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Abstract—Backpressure (BP) routing is a well-established framework
for distributed routing and scheduling in wireless multi-hop networks.
However, the basic BP scheme suffers from poor end-to-end delay due
to the drawbacks of slow startup, random walk, and the last packet
problem. Biased BP with shortest path awareness can address the first
two drawbacks, and sojourn time-based backlog metrics were proposed
for the last packet problem. Furthermore, these BP variations require no
additional signaling overhead in each time step compared to the basic BP.
In this work, we further address three long-standing challenges associated
with the aforementioned low-cost BP variations, including optimal scaling
of the biases, bias maintenance under mobility, and incorporating sojourn
time awareness into biased BP. Our analysis and experimental results
show that proper scaling of biases can be achieved with the help of
common link features, which can effectively reduce end-to-end delay of
BP by mitigating the random walk of packets under low-to-medium
traffic, including the last packet scenario. In addition, our low-overhead
bias maintenance scheme is shown to be effective under mobility, and
our bio-inspired sojourn time-aware backlog metric is demonstrated to
be more efficient and effective for the last packet problem than existing
approaches when incorporated into biased BP.

Index Terms—Backpressure routing, resource allocation, shortest path
distance, queue length, sojourn time, delay-aware routing.

I. INTRODUCTION

Backpressure (BP) routing [1] is a well-established algorithm for
distributed routing and scheduling in wireless multi-hop networks.
These networks have been widely used in military communications,
disaster relief, and wireless sensor networks, and are envisioned to
support emerging applications such as connected vehicles, robotic
swarms, xG (device-to-device, wireless backhaul, and non-terrestrial
coverage), Internet of Things, and machine-to-machine communica-
tions [2]–[7]. The distributed nature of the BP algorithms [1], [8]–[22]
empowers wireless multi-hop networks to be self-organized without
relying on infrastructure, and promotes scalability and robustness
that are critical to many applications. In BP, each node maintains a
separate queue for packets to each destination (also denominated as
commodity), routing decisions are made by selecting the commodity
that maximizes the differential backlog between the two ends of each
link, and data transmissions are activated on a set of non-interfering
links via MaxWeight scheduling [1], [23], [24]. This mechanism uses
congestion gradients to drive data packets towards their destinations
through all possible routes, avoiding congestion and stabilizing the
queues in the network for any flow rate within the network capacity
region [1], [8], [9] (this property is known as throughput optimality).

However, classical BP routing is known to suffer from poor delay
performance, especially under low-to-medium traffic loads [8]–[12],
exhibiting three drawbacks: 1) slow startup: when a flow starts, many
packets have to be first backlogged to form stable queue backlog-
based gradients, causing large initial end-to-end delay; 2) random
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walk: during BP scheduling, the fluctuations in queue backlogs drive
packets towards random directions, causing unnecessarily long routes
or loops; and 3) the last packet problem [13], [14], which refers to the
phenomena that packets of a short-lived flow could remain enqueued
in the network for a long time due to the absence of pressure.

To improve the latency, four types of BP variations have been
developed: 1) Biased BP adds pre-defined queue-agnostic biases, e.g.,
(functions of) shortest path distance [8]–[10], [22] to the backlog
metric. Shortest path-biased BP (SP-BP) can mitigate the drawbacks
of slow startup and random walk, while maintaining the throughput
optimality [8]–[10] at a low cost, i.e., a one-time communication
overhead for bias computation. 2) Delay-based BP replaces queue-
length with delay metrics [11], [14], [16] for the backlog. This
approach addresses the last packet problem and maintains throughput
optimality. 3) Impose restrictions on the routes [17], [18] or hop
counts [19] to prevent or reduce loops. However, approaches (2) and
(3) above may shrink the network capacity region. 4) Use queue-
dependent biases that aggregate the queue state information (QSI)
of the local neighborhood (or global QSI) to improve the myopic
BP decisions [11], [12] or use shadow queues [13], [15] to dynam-
ically increase the backpressure. However, collecting neighborhood
or global QSI at every time step increases communications overhead.
Besides latency, other practical enhancements include extending BP
to intermittently connected networks [13], [21] and uncertain network
states [20]. In addition, most of the aforementioned approaches
require careful parameter tuning, typically done via trial-and-error.

In this work, we aim to improve the SP-BP routing [8], [9], [22]
in the presence of the last packet problem and network mobility,
while retaining its low computational and communication overhead
and throughput optimality. Specifically, we seek to address three
longstanding challenges associated with SP-BP: 1) how to optimize
the per-hop distance, in other words, the scaling of the shortest path
bias; 2) how to efficiently update the shortest path bias under node
mobility, e.g., nodes moving, joining or leaving the network; and
3) how to effectively incorporate sojourn time awareness into SP-BP
in response to the last packet problem.

Contribution. The contributions of this paper are as follows:
1) We develop a principled approach to optimize the per-hop distance
metric (bias scaling) based on features of wireless links, to mitigate
the random walk behavior and the last packet problem in SP-BP.
2) We develop an efficient bias maintenance rule for node mobility
based on local information exchange between 1-hop neighbors.
3) We further propose a new delay metric, expQ, to prioritize old
packets without having to track the sojourn time of individual packets,
which improves the bandwidth efficiency of the network.
4) We demonstrate via numerical experiments that shortest path biases
can address all three drawbacks of basic BP and are more effective
than delay metrics [14], [16] in reducing end-to-end delay.

II. (BIASED) BACKPRESSURE ROUTING

System Model: We model a wireless multi-hop network as an
undirected graph Gn = (V, E), where V is a set of nodes representing
user devices in the network, and E represents a set of links, where
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e = (i, j) ∈ E for i, j ∈ V represents that node i and node j can
directly communicate. Gn is called a connectivity graph and assumed
to be a connected graph, i.e., two arbitrary nodes in the network
can always reach each other. Notice that routing involves directed
links, so we use (

−→
i, j) to denote data packets being transmitted from

node i to node j over link (i, j). There is a set of flows F in
the network, in which a flow f = (i, c) ∈ F , where i ̸= c and
i, c ∈ V , describes the stream of packets from a source node i to a
destination node c, potentially through multiple links. The medium
access control (MAC) of the wireless network is assumed to be time-
slotted orthogonal multiple access. Each time slot t contains a stage
of decision making for routing and scheduling, followed by a second
stage of data transmission. Each node hosts multiple queues, one for
each flow destined to node c ∈ V (or packets of commodity c). We
use Q

(c)
i (t) to denote the queue of commodity c at node i at the

beginning of time slot t, and Q
(c)
i (t) for its queue length.

Matrix R ∈ Z|E|×T
+ collects the (stochastic) real-time link rates, of

which an element Re,t represents the number of packets that can be
delivered over link e in time slot t. The long term link rate of a link
e ∈ E is denoted by re = Et≤T [Re,t], and r̄ = Ee∈E,t≤T [Re,t] is
the network-wide average link rate.

Under orthogonal multiple access, the conflict relationships be-
tween wireless links are captured by a conflict graph, Gc = (E , C),
defined as follows: a vertex e ∈ E represents a link in the network,
and the presence of an undirected edge (e1, e2) ∈ C means that
simultaneous communications on links e1, e2 ∈ E cause interference.
We consider the scenario where all the users transmit at identical
power levels with an omnidirectional antenna, which can be captured
by the unit-disk interference model, in which two links conflict with
each other if they share the same node or if any of their nodes are
within a pre-defined distance. For the rest of this paper, we assume
the conflict graph Gc to be known, e.g., by each link monitoring the
wireless channel [25].

BP Algorithm: BP routing and scheduling consist of 4 steps. In
step 1, the optimal commodity c∗ij(t) on each directed link (

−→
i, j) is

selected as the one with the maximal backpressure,

c∗ij(t) = argmax
c∈V

{U (c)
i (t)− U

(c)
j (t)} , (1)

where U
(c)
i (t) is the backlog metric, whose relationship with queue

lengths is discussed later. The backpressure of commodity c on
directed link (

−→
i, j) is defined as U

(c)
ij (t) = U

(c)
i (t) − U

(c)
j (t). In

step 2, the maximum backpressure of (
−→
i, j) is found as:

wij(t) = max{U (c∗ij(t))
i (t)− U

(c∗ij(t))
j (t), 0} . (2)

In step 3, MaxWeight scheduling [1] finds the schedule s(t) ∈
{0, 1}|E| to activate a set of non-conflicting links achieving the max-
imum total utility, where the per-link utility is uij(t) = Rij,tw̃ij(t),

s(t) = argmax
s̃(t)∈S

s̃(t)⊤ [R∗,t ⊙ w̃(t)] , (3)

in which S denotes the set of all non-conflicting configurations,
vector R∗,t collects the real-time link rate of all links, vector
w̃(t) = [w̃ij(t)|(i, j) ∈ E ], where w̃ij = max{wij(t), wji(t)},
and the direction of the link selected by the max function will be
recorded for step 4. MaxWeight scheduling involves solving an NP-
hard maximum weighted independent set (MWIS) problem [26] on
the conflict graph to find a set of non-conflicting links. In practice, (3)
can be solved approximately by distributed heuristics, such as local
greedy scheduler (LGS) [23] and its GCN-based enhancement [25].
In step 4, all of the real-time link rate Rij,t of a scheduled link is

allocated to its optimal commodity c∗ij(t). The final transmission and
routing variables of commodity c ∈ V on link (

−→
i, j) is

µ
(c)
ij (t) =

{
Rij,t, if c = c∗ij(t), wij(t) > 0, sij(t) = 1,

0, otherwise.
(4)

(Biased) backlog metrics: The general form of the backlog metric,
i.e., U (c)

i (t) in (1), in low-cost BP schemes can be expressed as

U
(c)
i (t) = g

(
Q

(c)
i (t)

)
+B

(c)
i , (5)

where g(·) is a function of QSI, and B
(c)
i is a queue-agnostic bias.

In queue length-based BP [1], [8]–[10], [22], g(Q(c)
i (t)) = Q

(c)
i (t),

whereas in delay-based BP, g(Q(c)
i (t)) can be the sojourn time of

the head-of-line (HOL) packet [14] or the entire queue, i.e., sojourn
time backlog (SJB) [16]. In unbiased BP, such as the basic and delay-
based BP, B(c)

i = 0. In biased BP [8]–[10], [22], B(c)
i ≥ 0 is defined

based on the shortest path distance between node i and destination
c. The set of biases is denoted as B = {B(c)

i |i, c ∈ V}.
The shortest path distances can be computed by distributed algo-

rithms for single source shortest path (SSSP) or all pairs shortest
path (APSP) on the initialization of a node or network, and updated
periodically to capture the evolving network topology. On weighted
graphs, the distributed SSSP with the Bellman-Ford algorithm [27],
[28] and state-of-the-art APSP [29] both take O(|V|) rounds. On
unweighted graphs, the distributed SSSP and APSP take O(D)
and O(|V|) rounds, respectively, where D is the diameter of the
unweighted Gn.

III. IMPROVEMENTS TO BIASED BACKPRESSURE

We focus on SP-BP routing [8], [22], where the length of every
edge e ∈ E in the shortest path computation, namely the per-hop
distance, denoted as δe, is scaled by a constant. For example, δe = K
for all e ∈ E in enhanced dynamic routing (EDR) [8] and δe =
R/(xere) in [22], where xe is the link duty cycle estimated by a
graph convolutional network (GCN), and R is the scaling constant.
Our methods are to i) optimize the scaling constant in the per-hop
distance (K in [8] and R in [22]), ii) efficiently update the biases
under node mobility, and iii) prioritize older packets over newer ones.

Optimal scaling of per-hop distance. To the best of our knowledge,
the parameter(s) for the scaling of the per-hop distance in biased BP
are often selected via trial-and-error, whereas our goal is to provide
a formal method of optimization for such scaling parameter(s).

A key observation is that the scaling of the per-hop distance in
biased BP influences the degree of random walk of packets and
subsequently, the end-to-end delay, under low to medium traffic loads,
including the last packets situation. Consider an exemplary situation
of last packets in BP routing with only one commodity (flow), for
which the queue states of four nodes in two consecutive time steps
are illustrated in Fig. 1. The hop distances of nodes A, B, C, D
to the destination are b + 2, b + 1, b + 1, b, respectively. Every
link has a constant link rate of r̄. At time t, Q

(c)
A (t) = r̄ and

Q
(c)
B (t) = Q

(c)
C (t) = 0, the link pressures point from A towards

B and C. Assume that at time t+ 1, all the packets on A moved to
B. Different choices of δe would lead to different routing decisions
at t+ 1.

For unbiased BP, i.e., δe = 0, the backpressures (orange arrows)
are pointed from B towards A, C, and D, and U

(c)
BA(t+1) = U

(c)
BC(t+

1) = r̄ > U
(c)
BD(t+ 1). At the end of time slot t+ 1, the packets on

B will move to either A or C, packets on D may also move back
to C, causing an unwanted meandering of the packets. For biased
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Fig. 1: The queue states at four nodes (with hop distance to destination
marked) in an exemplary case of backpressure routing with a single
commodity, at time (a) t and (b) t+1. An arrow indicates the magnitude
and direction of pressure on a link, its color encodes the choice of per-
hop distance. All links have an identical rate of r̄.

BP, i.e., δe > 0, the backpressures (magenta and green arrows) at
time t + 1 originating from B are skewed towards the destination,
U

(c)
BD(t+ 1) > U

(c)
BC(t+ 1) = r̄ > U

(c)
BA(t+ 1). At the end of time

slot t+1, packets in B will move forward to D. In particular, when
δe = r̄, the backpressure (i.e., green arrows) U (c)

BA(t+ 1) = 0.
The previous example can be formally described as follows: in

a wireless multi-hop network with homogeneous link rate, i.e., all
links have a link rate of r̄, there are two links (i, j) and (j, k),
where nodes j, k are on the shortest path from node i to node c;
consider a congestion-free last packets (CFLP) scenario: at time t,
the last packets of commodity c reside on node i, and link (i, j) is
congestion-free, i.e., 0 < Q

(c)
i (t) = q ≤ r̄, Q

(c)
j (t) = 0 and no

external packets of commodity c will arrive at nodes i, j, k from the
rest of the network or users. If link (i, j) is scheduled at time t, such
that Q(c)

i (t+ 1) = 0, Q
(c)
j (t+ 1) = q ≤ r̄, we have the following.

Lemma 1. In SP-BP routing under the CFLP scenario, the per-hop
distance δe should be greater than or equal to the homogeneous link
rate, δe ≥ r̄, to avoid the immediate reversal of the direction of
backpressure for commodity c on the scheduled link (

−→
i, j) after the

transmission.

Proof. In queue length-based SP-BP, the backpressure on link (i, j)
is U

(c)
ij (t) = Q

(c)
ij (t) + (B

(c)
i − B

(c)
j ) = q + δe. Since link (i, j) is

scheduled at time t, we have that U (c)
ij (t+ 1) = −q + δe. To avoid

the direction of the backpressure on link (i, j) being reversed at time
t+ 1, i.e., U (c)

ij (t+ 1) < 0, we need to set δe ≥ r̄.

In the described CFLP scenario, Lemma 1 ensures that the back-
pressure algorithm does not oscillate as the last packets travel through
the shortest path when δe ≥ r̄. On the other hand, a smaller value of
δe is preferable for path finding and congestion prevention. Indeed, an
extremely large SP bias scaling δe would force every packet through
the shortest path, thus hindering any information from the queue
lengths and defeating the original purpose of BP routing. Combining
these two observations, we advocate for setting the minimal per-hop
distance as the average link rate, i.e., min

e∈E
δe := r̄. In particular, for

EDR in [8], this implies setting δe = K := r̄.
Although the above discussion is based on the CFLP setting with

all link rates equal to the average r̄, in Section IV we demonstrate

the experimental optimality of the above choice under heterogeneous
link rates and general traffic settings.

Bias maintenance. Due to the mobility and distributed nature of
networks, bias maintenance requires frequent or periodical SSSP
and/or APSP computation. Although the biases B can be re-used for
many time slots to match the slowly changing topology, the overhead
of bias maintenance is still high for large networks.

To address this issue, we propose a neighborhood update rule
for bias maintenance at node i ∈ V , whenever one or more of its
incidental links are established or destroyed

B
(c)
i (t+ 1) =

 min
j∈N (i)

[
B

(c)
j (t) + δij(t)

]
, i ̸= c

0, i = c
. (6)

where δij(t) is the per-hop distance between neighboring nodes i
and j. This rule allows the shortest path bias to be updated within
O(D) steps of local message exchange.

Sojourn time-aware backlog (expQ). To prioritize old packets, we
further introduce a delay-aware QSI function g(·) in (5):

g
(
Q

(c)
i (t+ 1)

)
=(1 + ϵ)g

(
Q

(c)
i (t)

)[
1−

∆Q
(c)
i,Tx(t+ 1)

Q
(c)
i (t)

]
+∆Q

(c)
i,Rx(t+ 1)

(7)

where ϵ ≥ 0 is a small constant parameter, ∆Q
(c)
i,Tx(t) and

∆Q
(c)
i,Rx(t) are the numbers of packets that left and arrived at the

queue Q
(c)
i at node i at time t. For ϵ = 0, g(Q(c)

i (t)) = Q
(c)
i (t).

The g(·) in (7) is named as expQ, as it will increase exponentially
over time if commodity c at node i is not scheduled. Compared
to the backpressure metric based on sojourn time backlog [16] and
HOL sojourn time [14], expQ can increase the bandwidth utilization
efficiency, since it does not require tracking the sojourn time of
individual packets.

Throughput optimality. Queue length-based biased BP schemes
with queue-agnostic biases automatically inherit the throughput opti-
mality of basic BP as long as the biases are non-negative and queue-
agnostic, according to the proof in [8].

IV. NUMERICAL EXPERIMENTS

We evaluate various low-cost BP routing algorithms on simulated
wireless multi-hop networks, generated by a 2D point process. The
simulations are configured similar to those in [22], with only three
differences: a) Each test instance contains a number (uniformly
chosen between ⌊0.30|V|⌋ and ⌈0.50|V|⌉) of random flows. b) Only
a unit-disk interference model is used. c) Two types of traffic
are employed: Under streaming traffic, the arrival rate of a flow
λ(f) ∼ U(0.2, 1.0) for all time slots. Under bursty traffic, the flow
arrival rate λ(f) ∼ U(2.0, 10.0) for t < 30, and no packet arrivals
for t ≥ 30. The end-to-end delay of a test BP scheme is collected
by tracking the time each packet arrived at the source node t0 and
the destination node (departure time) t1. To be conservative, we treat
the delay of an undelivered packet as T − t0.

The tested BP algorithms (acronyms in parentheses identify leg-
ends in Fig. 2) include 1) unbiased BP: vanilla BP (BP), delay-based
unbiased BP with SJB [16] (BP-SJB) and HOL [14] (BP-HOL); 2)
queue-length based biased BP: EDR [8] with per-hop distance δe = r̄
(EDR-r̄), and GCN-based delay-aware shortest path bias [22] (SP-
r̄/(xr)) with per-hop distance δe = r̄/(xere), and its scaled version
(SP-r̄/(xr)-min) with per-hop distance δ̃e = δer̄/(mine∈E δe); and
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Fig. 2: End-to-end delay of backpressure routing algorithms, with unit-disk interference model, long-term link rates re ∼ U(10, 42), simulation time
steps T = 1000, and 100 test instances per point (10 random networks × 10 realizations of random source-destination pairs and random link rates).
(a) Delay vs. varying minimal per-hop distance multiplier min(δe) = ar̄ for SP-BP on networks of 100 nodes. (b) Delay under streaming traffic,
and (c) Delay under bursty traffic, v.s. network size (of 20-110 nodes). Zoom in to view the error band (95% confidence interval) in light colors.

3) delay-based biased BP: combination of BP-SJB and EDR-r̄ (EDR-
r̄-SJB), combination of BP-HOL and EDR-r̄ (EDR-r̄-HOL), and the
two biased BP schemes based on expQ (EDR-r̄-expQ and SP-r̄/(xr)-
expQ) where ϵ = 0.01 in (7). The end-to-end delay of the tested BP
schemes are illustrated in Figs. 2, where each point in the plot is
obtained by averaging 100 test instances, specifically, on 10 random
networks of a particular size, each with 10 realizations of random
source-destination pairs and random link rates.

Optimal per-hop distance adjustment. We test EDR-δ and SP-
r̄/(xr)-min with per-hop distance adjustment min

e∈E
δe := ar̄, for a ∈

[0.5, 1.5], on random networks of 100 nodes. The results in Fig. 2(a)
show that a = 1.0 is indeed the optimal setting for EDR-δ and
near-optimal setting for SP-r̄/(xr)-min, under streaming and bursty
traffics. This validates the optimality of adjustment rule min

e∈E
δe := r̄

advocated in Section III. Notice that the settings tested in Fig. 2(a) go
beyond the simplified setting of CFLP with constant rates treated in
Section III. However, the proposed scaling is still empirically optimal
in these broader scenarios. Since SP-r̄/(xr)-min can tolerate a wide
range of a, to keep its distributed execution, it can be implemented
based on statistical information of per-hop distances rather than their
global minimal. The different sensitivities of the end-to-end delay to
the scaling of per-hop distance under the two tested SP-BP schemes,
as shown in Fig. 2(a), reveal that the shortest path based on link
features [22] not only achieves better performance but is also more
robust to the scaling choice.

Streaming traffic. The average end-to-end delays (in time slots)
of the 10 routing algorithms under streaming traffic, as a function
of the network size are presented in Fig. 2(b). Most BP variations
outperform the vanilla BP. However, the benefit of delay-based
unbiased BP (BP-SJB and BP-HOL) diminishes on larger networks,
as unbiased BP schemes still suffer from the drawbacks of slow
startup and random walk, leading to very low delivery rates.

Biased BP based on queue length (EDR-r̄, SP-r̄/(xr), and SP-
r̄/(xr)-min) can significantly reduce the end-to-end delay, as the pre-
defined distance gradients lead to fast startup and mitigated random
walk. SP-r̄/(xr) can reduce the delay of EDR-r̄ by nearly half, which
is consistent with the results in [22]. Notice that SP-r̄/(xr)-min only
slightly improves SP-r̄/(xr). Delay metrics such as SJB and HOL do
not directly benefit biased BP with our per-hop distance adjustment,
which is based on queue length. As shown in Fig. 2(b), EDR-r̄-SJB
and EDR-r̄-HOL both significantly underperform EDR-r̄, whereas
expQ only slightly improves EDR-r̄ for smaller networks (|V| ≤ 90),
while slightly degrading SP-r̄/(xr).

Bursty traffic. The end-to-end delays of the 10 BP algorithms
under bursty traffic are presented in Fig. 2(c), which shows their
effectiveness in the last packet problem. Compared to streaming
traffic, every BP scheme performs better under bursty traffic, except
vanilla BP. EDR-r̄ is substantially improved by both HOL and expQ,
where the latter slightly outperforms the former. For SP-r̄/(xr), the
benefits of per-hop distance adjustment and expQ are negligible since
SP-r̄/(xr) already reaches 100% delivery rate. This shows that the
last packet problem can be significantly mitigated by our proposed
per-hop distance scaling, as EDR-r̄ can achieve a high delivery rate
of 93.3%, and further improved by combining with HOL and expQ
with delivery rate 99.7% and 99.9%, respectively. Compared to HOL,
expQ is not degraded under streaming traffic and does not require
tracking the sojourn time of individual packets.

TABLE I: End-to-end delay on random networks of 100 nodes, T = 1000

under unit-disk interference model and node mobility.

EDR-r̄ SP-r̄/(xr)
Bias update Delay (std.) Delivery (std.) Delay (std.) Delivery (std.)
Ideal 278.3 (106.1) 81.2% (8.7%) 155.2 (80.9) 90.8% (6.1%)
Neighbor 331.8 (103.8) 75.7% (9.1%) 282.5 (87.5) 78.5% (7.8%)

Node mobility. Lastly, we run 100 test instances on random networks
with 100 nodes and node mobility, in which for every 100 time steps,
10 random nodes take a random step (∆x ∼ N2(0, 0.1) ∈ R2) on the
2D plane, while keeping the network connected. The long-term link
rate of a newly created link e is set as re ∼ U(10, 42). We compare
the delay and delivery rate of our neighborhood bias update rule in
(6) with those of ideal (instantaneous) SSSP in Table I. Under the
practical neighborhood update rule, SP-r̄/(xr) suffers a larger loss
from the ideal (but unpractical) SSSP than EDR-r̄, i.e., the delivery
rate of SP-r̄/(xr) dropped by 12% compared to a drop of 5.6% with
EDR-r̄. Despite larger delays and lower delivery rates, EDR-r̄ suffers
less under node mobility likely due to its simplicity.

V. CONCLUSIONS

In this paper, we improve the latency and practicality of shortest
path-based Backpressure routing by introducing three components:
optimal bias scaling, low-overhead bias maintenance, and a delay-
aware backlog metric. These enhancements are demonstrated to be
effective in wireless multi-hop networks with relatively low mobility.
In the future, it is worthwhile to investigate and further improve
the performance of our approach in scenarios with varying network
mobility, mixed streaming and bursty traffics, as well as uncertainties
and shifts in link features and their global minimal values.
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