI: An MPI-based Implementation of a
PGAS Runtime System.” in PGAS, A. D. Malony and J. R.
Hammond, Eds. ACM, 2014, pp. 3:1-3:11. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2676870

K. Fiirlinger, C. W. Glass, J. Gracia, A. Kniipfer, J. Tao, D. Hiinich,
K. Idrees, M. Maiterth, Y. Mhedheb, and H. Zhou, “DASH: Data
Structures and Algorithms with Support for Hierarchical Locality,”
in Euro-Par 2014: Parallel Processing Workshops - Euro-Par 2014
International Workshops, Porto, Portugal, August 25-26, 2014, Revised
Selected Papers, Part II, 2014, pp. 542-552.

H. Zhou, “Communication Methods for Hierarchical Global Address
Space Models in HPC (Unpublished),” Ph.D. dissertation, University of
Stuttgart, Germany, 2016.

H. Zhou, K. Idrees, and J. Gracia, “Leveraging MPI-3 Shared-Memory
Extensions for Efficient PGAS Runtime Systems.” in Euro-Par, ser.
Lecture Notes in Computer Science, J. L. Triff, S. Hunold, and
F. Versaci, Eds., vol. 9233. Springer, 2015, pp. 373-384. [Online].
Available: http://dx.doi.org/10.1007/978-3-662-48096-0

M. Williams, “What is heat conduction?” http://phys.org/news/
2014-12-what-is-heat-conduction.html, Dec. 2014.

“MPI Parallelization for numerically solving the 3D Heat equation,”
https://dournac.org/info/parallel\ _heat3d, accessed: Apr. 2016.

“Cray XC40,” https://wickie.hlrs.de/platforms/index.php/CRAY\ _
XC40_Hardware_and_Architecture, accessed: Jul. 2016.
“Reordering MPI Ranks,” http://www.nersc.gov/
users/computational-systems/retired- systems/hopper/
performance-and-optimization/reordering- mpi-ranks/,
2016.

C. M. Maynard, “Comparing One-sided Communication with MPI, UPC
and SHMEM,” in Proceedings of the Cray User Group (CUG), 2012.
J. Liu, W. Jiang, P. Wyckoff, D. K. Panda, D. Ashton, D. Buntinas,
W. D. Gropp, and B. R. Toonen, “Design and Implementation of
MPICH2 over InfiniBand with RDMA Support.” in [PDPS. 1EEE
Computer Society, 2004. [Online]. Available: http://ieeexplore.ieee.org/
xpl/mostRecentIssue.jsp?punumber=9132

P. Lai, S. Sur, and D. K. Panda, “Designing Truly One-sided MPI-
2 RMA Intra-node Communication on Multi-core Systems.” Computer
Science - R&D, vol. 25, no. 1-2, pp. 3-14, 2010.

R. Gerstenberger, M. Besta, and T. Hoefler, “Enabling Highly-scalable
Remote Memory Access Programming with MPI-3 One Sided.” in
SC, W. Gropp and S. Matsuoka, Eds. ACM, 2013, pp. 53:1-53:12.
[Online]. Available: http://doi.acm.org/10.1145/2503210

S. Potluri, H. Wang, V. Dhanraj, S. Sur, and D. K. Panda, “Optimizing
MPI One Sided Communication on Multi-core InfiniBand Clusters
Using Shared Memory Backed Windows.” in EuroMPI, ser. Lecture
Notes in Computer Science, Y. Cotronis, A. Danalis, D. S. Nikolopoulos,
and J. Dongarra, Eds., vol. 6960. Springer, 2011, pp. 99-109. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-24449-0

R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of Collective
Communication Operations in MPICH.” IJHPCA, vol. 19, no. 1, pp.
49-66, 2005.

J. Liu, A. R. Mamidala, and D. K. Panda, “Fast and Scalable
MPI-Level Broadcast Using InfiniBand’s Hardware Multicast Support.”
in IPDPS. 1IEEE Computer Society, 2004. [Online]. Available:
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9132

A. R. Mamidala, R. Kumar, D. De, and D. K. Panda, “MPI
Collectives on Modern Multicore Clusters: Performance Optimizations
and Communication Characteristics.” in CCGRID. IEEE Computer
Society, 2008, pp. 130-137. [Online]. Available: http://ieeexplore.icee.
org/xpl/mostRecentlssue.jsp?punumber=4534181

accessed: Apr.

[21]

[22]

H. Zhou, V. Marjanovic, C. Niethammer, and J. Gracia, “A Bandwidth-
saving Optimization for MPI Broadcast Collective Operation,” in Pro-
ceedings of the International Conference on Parallel Processing Work-
shops, ICPPW, Sep. 2015.

18th International Parallel and Distributed Processing Symposium
(IPDPS 2004), CD-ROM / Abstracts Proceedings, 26-30 April 2004,
Santa Fe, New Mexico, USA. 1EEE Computer Society, 2004.
[Online]. Available: http://ieeexplore.ieee.org/xpl/mostRecentlssue.jsp?
punumber=9132

