
HAL Id: hal-02265539
https://inria.hal.science/hal-02265539v1

Submitted on 10 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SAIDS: A Self-Adaptable Intrusion Detection System
for IaaS Clouds

Anna Giannakou, Louis Rilling, Christine Morin, Jean-Louis Pazat

To cite this version:
Anna Giannakou, Louis Rilling, Christine Morin, Jean-Louis Pazat. SAIDS: A Self-Adaptable Intru-
sion Detection System for IaaS Clouds. 2018 18th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGRID), May 2018, Washington DC, United States. pp.354-355. �hal-
02265539�

https://inria.hal.science/hal-02265539v1
https://hal.archives-ouvertes.fr


SAIDS: A Self-Adaptable Intrusion Detection
System for IaaS Clouds

Anna Giannakou∗
LBNL, California, USA

agiannakou@lbl.gov

Louis Rilling
DGA, France

louis.rilling@irisa.fr

Christine Morin and Jean-Louis Pazat
Univ Rennes, Inria, CNRS, IRISA, France

firstname.lastname@irisa.fr

I. INTRODUCTION

IaaS clouds allow customers (called tenants) to deploy their
IT as virtualized infrastructures. However IaaS clouds features,
such as multi-tenancy and elasticity, generate new security
vulnerabilities [1] for which the security monitoring must
be partly run by the cloud provider to give visibility at the
virtualization infrastructure level. Unfortunately the same IaaS
clouds features make the virtualized infrastructures frequently
reconfigurable and thus affect the ability of a provider-run
security monitoring system to detect attacks [2]. This work
addresses these issues for security monitoring systems based
on off-the-shelf network intrusion detection systems (NIDSs)
like Suricata [3].

a) Objectives: A security monitoring system tailored for
IaaS clouds should address the following objectives:

1) self-adapt to infrastructure changes at the topology level
(VM creation, deletion, migration and virtual network
reconfigurations; physical server addition and removal),
the traffic level (changes in the incoming and outgoing
load), the application level (set of services deployed in
the VMs and their updates);

2) enable tenants to customize the security monitoring using
Service Level Agreements (SLAs);

3) scale with the monitoring load;
4) keep respecting security monitoring SLAs even during

reconfigurations and introduce no new vulnerabilities in
the provider’s infrastructure.
b) Related work: Several approaches [4], [5], [6] pro-

pose Intrusion Detection Systems for cloud environments and
partly satisfy Objectives 2 and 3 but not the self-adaptation
objective 1. RemoteTrans [7] self-adapts only to application-
level infrastructure changes and does not address Objective 3.
VESPA [8], a self-protection monitoring architecture for IaaS
clouds, addresses a different class of self adaptation based on
security incidents but not Objective 1 and addresses neither
multi-tenancy nor Objective 2. VMware NSX [9] addresses
all objectives by allowing tenants to deploy a tightly-coupled
NIDS (as well as other security appliances) for each VM or
security group of VMs. However, similarly to [5], the resulting
scalability is questionable because the amount of resources
allocated to the NIDSs are not based on the monitoring load
changes and thus should be over-provisioned.

*The work was done while the first author was working at Inria.

c) Contribution: In this context, we designed, imple-
mented, and evaluated SAIDS, a self-adaptable NIDS frame-
work for IaaS clouds based on off-the-shelf NIDSs and that
addresses Objectives 1 to 4.

II. SAIDS

SAIDS brings the following features. (1) Probes detect the
need for adaptation and SAIDS components are reconfigured
accordingly. (2) Tenants can define service-specific NIDS rules
in the SLA. (3) New NIDS instances are automatically de-
ployed to scale with the traffic workload. Finally, (4) topology-
level infrastructures changes are synchronized with SAIDS
components reconfigurations to always monitor the network
traffic seen by tenants’ VMs according to the SLAs.

SAIDS consists of seven components depicted in Figure 1:
the API, the Adaptation Manager (AM), the Infrastructure
Monitoring Probes (IMP), the Local Intrusion Detection Sen-
sors (LIDSs), the Adaptation Worker (AW), the Master Adap-
tation Driver (MAD), and the Mirror Worker (MW). The API
extends the provider’s API to allow tenants to write high-level
descriptions of their monitoring requirements. These require-
ments are translated to SAIDS-specific adaptation arguments.
The API definition is left for future work.

The LIDSs run on dedicated nodes under control of one
MAD per node. A single node can host multiple LIDSs. An
LIDS is composed of an AW and an off-the-shelf NIDS.
Finally, we include one Mirror Worker per compute node. To
synchronize the VM lifecycle with adaptation actions, SAIDS
also features an optional safety mechanism on compute nodes.

The AM makes the adaptation decisions that affect the
LIDSs upon the occurrence of dynamic events in the cloud
infrastructure. Adaptation decisions are based on a monitoring
strategy matching the SLAs and a maintained view of which
LIDSs monitor each subset of VMs.

The IMPs detect topology changes (e.g. VM migration) and
relate all necessary information to the AM (VM ID, internal
and external IP address, port on the local switch, etc).

The LIDSs are responsible for analyzing network traffic
that flows through subsets of local switches, depending on the
monitoring strategy selected. The detection technique used can
either be signature- or anomaly-based.

The AW has four roles: 1) makes the NIDS load its new
configuration while keeping analyzing traffic as negotiated in



the SLA; 2) notifies the MAD upon completion of the adap-
tation process; 3) monitors the NIDS for failures and restarts
it when necessary and 4) periodically reports LIDS-specific
monitoring metrics (e.g. packet drop rate) to the MAD.

The MAD translates the adaptation parameters from the AM
to LIDS-specific rules and reconfigures the traffic distribution
on the local switch when a new LIDS is instantiated. The
MAD also notifies the AM about performance degradation of
existing LIDS(s). The MAD can handle multiple reconfigura-
tion requests in parallel.

The MW guarantees that the traffic from a subset of VMs
is correctly mirrored to the corresponding LIDS(s) node(s).

Finally, the safety mechanism prevents the VM that is
involved in a dynamic event (e.g. a migrated VM) from resum-
ing its execution before the adaptation process is completed.
Tenants can choose to disable the safety mechanism.

Local Switch

mirrored 
traffic

Web EmailDNS

Compute Node Compute Node

Management Network

Local Switch
VM info

SLA info

Infrastructure
 Monitoring

Probe 
Compute

Networking

Adaptation
 Manager 

Master Adaptation
Driver

LIDS 1

Local Switch

DB Web

Adaptation
WorkerRuleset

mirrored 
traffic

LIDS 2

Local Switch

Adaptation
Worker Ruleset

Mirror
Worker

Fig. 1. SAIDS architecture

III. EVALUATION

We evaluated the ability of SAIDS to guarantee adequate
performance and minimized cost, for both tenants and the
cloud provider, combined with a sufficient level of detection.
We define the tenant-associated cost as the performance over-
head in cloud hosted applications and the provider-associated
cost as the time overhead in normal cloud operations and the
increase in resource consumption.

We evaluated SAIDS performance in two aspects: adapta-
tion speed and scalability. Adaptation speed refers to the time
required for SAIDS to perform a full adaptation loop, from
the time a dynamic event occurs until all involved LIDSs are
successfully reconfigured. Scalability refers to the number of
adaptation loops that SAIDS can handle in parallel and the
overhead induced by parallelism in the reaction time of each
phase of the adaptation loop. We studied scalability at the
MAD and the AM levels. For the MAD level we evaluated
the maximum number of LIDSs that a MAD can handle in
parallel while for the AM level we evaluated the maximum
number of MADs that an AM can handle in parallel.

The cost analysis refers to associated penalties on deploying
SAIDS from the provider’s and tenants standpoints. On the

provider’s side we calculated the overhead imposed by SAIDS
to normal cloud operations (e.g. VM migration) while for the
tenants we examined if SAIDS imposes any overhead in their
applications performance.

Results obtained show that SAIDS imposes negligible over-
head on normal cloud operations and that the performance
overhead for tenants is also negligible. Since SAIDS LIDSs
are passive monitoring devices that work on a copy of the
VM-related traffic it does not impose any network overhead
in the applications deployed in the monitored VM. Moreover,
the traffic between different SAIDS components is using the
management network, thus no additional traffic is created in
the monitored network.

In our experiments, we measured that a single MAD located
in a node with 24GB of RAM can handle up to 50 LIDSs,
as each LIDS requires 460.1MB of RAM. We also showed
that SAIDS is scalable with about 25% overhead in managing
around 100 MADs and 5000 LIDSs compared to the fastest
case of managing a single MAD and 50 LIDSs with no
LIDS initially running. The memory capacity of our testbed
limited the number of LIDSs managed in parallel to 5000,
but when deploying SAIDS in a production cloud [10], where
compute nodes have larger amounts of hardware resources,
the number of LIDSs could significantly increase without
expecting prohibitive performance overhead.

IV. FUTURE WORK

In the future we would like SAIDS to handle other types
of IDSs, like host-based IDSs or network analyzers, and
address failures in the reconfiguration of an LIDS. We plan to
combine the security monitoring of tenants and the provider.
As a medium term goal, we plan to implement the API used
for expressing tenant monitoring requirements, address multi-
tenancy and to include security events in the categories of
adaptation sources.

REFERENCES

[1] R. V. Deshmukh and K. K. Devadkar, “Understanding DDoS Attack &
its Effect in Cloud Environment,” in Proc. ICAC3’15, Jan. 2015.

[2] N. u. h. Shirazi, S. Simpson, A. K. Marnerides, M. Watson, A. Mauthe,
and D. Hutchison, “Assessing the impact of intra-cloud live migration
on anomaly detection,” in Proc. IEEE CloudNet’14, Oct 2014.

[3] “Suricata Open Source IDS Engine,” https://suricata-ids.org, accessed:
2015.

[4] S. Roschke, F. Cheng, and C. Meinel, “Intrusion Detection in the Cloud,”
in Proc. IEEE DASC’09, Dec 2009.

[5] C. Mazzariello, R. Bifulco, and R. Canonico, “Integrating a network IDS
into an open source Cloud Computing environment,” in Proc. IAS’10,
Aug 2010.

[6] M. Ficco, L. Tasquier, and R. Aversa, “Intrusion Detection in Cloud
Computing,” in Proc. 3PGCIC’13, Oct 2013.

[7] K. Kourai and K. Juda, “Secure offloading of legacy idses using remote
vm introspection in semi-trusted clouds,” in Proc. IEEE CLOUD’16,
June 2016.

[8] A. Wailly, M. Lacoste, and H. Debar, “VESPA: Multi-layered Self-
protection for Cloud Resources,” in Proc. ICAC’12, 2012.

[9] VMware NSX Technical Product Management Team, “VMware NSX
for vSphere Network Virtualization Design Guide ver 3.0,” VMware,
Tech. Rep., Jun. 2017.

[10] “OVH Dedicated Servers,” https://www.ovh.com/us/dedicated-servers/,
accessed: 2017.


