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Abstract—Smart buildings, equipped with controllable devices
and energy management systems are expected to be substantial
parts of the future energy grids. In this paper, a Reinforce-
ment Learning (RL)-based method is developed for the energy
scheduling of a smart home’s energy storage system, which is
also equipped with a photovoltaic system. The proposed scheme
aims to minimize the electricity cost of the smart home; the
overall problem is formulated as a Markov decision process, and
it is solved by applying the Deep Deterministic Policy Gradient
(DDPG). The main advantage of the proposed method is that
increases the degree of similarity between the train set and
the test set, through data clustering, achieving superior energy
schedules than the existing RL-based approaches.

Index Terms—energy management, reinforcement learning,
deep deterministic policy gradient, smart home, storage system

I. INTRODUCTION

The smart grid of the future will contain local energy
networks, known as Microgrids (MGs), that comprise Dis-
tributed Energy Resources (DER), such as Renewable Energy
Sources (RES), and controllable devices, such as Energy
Storage Systems (ESSs) [1]. The ESS is a valuable component
because it mitigates the impacts of fluctuations in the demand
and the RES’ generation, while it also provides with energy
management flexibilities [2]. For example, under a dynamic
pricing scheme, it can store energy during low price periods
and provide it back over peak pricing [3].

The integration of MGs of various scales, from a single
building to a large urban area [4], aims to make the operation
of energy systems more efficient, economic and environment-
friendly [5]. Therefore, energy management methods ought
to be developed for the effective coordination of the various
components included in MGs.

Traditionally, the MGs’ energy management issue is formu-
lated as an optimization problem that selects set points for the
controllable devices so that various objectives are achieved.
The Model Predictive Control (MPC) method is applied in [6]
-[8] for the energy cost minimization, as well as in [9] for
maximizing the electricity selling profit of a smart home. The
optimal solutions in [6]-[9] are obtained through the utilization
of commercial solvers. On the contrary, this is avoided in [10]
-[12] by applying approximate dynamic programming, and
modeling the MGs’ operation as a Markov Decision Process
(MDP).

The energy management solutions in [6]-[12] are model-
based, which entails detailed knowledge of the MGs’ dynamics
to construct accurate models that describe their operation. In
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addition, precise predictions of stochastic variables are neces-
sary to obtain the optimal control decisions. Any inaccuracies
of the employed system models and the forecasting methods
may deteriorate the solutions’ quality.

RL methods, in contrast, can be used for developing energy
management schemes that do not rely on detailed descrip-
tion of the MGs’ dynamics, precise predictions of stochastic
variables’ values, and pricey commercial solvers. In RL, an
agent learns, through interacting with an environment, what
actions should take in given situations (states) in order to
maximize numerical returns (rewards). Historical data are used
for training the RL agents, which can then generalize the
obtained knowledge and handle new situations in real-time.

Recently, numerous RL-based schemes have been proposed
for energy management purposes. The Q-learning and the
Deep Q-learning (DQN) algorithms are utilized in [13]-[15]
and in [16]-[17], respectively, for minimizing the energy costs
of smart buildings through their controllable appliances’ smart
scheduling. DQN is also employed in [18] for the minimization
of the operation cost of a MG that comprises controllable
DER, RES and ESSs, while a double DQN approach is
adopted in [19] for optimizing the synergy of a MG with an
external ESS.

When RL algorithms are applied, the problem of optimal
energy scheduling, which is mainly described by continuous
variables, is represented by an MDP. Nevertheless, Q-learning
is appropriate for MDPs characterized by discrete state and
action spaces, while DQN is appropriate for continuous state
spaces and discrete action spaces. As a result, the aforemen-
tioned methods suffer from the curse of dimensionality [20].
To resolve the dimensionality issue, RL algorithms compatible
with continuous state and action spaces have been developed
in [21]-[27] for the real-time scheduling of controllable
appliances in smart buildings, such as the trust religion policy
optimization (TRPO) algorithm in [21] and the deep determin-
istic policy gradient (DDPG) algorithm in [22]-[27].

Contrary to [21]-[23], where the existence of energy sources
is neglected, a DDPG-based energy management methodology
is proposed in [24] for an islanded MG that contains a diesel
generator, a PV system, and an ESS. DDPG-based control
strategies are also applied in [25] and [26] with the objective
to minimize the operating cost of residential buildings that
contain both energy sources and storage units. However, the
concept of real-time pricing is neglected in [24]-[26]. As
opposed to that, dynamic pricing is considered in [27], where



a DDPG-based energy management scheme is employed to
minimize the energy cost of a smart home.

Motivated by the interest of the scientific community on RL-
based energy management, in this paper we propose a novel
DDPG-based method for the real-time energy management of
a smart home that contains a PV system and an ESS. The
proposed methodology takes into account the uncertainties
correlated with the load demand, the PV production and the
electricity prices, and determines energy schedules for the ESS
so that the smart home’s electricity cost is minimized.

The main advantage of our proposed scheme is that it
improves the effectiveness of the RL agents through data
clustering. Concretely, instead of training a single agent based
on a unified training set, as in ([13]-[27]), a clustering
procedure is applied that divides the training set into data
subsets (clusters), consisting of similar price curves. After
that, a different DDPG agent is trained for each subset.
The aforementioned data-clustering procedure is the first step
towards increasing the degree of similarity between the train
set and the test set. The second step includes a mechanism that
matches every test day with the appropriate day-type subset,
and hence, with the appropriate, already trained DDPG agent,
which is then utilized for the accomplishment of the ESS’s
real-time energy scheduling.

The paper has the following structure: the various com-
ponents of the smart home, and the RL formulation of the
energy scheduling issue are described in Section II. The
training process of the DDPG algorithm, the data-clustering
procedure, as well as the accomplishment of real-time energy
scheduling are described in Section III. Section IV includes the
performance evaluation of our proposed approach, and Section
V contains the conclusion.

II. SYSTEM MODEL AND RL FORMULATION

A smart home is considered that contains a PV system,
an ESS, and an EMS, which is responsible for the power
scheduling of the ESS so that electricity cost is minimized.
The energy scheduling occurs over a decision horizon of T
time slots ¢ of duration At. Based on this convention, power
and energy are used interchangeably in this study. At every
time slot, the power balance is described as follows:

PtG _ PtL_PtPV+ PtESS (1)

where PC denotes either the power imported, if P >0, or
the power exported to the main grid, if P <0. PL is the
smart home’s load, PV is the generated PV power, and PF5%
denotes either the power transferred to the ESS, if PtES 5>,
or the power discharged from the ESS, if PF55<0.

The ESS’s State of Charge (SoC) SoC at t is given by:

SoCy = SoCy_1 + m{% (PF5% /|Npgs) 2)

where Nggs is the nominal capacity and m°% stands for

the charging or discharging losses. During the ESS’s charg-

ing, m%% is described by the charging efficiency nZ°%
(mFPS9 =nPS9). In case the ESS is discharged, m&9% is
expressed as the reversed discharging efficiency n559, i.e.

mPSS = 1/nE55. The state of charge SoC; ranges within

a minimum SoC,,;,, and a maximum SoC, ., level:

SOCminS SOCt < SOCma:r (3)
while P95 is bounded by a maximum power rate P25
| PFSS < Py @

In RL, an agent is trained in order to learn how to optimally
interact with a specific environment. Concretely, after observ-
ing the current state of the environment, the agent takes a set
of actions a; € A,,. The range of taken actions is constrained
by the action space A,,, which depends on the environment’s
characteristics. Given the set of taken actions, a reward r; is
obtained, while the environment is led to the next state s;4 ;.
The sequence of states, actions and rewards during a decision
horizon define an MDP episode, while the process of mapping
an observed state to a set of taken actions consists the policy of
the agent. The ultimate goal of the learning process is to find
the optimal policy 7*. On that case, the performed actions at
every given state, during a 7’-length MDP episode, maximize
the total discounted reward R :

T—1
Rf =) 1y )

t=0
where the discount factor y ranges between 0 and 1, defining
the significance of future rewards. Only the current reward
signal is taken into account in case =0, while in case y=1,
the current and the future reward signals are equally important.

When the smart home’s energy management is mod-
eled as an MDP, the state of the system s; =
{PtL —PFY, SoC’fSS: o1, t} at time slot ¢ is described by a set
of variables that include the load P/ minus the PV generation
PPV, the ESS’s state of charge SoCT%% as well as the
electricity price ¢; and the time slot’s incremental number
t. In addition, the agent’s action a;={ P*5%} ,a, € A,, refer
to the set points of the ESS’s power PtES S, while the action
space A;, is defined by the operational constraints in (1)-(4).
The reward r; that the agent receives at every time interval is
described by:

. —Pfy, if PF>0
! ~PFup, if PE<0

which denotes that the reward is higher in case less amount
of electricity is bought from the main grid (PF >0), or in
case greater amount of electricity is sold (PF <0). It is also
assumed that the price at which electricity is sold is a fraction
of the buying price ¢, i.e. 0<p<1.

(6)

III. PROPOSED ENERGY MANAGEMENT ALGORITHM

The operation of the DDPG algorithm is based on the
Q-function and the policy function. At any moment, a Q-
function Q(s, a) denotes the discounted reward when action
a is performed in the current state s, given that the future
actions are determined by a policy function a =7 (s) till the
end of the decision horizon. DDPG uses four Deep Neural
Networks (DNNG5); a critic, which represent a Q-function with



parameters 0%, an actor, which represents the policy function
with parameters 6#, as well as two target DNNs which are
copies of the original networks, and their role is to make the
training process more efficient [20]. The DNNs’ parameters
are updated until the optimal policy is achieved. The learning
process occurs by taking into account MDP episodes i.e.
days that have a T-length decision horizon. The stochastic
variables’ values are obtained from a hyperset of past data
that contains load demand, PV production, and price datasets.
The hyperset of historical data is first separated into subsets
that consist of days with similar price profiles; after that, a
different agent is trained for each one of the various subsets.

The learning procedure based on the data included in a day-
type subset containing D days is presented in Algorithm 1.
First, the DNNs’ parameters and a replay buffer are initialized
in lines 1 and 2, respectively. The algorithm runs for M
episodes, where each episode is a randomly selected day.
The main part of the agent’s training process involves the
following steps: first, the actor observes the current state s,
of the system and takes an action a; to which noise =; is
added for exploration (line 6). Given the performed action,
the environment responds with a reward signal and moves to
the next state (line 7). The transition (s;, a;, r¢, S¢+1) is stored
in the replay buffer, from which a random mini-batch of N

BOSORNO) (szrl) is sampled (line 8). Next, a
forward pass occurs at the critic for derlvmg the Q-values
of the sampled state-action pairs (S(T ,aT),Vz € N) (line
9), followed by a forward pass at the target Q-network for
obtaining the Q-values of the pairs (5217 TJ(FI) ,VieN) (line
11), where a;fl) is determined by the target policy network
(line 10). After that, the critic’s parameters are updated in
line 12 by minimizing the loss function L (QQ), while the
actor’s parameters are updated in line 13 by maximizing the
expectation of the discounted reward J (0*). Eventually, the
parameters of the target networks are updated in line 14
through slowly tracking the original networks’ parameters.

Algorithm 2 describes the process of dividing the initial
hyperset of data into subsets. It is based on the functionalities
of the K-means algorithm, which partitions a dataset into
K pre-defined clusters [28]. K-means assigns data-points to
a cluster such that the squared Euclidean distance between
the data-points and the cluster’s centroid (arithmetic mean
of all the data-points included in the cluster) is minimized.
The optimal clusters’ number is derived through utilizing
the silhouette score, which is a measure of similarity of a
data-point to the other data-points belonging to the same
cluster, compared to the data-points in other clusters [29].
After finding k4 price clusters (lines 2-6), the data hyperset is
partitioned into subsets that contain similar price curves (lines
7-9). Afterwards, a different DDPG agent is trained for each
subset by applying Algorithm 1.

transitions (

The trained DDPG agents are utilized for the real-time
energy scheduling of the smart home as described in Algo-
rithm 3. An LSTM network, which is suitable for time-series
forecasting [30], is first used for approximating the price curve

Algorithm 1: DDPG agent’s training process

1: Randomly initialize the critic’s and actor’s parameters
69 and 6, respectively, and set the target networks’
parameters equal to them: 9 < 0%, O* <« o~

: Define the size B of the replay buffer.

:forep=1to M :

Select a random day from D, observe sg, initialize =;.
fort=0toT —1:
Observe s; and perform action a;= 7 (s¢, ") +Z;.
Execute action a; in the environment and observe the
instant reward r,; and the next state S;i1.
8. Store (st, ag, 7T, St+1) in the replay buffer, and
sample from it a random mini-batch of N transitions
(S(Tl), a(T)7 rg), Sll) wherei € N and 7 € (T —1).

9:  Given (s(T ), a(T 2 ,Vi € N), do a forward pass of the critic

for obtaining their Q-values ) (sT ,aT) GQ) ,Vi € N .

10:  Given s(Tll, do a forward pass of the target policy

NN RN

network for obtaining the actions aﬂ(_il) = Tl'/( 1> 9“)

(@)

11:  Given (s}, r+1) do a forward pass of the target Q-

network for obtaining Q' ( (Tll, aTJ(rl), ,Vi € N.
12:  Update the critic’s parameters by minimizing L (6<):
1 _ 2
Q) — (&) _ () o) Q@
L (6 )—Nzi:(yT Q (s, afd, 69))
g = 44 Q' ( s anf, GQ)

13:  Update the actor’s parameters by maximizing J ()
using the following sampled policy gradient V. J (64):

Vo J(@“)Z%Z (Vasj) Q (55_7:)7 a(f), HQ) Vout (S_(:), 9'“))

K3
14:  Update the target networks:

09 w9t (1—w) 020" wb + (1 —w)orw<1
15: end
16: end

of the next day (line 1). Following that, the approximated curve
is matched with the closest price cluster (line 2), and then, the
proper trained actor is applied (line 3) to perform real-time
energy scheduling (lines 4-7).

IV. CASE STUDY

Our energy scheduling method is evaluated by considering
a smart home that is equipped with a 3 kWp PV system and
an ESS with nominal capacity Ngss=6 kWh and maximum
power rate PEZ5=3kW. Table I reports the parameters’ values
considered for the rest of the smart home’s components, as
well as for the RL formulation of the problem. The decision
horizon consists of T'=24 time intervals of duration At=1
hour, while stochastic variables’ data for the load, the prices
and the PV generation are obtained from [31], [32] and [33],
respectively.

September and November are considered as test periods
for evaluating our method. In both cases, data of one year




Algorithm 2: Derivation of data subsets

1: Input the hyperset that contains historical datasets Ag, I1g
and ®q consisting of () data-points, indexed by date, for
the load, the PV production and the price, respectively.

2:fork=2to K :

3: Apply the K-Means on the price dataset to derive an
array of labels Fgj that indexes to which of the k
clusters each one of the {2 data-points is assigned, and
an array Cg that comprises the k clusters’ centroids:
Eok, Cor = KMeans(®q, k)

Compute the silhouette score Sor (P, Eok)

5: end

6: Keep the number of clusters k4 for which the maximum
silhouette score Sy, is obtained for the price dataset.

7: Apply the K-means on the price dataset for k=ky to obtain
E@k¢ and C(I)kd)-

8: Given Fgp 5> Create kg subsets that are indexed by date
and comprise price curves belonging to the same cluster.

9: Take the intersections of the indices of the obtained subsets
with the indices of the load and PV datasets to derive the
final subsets.

TABLE I: Parameters’ values

ESS’s parameters

n;;;ss:nslsszo.%, SoCmin=
SoCp=0.2

Discount factor, electricity selling
price factor, weighting factors

v=1, p=0.5,
¢=0.5, =04

Episodes’ number, Replay
buffer’s size, Mini-batch size

M=15000, B=10°%, N=480

Noise parameters

£=0.15, m=0, dt=0.01, 0=0.2

Algorithm 3: Real-time energy management

1: Estimate through an LSTM network the price curve of the
next day using the previous GG days’ curves.

2: Compute the Euclidean distance between the estimated
price curve and the clusters’ centroids Cgy, , and match
it with the closest price cluster kg ciosest-

3: Load to the EMS the actor of the agent whose learning

occurred based on the subset defined by kg ciosest-

cfort=0toT —1:

Observe s; and perform action a;= 7 (s, 0*).
Execute action ay, and transit to the next state s;4 .
end

AN

before the test periods are utilized for determining the subsets
required for training the DDPG agents. Through Algorithm
2, it is obtained that the 1-year-length datasets before both
September and November are optimally partitioned into two
price clusters (k;=2). Hence, two separate agents are trained
that are correlated with the High Price (HP) and the Low Price
(LP) subsets.

Every DDPG agent consists of two DNNs corresponding
to the actor and the critic. Both of the DNNs have three
hidden layers consisting of 400 and 300 neurons, respectively,
and relu activation functions. The actor’s input layer contains
four neurons that represent the smart home’s state s;, while
the output layer contains a single neuron that is activated
by a tanh function, and then it is multiplied with the ESS’s
maximum power rate P25 The critic’s input layer contains
five neurons since it takes as input both the system’s state and
the action, while the output layer contains a single neuron. The
aforementioned architecture has been implemented in Pytorch
[34]. The learning process for each agent lasts for about 2.5

hours being executed on a computer with an Intel Core i7
processor at 2.3 GHz and 8 GB RAM. The parameters’ values
taken into account for the learning procedure (Algorithm 1)
are reported in Table 1.

For the implementation of the ESS’s energy scheduling,
the test days are assigned, before the beginning of the de-
cision horizon, to the proper pre-trained agent. According
to Algorithm 3, this is achieved through the assistance of
an LSTM network, which estimates the price curve of the
next day given the curves of the previous week i.e. G=7.
The input layer of the LSTM network contains G"1'=7-24
neurons that represent the past week’s data. The input layer
is connected with an LSTM layer consisting of 200 units,
followed by a conventional layer containing 100 neurons.
Finally, the LSTM network’s output layer comprises 1" = 24
neurons that correspond to the estimated curve. One year of
data are utilized for the training procedure, which takes place
in Keras [35].

Table II reports the test days’ assignment to the proper
agent. The HP agent is utilized for the energy scheduling of
22 days in September, while the LP agent for the rest days.
In November, only the HP agent is used because all days
belong to the same price cluster. Our clustering-based method
is compared with the case where clustering is neglected, and
data of two months before each test period are utilized for the
learning process of a single agent [27].
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Fig. 1: Total electricity costs of the test days
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TABLE II: Assignment of test days to the price and temperature clusters

High Price Low Price
September | 1,2,5,6,7,8,9, 12, 13, 14, 15, 16, 19, 20, 21, 22, 23, 26, 27, 28, 29, 30 | 3,4, 10, 11, 17, 18, 24, 25
November All days None

o
!

Power (kW)

ESS
. P

——= PBf

3

0123456 7 8 91011121314151617 181920 21 2223 24
Hour (h)
Fig. 3: Power scheduling for September’s day 10 (LP agent)

Fig. 1 provides a comparison of the two methods (clus-
tering vs no clustering) for the two test periods (September,
November). In both cases, the proposed method performs
better; the total electricity cost is by 10% and 6.1% lower
for September and November, respectively. Our method’s su-
periority is highlighted by the significantly lower cost (12.8%)
that achieves in September’s high-price days. This is due to
the fact that all days in the training set, when our approach is
implemented, belong to the high price cluster, while in contrast
most of the days (49/62) comprising the training set of the no-
clustering approach, belong to the low price level. With respect
to November, where all days belong to the high price level, a
lower performance gap (6.1%) is observed because the training
set of the no-clustering method mainly consist of high-price
days (45/61).

o

Power (kW)

-3

T T T T T T T T T T T T T T T T T T T T
3456 7 8 9101112 13:14.15 16 17 18 1920 21 22 23 24
Hour (h)

0 1 2
Fig. 4: Power scheduling for September’s day 20 (HP agent)

Next, the power scheduling during two September days,
characterized by different price levels, is compared. Fig. 2
reports the electricity prices for the test days. The ESS’s power
PFSS the load minus the PV power PF—PFV, as well as
the power PC exchanged with the main grid on the 10"
of September, when the energy management is carried out
by the LP agent is presented in Fig. 3. The ESS is mainly
recharged during 12:00-18:00 taking advantage of the high
PV generation (PL—PFY < 0 during 12:00-15:00) and the
relatively low electricity prices over this period. The stored
energy is provided back during intervals characterized by
higher prices, and by relatively high demand (18:00-21:00).

A quite different operation plan for the ESS is obtained
for the 20*" of September (Fig. 4) by the HP agent. On
that occasion, a significant amount of energy is transferred

to the ESS during the low price period 03:00-07:00, and it is
offered back to the demand during 07:00-09:00, period that is
characterized by both higher load demand and prices. After
that, the ESS is recharged again during 10:00-16:00, when
there is available amount of energy excess (the demand is
lower than the PV energy). Most of the stored energy is later
provided back to the demand during 19:00-21:00, which is the
peak-price interval of that day.

1.0

—— LP agent
0.8 No clustering

0.6

SoC

0.4

ynd IQA\JA‘\",

—

0.2 =

1 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24
Hour (h)

Fig. 5: ESS’s schedules for low-price September days

—— HP agent
No clustering

1.2 4

12 345 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24
Hour (h)

Fig. 6: ESS’s schedules for high-price September days

123 456 7 8 910111213 141516 17 18 19 20 21 22 23 24
Hour (h)

Fig. 7: ESS’s schedules for all November days

The outcomes of Figs. 3 and 4 are special cases of gen-
eral scheduling patterns. According to Fig. 5, the LP agent,
which is responsible for the energy management of 8 of the
September days, tends to recharge the ESS in the afternoon
and discharge it in the evening. On the other hand, there is
an additional recharging of the ESS early in the morning,
followed by a morning discharging for the 22 September days
whose scheduling is carried out by the HP agent (Fig. 6).
Contrary to the different scheduling patterns obtained by the
LP and the HP agents, the ESS’s operation plans of low-price



and high-price days do not show a significant difference under
the no-clustering approach.

The ability to determine different operation plans for the
ESS, depending on the price profiles of the test days, is the
main factor that leads to lower electricity costs in September,
under our clustering-based approach compared to the no-
clustering one. The performance gap between the two ap-
proaches is higher for test days that are characterized by high
prices. As already noted, this is owing to the fact that the
majority of days (49/62) in the training set of the no-clustering
method are characterized by low prices. In November, the
majority of days (45/61) in the training set of the no-clustering
approach belong to the same price level with the test days. As
a result, the two methods achieve similar ESS’s scheduling
patterns (Fig. 7). Yet, the proposed clustering-based approach
outperforms the no-clustering candidate achieving by 6.1%
lower electricity costs.

V. CONCLUSION

An RL scheme has been developed for the energy manage-
ment of a smart home. The objective of the proposed scheme
is to minimize the electricity cost by selecting appropriate set
points for the smart home’s storage system in real-time. The
problem is formulated as an MDP, and it is solved by applying
the DDPG algorithm, which is suitable for continuous state
and action spaces. The main advantage of our clustering-based
method compared to the existing RL-based methods is that
increases the similarity degree among the price curves included
in the training sets and those included in the test sets. This in
turn leads to the derivation of more efficient operation plans
for the storage device. In the future, we are planning to apply
our method on systems that contain multiple energy sources,
as well as multiple controllable devices.
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