
HAL Id: hal-01518730
https://inria.hal.science/hal-01518730v1

Submitted on 14 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Combining Both a Component Model and a Task-based
Model for HPC Applications: a Feasibility Study on

GYSELA
Olivier Aumage, Julien Bigot, Hélène Coullon, Christian Pérez, Jérôme

Richard

To cite this version:
Olivier Aumage, Julien Bigot, Hélène Coullon, Christian Pérez, Jérôme Richard. Combining Both a
Component Model and a Task-based Model for HPC Applications: a Feasibility Study on GYSELA.
17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid)., May
2017, Madrid, Spain. �10.1109/CCGRID.2017.88�. �hal-01518730�

https://inria.hal.science/hal-01518730v1
https://hal.archives-ouvertes.fr


Combining Both a Component Model and a Task-based Model
for HPC Applications: a Feasibility Study on GYSELA

Olivier Aumage∗, Julien Bigot†, Hélène Coullon‡, Christian Pérez‡ and Jérôme Richard‡
∗ Inria, LaBRI

Email: olivier.aumage@inria.fr
† Maison de la Simulation, CEA, CNRS, Univ. Paris-Sud, UVSQ, Université Paris-Saclay

Email: julien.bigot@cea.fr
‡ Univ. Lyon, Inria, CNRS, ENS de Lyon, Univ. Claude-Bernard Lyon 1, LIP

Emails: {helene.coullon,christian.perez,jerome.richard}@inria.fr

Abstract—This paper studies the feasibility of efficiently
combining both a software component model and a task-
based model. Task based models are known to enable efficient
executions on recent HPC computing nodes while component
models ease the separation of concerns of application and
thus improve their modularity and adaptability. This paper
describes a prototype version of the COMET programming
model combining concepts of task-based and component mod-
els, and a preliminary version of the COMET runtime built
on top of StarPU and L2C. Evaluations of the approach have
been conducted on a real-world use-case analysis of a sub-
part of the production application GYSELA. Results show that
the approach is feasible and that it enables easy composition
of independent software codes without introducing overheads.
Performance results are equivalent to those obtained with a
plain OpenMP based implementation.

Keywords-HPC; Software Component Model; Task-Based
Model; Task scheduling; Multi-cores; Shared-memory;

I. INTRODUCTION

High-performance architectures are now massively multi-
core or even many-core. They may also feature heteroge-
neous technologies such as those with GPGPU accelerators
in additions to the CPUs. Efficient use of these platforms
requires hand-tailoring algorithms for the hardware. It re-
quires a good understanding of both the target platform and
the application itself. Moreover, codes must be continuously
tweaked to adapt to new architectures. In numerical simu-
lation domain, another important source of code variation
stems from using improved mathematical schemes or taking
into account new discoveries in the simulated domain. This
process has a major cost in term of development time during
the lifespan of the application. Without special attention
to software engineering aspects, this cost can explode, for
example, due to duplication of efforts, multiplication of
concerns in the same code, etc. Developers therefore have
to take maintainability into account when designing a code.
Otherwise, the code could become obsolete, in the worse
case even before it becomes feature-rich enough to be
useful. Maintainability concerns do however often conflict
with performance requirements. HPC code developers are

therefore faced with a fundamental dilemma between main-
tainability and performance, and have to make a difficult
choice regarding the best compromise.

A solution on the software engineering side of the
dilemma is brought by component-based software engineer-
ing (CBSE) [1], [2]. CBSE proposes to build applications by
assembling independent software building blocks (compo-
nents) with well-defined interfaces. Components are instanti-
ated and their interfaces connected to form an assembly. This
enables easy reuse of (potentially third-party) components
and architectural-level modifications of applications through
their assembly. Thus CBSE highly improves application
maintainability and adaptability. Component models with
low overheads have been proposed for high-performance
computing, such as CCA [3] or L2C [4].

Existing HPC component models do however not solve
the fundamental trade-off between maintainability and per-
formance. Indeed, while splitting an algorithm into two inde-
pendent components improves code adaptability, it typically
constraints the way their execution can be interleaved and
can hinder performance at runtime.

HPC task-based scheduling runtime systems [5], [6], [7],
[8] have been designed to ease reaching high performance
on complex hardware such as those with many-cores or
GPUs (by constantly feeding processing units while hiding
synchronizations and data transfers) as well as performance
portability (by separating the description of the work from
how it is performed on available resources). In this approach
applications are described as graphs of tasks with ordering
constraints, called dependencies. Different runtime systems
exist proposing different scheduling policies and techniques.
Task granularity should be small enough such that the
runtime scheduling algorithm can leverage this flexibility
to make efficient choices for the available hardware. This
does however mean that tasks are not the right model for
handling multiple coarse-grain algorithmic variants, since a
whole subset of tasks (i.e., a subgraph) may need to be
modified to replace a single algorithm.

Combining both approaches appears as a compelling way



to improve the development of HPC applications. Software
components ease algorithm composition and replacement,
while tasks and runtime scheduling ease performance porta-
bility over a wide range of architectures. However, to our
knowledge, existing HPC models do not unify component
and task models in a coherent way.

This paper presents a feasibility study of COMET, an ap-
proach aiming to combine both models. COMET is composed
of two elements. First, the COMET programming model
extends existing component model concepts with a new way
of interacting between components specified by dataflows.
We demonstrate that this enables the separation of concerns
in distinct components while retaining high-performance
thanks to the COMET underlying execution model.

Second, the COMET runtime maps the programming
model concepts to an execution model, while retaining
extensibility for new concepts in the programming model.
This feasibility study targets the shared-memory intra-node
scale since this is the level at which fine-grain execution
interleaving is critical. Inter-node interactions are left for
future work. We apply and evaluate the COMET approach
on a use-case from the large-scale production code GYSELA.

Section II presents the GYSELA application. Section III
deals with related works. Section IV describes the COMET
model and runtime and how the use-case has been imple-
mented using it. Section V evaluates the approach both in
terms of software-engineering capabilities and performance.
Section VI concludes the paper and gives some perspectives.

II. THE 2D (r, θ) ADVECTION IN GYSELA

A. GYSELA Overview

GYSELA is an application that simulates the electrostatic
branch of the ion temperature gradient turbulence in tokamak
plasmas [9], [10]. The code consists of around 60,000
source lines of code, 95% Fortran and 5% C. It uses a
hybrid MPI and OpenMP parallelization and has run on
up to 1.8 M threads on the Juqueen Blue Gene/Q (Jülich,
Germany) with 91% relative efficiency in weak scaling [11].
Two solvers are self-consistently coupled at the heart of
GYSELA. A Vlasov solver computes the particles advection
while a Poisson solver computes the magnetic fields.

The main data manipulated in the Vlasov solver is a 5D
particle distribution function in phase space (r, θ, ϕ, v‖, µ),
where (r, θ, ϕ) are the space coordinates and (v‖, µ) the ve-
locity coordinates. The advection part consists in moving the
particles in this 5D space according to the electromagnetic
field provided by the Poisson solver. In GYSELA, this is
computed thanks to a semi-lagrangian scheme with a Strang
splitting. As a result, the 5D problem is implemented by
successive 1D and 2D advections.

This paper focuses on the 2D advection in the (r, θ)
dimension that is the most computational intensive in GY-
SELA. This 2D-advection solves an independent problem
for each (r, θ) plane of the 5D field. It takes two fields

as input: a 2D plane of the 5D field corresponding to
the particles density and another 2D field corresponding
the electromagnetic field in (r, θ). The result (wherein the
particles have been moved) is computed in-place in the
particle density 5D array.

B. 2D Advection Overview

The 2D advection can be split into two distinct parts:
the computation of four displacement fields from the elec-
tromagnetic field and the actual semi-lagrangian advection
computing the new particle density. The computation of
each displacement field is independent and can be done
in parallel. The semi-lagrangian scheme then uses these
displacement fields to determine for each point of the density
function the origin of the displacement where the density
value was the same at the previous time-step. Since this point
was most likely not a grid point, an interpolation is used to
evaluate the value there based on surrounding grid points.
Two interpolation schemes often used in the community are
splines and Lagrange polynomials. According to the chosen
method, the dataflow of the algorithm differs slightly.

The actual semi-lagrangian advection is composed of
three sequential sub-steps, whatever the chosen interpola-
tion scheme. First, data buffers (such as the input buffer
or the displacement buffers) are copied into larger ones
with boundary values, where each cell can be computed
independently (except for the boundary values of the spline
interpolation). Second, field derivatives are computed, using
different ways according to the chosen interpolation method.
The spline interpolation first computes 2D spline coefficients
as two successive 1D computations: independent computa-
tions on each line, followed by independent computations
on each column of the previous sub-step results. It then
uses a stencil where the computation of each output cell
accesses neighbor cells in the input buffers. The Lagrange
interpolation only uses a sequence of multiple stencils.
Third, the actual interpolation is computed, where each
output cell can be computed independently, but requires the
entire two-dimensional input sub-domain due to a value-
driven indirection.

The whole algorithm is applied for each 2D plane in-
dependently, providing coarse-grain parallelism (data paral-
lelism). Finer-grained parallelism inside each 2D plane could
also be used. However, this would require a task-parallel
model since some kernels require the full 2D plane. As a
result, this is not implemented in the reference GYSELA code
and thus not evaluated here.

C. Analysis

The current state of the 2D advection code is a monolithic
package wherein the two main algorithms (displacement
field computation and interpolation) are tightly and manually
coupled using nested functions. Tightly coupling of algo-
rithms is required at runtime to be efficient: it enables better



temporal and data locality as well as higher computational
intensity. However, coupling algorithms using nested func-
tions is difficult due to the increasing number of concerns
in the same code as well as conflicting requirements from
software engineering (maintainability) and performance. In-
deed, replacing or providing alternative implementations of
the interpolation scheme while keeping an efficient code is
hard because it requires changing low-level functions in the
heart of GYSELA. This is especially so when the granularity
or the access pattern of alternative algorithms differs, requir-
ing significant changes. Since alternative algorithms may
be devised to provide more accurate or efficient methods,
maintaining the application while keeping high-performance
is an important concern.

The 2D advection uses multiple kinds of optimizations
to achieve high-performance. These are hidden deep in the
heart of the code and thus difficult to tell apart from the
actual semantic. They are also specialized for a specific use
and guided by the best practices regarding hardware gener-
ally accepted at the time of implementation. Since hardware
evolves continuously, the code has to be adapted to handle
new architectures. Moreover, high-level optimizations such
as the parallelization method and low-level optimization
such as tiling and vectorization are mixed together in the
same code. Consequently, understanding and adapting the
code for a new specific use (e.g., adapting the computational
method, supporting new architectures) requires advanced
skills from the programmer.

Based on this example, we can identify five properties a
programming model should provide to improve the situation:
i) algorithmic substitution should be made easy, it should be
possible to reuse as much application code as possible, and it
should not require advanced skills from the programmer; ii)
the programming model should map to an efficient execution
model leveraging available resources (with a high scalabil-
ity), and avoiding unnecessary overheads; iii) expression of
both task and data parallelism should be possible (without
manually setting any arbitrary optimization choice first); iv)
optimizations should be described separately or even be
done automatically; v) finally, high-level architectural level
optimizations (parallelization method tuning, computational
method tuning, etc.) and low-level optimizations (tiling,
vectorization, etc.) should be clearly separated.

III. RELATED-WORK

Amongst component models, the Common Component
Architecture (CCA) [3] and the Low-Level Component
(L2C) [4] both target to improve maintainability and adapt-
ability for HPC applications with low overhead and support
for MPI. In these two models, components can expose
services (i.e., a set of functions) using provide ports and can
require services provided by other components through use
ports. An assembly is a set of component instances whose
use ports are connected to provide ports, enabling the first

one to calls functions of the second one. Such composition
aims to significantly ease code reuse as well as code
coupling. However, being able to simultaneously express
task and data parallelism without hindering efficiency using
these two models is not currently supported. Indeed, when
an algorithm is split into multiple independent components,
L2C and CCA provide no simple way to efficiently compose,
or interleave, the parallel execution of the different parts. In
fact, this burden is up to application developers.

On the other hand, task-based approaches aim to enable
this interleaving of algorithm execution without requiring
developers to specify the exact execution order. Task-based
runtime systems such as Parsec [6], Legion [12], OmpSs [7],
XKaapi [13], StarPU [8] and Peppher [14] enable to ef-
ficiently execute computational parts of HPC applications.
This is achieved by scheduling computation units called
tasks over the available resources. Tasks usually require
data as input and produce output data. In most models, task
outputs are connected to task inputs using data dependencies
(temporal dependencies), so as to form a directed acyclic
graph (DAG). In a such DAG, the nodes are tasks and
the edges represent (data) dependencies between tasks. The
DAG is then scheduled by a runtime, targeting an efficient
execution over a wide range of hardware. However, being
runtimes, these tools only focus on execution-time matters.
The software engineering aspects such as code composition
or maintainability depend on the programming model or API
used to describe the task-graph.

Approaches such as Regent [5], Swift [15] and
OpenMP [16] offer models to describe applications task-
graphs using either a dedicated language or annotations
respectively. Regent [5] and Swift [15] are programming
languages for implicit dataflow parallelism. A high-level
task-based imperative language offers end-users a way to
implicitly (i.e., in a transparent way) build their task graph
using constructs such as loops, conditionals, etc. Actually,
function calls or specific code constructs are transparently
replaced during execution by submitting tasks to a task-
based runtime. While proposing high-level abstraction to
end-users, low-level data-based composition can naturally
be expressed using Regent thanks to two given abstractions:
tasks, and logical regions (i.e., collections of structured
objects that can recursively be partitioned). However, high-
level coupling of independent code is not handled in Regent.
Moreover, the use of an imperative language to implicitly
create the task DAG does not improve application structure
understanding, separation of concerns into independent soft-
ware parts, or ease of replacement and maintainability like
component models do through the concept of assembly.

OpenMP [16] is a well-known framework that supports
shared memory multiprocessing programming. It provides
means to easily incorporate parallelism into sequential ap-
plications, at a relatively high-level through the use of
code annotations. It supports both task and data parallelism.



While OpenMP helps to easily parallelize HPC applications,
it does not change the underlying programming paradigm
of the annotated language (i.e. imperative programming).
Supporting such an approach for component models, where
parallelization aspects could be specified by a dedicated lan-
guage in the assembly, would be a very interesting feature.
However, as of now, the authors are not aware of any such
work. OpenMP can be used in C, C++ or Fortran component
implementations but is not available at the assembly level.
The approach proposed in this paper can be seen as a first
step into this direction.

Data-driven workflows such as Gwendia [17] and
dataflow-based models such as FlowVR [18], FastFlow [19],
or the model proposed by Lau and al. [20], emphasize easing
the composition of software codes and also provide a higher
abstraction than task-based runtime systems. All of them
share the ability to compose algorithms through data-based
composition where components of the models expose data
ports which, once connected, enable components to produce
data consumed by other ones. The use of such composition
is a convenient way to describe many HPC applications
and could be useful to describe the 2D advection. However,
these models are mainly designed for heavy-grained task-
based composition. As a result, coupling HPC codes with
fine-grain task parallelism using these models would be
detrimental to the maintainability, because it would require
codes to be split into many independent parts, reducing the
cohesion of coupled codes.

Finally, the Spatio-Temporal Component Model [21]
(STCM) unifies features from both component models and
data-driven workflow models. The model provides com-
position units called component-tasks (merging tasks and
components). Such units can be composed into assemblies
through both use-provide and data connections. However,
the model does no target fine-grain intra-node parallelism
for HPC applications. Components and tasks are merged
together, which would result in high overhead if used for
fine-grained task decomposition of HPC applications, due
to component instantiation and connection overheads.

To summarize, some existing approaches improve soft-
ware engineering while others support task-based high-
performance computing. However, no single model com-
bines both advantages. Thus, end-users have to face a trade-
off between maintainability and performance on modern
HPC architectures. None of the proposed models are sat-
isfactory as they do not enable the writing of independent
modules efficiently coupled at runtime. The next section
presents the COMET model, a proof of concept aiming to
handle both component programming models and task-based
high-performance runtimes.

IV. THE COMET MODEL

This section gives an overview of the COMET program-
ming model as well as the COMET runtime. The COMET

programming model is based on the L2C model, since it is a
minimalist HPC-oriented component model [4]. COMET ex-
tends it with a dataflow-based form of interactions between
components enabling the creation of a task graph. It also
enables component connections with fine-grain execution to
interleave in a controlled manner, as described in the assem-
bly. The COMET compiler and runtime map these concepts
to plain L2C components that make use of the StarPU task
graph scheduling [8]. The COMET runtime distinguishes
three types of components: a) components written by the
user in the programming model, b) components generated
during the compilation phase, and c) components written by
experts that make the runtime easily extensible to add more
flexibility in the programming model.

A. The COMET Programming Model

Let us note that, in this work, only a subset of the COMET
programming model has fully been defined. The choices
have been guided to support the 2D advection use-case. In
particular, this paper only deals with intra-node assemblies
and local C++ function calls between components.

The two main elements of the COMET programming
models are components and dataflow sections. These are
instantiated and connected in an assembly describing the ap-
plication architecture. COMET components are L2C compo-
nents extended with new data ports that enable components
to interact with dataflow sections.

Dataflow sections contain metatasks connected to data
buffers with dataflow-based interactions. The data partition-
ing function determines data fragments that are the minimal
unit used by a task. For example, the current implementa-
tion supports block partitioning of multidimensional arrays.
Hence, given a 2D array A(N,M), a 2D block partition of
size (n,m) generates dNn e ∗ d

M
m e fragments.

A metatask represents a set of tasks that is created at run-
time. They expose a list of data ports defining the memory
buffers used by the tasks. Each task has dependencies over
fragments of the data buffers connected to data ports. The
dependencies are defined by an expression in the assembly
specifying alignment between data buffers. Currently, the
proposed alignment language is very simple but enough for
the 2D advection use-case: only perfect alignment between
arrays can be defined, i.e., for two arrays A and B of the
same size, a(i, j) and b(i, j) are guaranteed to be proceeded
by the same task receiving fragments of A and B as inputs.

The task implementation is provided by a use port of the
metatask that is connected to a component instance outside
any dataflow section. Hence, metatasks do not contain user-
level code; they only enable the implicit description of task
sets; the actual implementation is delegated to components.

Four types of data ports are defined in the model, de-
pending on whether the entity (component or metatask)
exposing the port generates information through the port
and whether it uses the information accessible through it.



Metatask

2D-Advection IO-Manager

Constants

Grad

Spline
Interpolation

D1

P1 P2 P3

D2 D3

T0 T1 T2 T3D0

P0

P6 P7P4 P5

go

T4 T6 T8 T10 T12

T5 T7 T9 T11

Input port

Temporary data

Scratch port

Partition informations

Spline-Task-Impl

Grad-Task-Impl

Use port Provide portInout port

Permanent data

Dataflow section

P6 P7P4 P5

P1 P2 P3P0

P8 P9 P10 P11 P12 P13 P14 P15 P16

Figure 1: The 2D advection assembly using COMET.

Out ports are only used when the entity writes data, in
ports mean it only reads it, inout ports mean it does both,
and scratch represent temporary read/write memory buffers,
whose content is neither provided from outside the task nor
meaningful after its execution. Each port is associated with
a partition type and a data type.

Data buffers are instances of multidimensional arrays
typed by a rank (array dimension), a size for each dimension
and the type of the contained data. There are two kinds of
data buffers: permanent data buffers that aim to hold a user
reference to pre-allocated data, and temporary data buffers
that control data life-cycle and allocate them if necessary.
Each data buffer instance is associated with a list of partition
instances. As already stated, the current implementation only
supports block partitioning.

The application is described in an assembly containing
component instances, dataflow sections, and connections be-
tween them. Component instances can be connected through
use-provide connections that enable the instance exposing
the use ports to call functions implemented by the instance
exposing the provide port. Component instances can also
interact through dataflow sections by connecting the data
ports of the components to those of the dataflow sections.
Dataflow sections are started and managed through a man-
agement oriented provide port exposed by each section.

B. The COMET Programming Model on 2D Advection

1) Representation: Figure 1 proposes a description of
the 2D advection use-case using the COMET programming
model. Component instances (2D-Advection, IO-Manager,
etc.) are represented as simple edged rounded boxes and the
dataflow section as a large double edged rectangle. Metatask
instances (Grad and Spline Interpolation) are displayed as
double edged rounded boxes, and data instances as squares
(Di for permanent data buffer instances and Ti for temporary

data buffer instances). Partition instances that are exposed
by their associated data buffer instance are displayed as
Pi annotations on data ports. The figure only contains
instance names. For clarity, other information (i.e., instance
attributes) such as data size for data buffer instances or block
size for block partition instances are not represented.

Provide ports are represented as a full dark circle. They
are connecting to use ports without any specific represen-
tation. Data connectors are lines connecting data ports and
data buffer instances. They are used to describe the flow of
data in the dataflow section.

2) Description: The 2D-Advection component controls
the use-case execution: first, it obtains data from the IO-
Manager component that deals with files in our case.
Second, it sends this data to inout ports of the dataflow
section to compute the result of one 2D-advection step.
Third, it starts the dataflow section computation using the
management dataflow section port. The current model does
not deal with the automatic start of the dataflow section,
since it requires defining a precise semantics when multiple
components submit data. This is left for future work if
the current model is proved to be able to achieve high-
performance.

The Constants component, initialized by IO-Manager,
deals with providing some constant data to the dataflow.

The two distinct parts of the dataflow section of the
2D advection computation described in Section II (i.e.,
displacement fields and interpolation) are expressed by two
interconnected metatasks: the Grad metatask (for displace-
ment fields) and Interpolation metatask (for the actual inter-
polation).

Metatasks delegate the actual computation on data frag-
ments using their use port connected to the provide port
of the respectively Grad-Task-Impl and Spline-Task-Impl
component instances. Because the interpolation metatask
requires temporary data buffers to compute data fragments,
it is connected to many temporary data instances.

The actual dataflow is quite straightforward: data are
sent from the component 2D-Advection to the dataflow
section, where they are partitioned into fragments using
block partitioning and perfect alignment of fragments of
the various arrays. Those fragments are used to generate
tasks from the metatask Grad; the output fragments of this
metatask are used for the tasks of the metatask Spline. Then,
fragments are gathered to form non-partitioned data sent
back to the component 2D-Advection.

3) From spline to Lagrange Interpolation: Switching the
interpolation method from spline to Lagrange has required
replacing the Interpolation metatask and its used task imple-
mentation (green area with dotted edges on Figure 1). More-
over, as the Spline Interpolation and Lagrange Interpolation
metatasks have different temporary data needs, the number
of scratch ports and their type have also been modified.



C. The COMET Runtime
The COMET runtime deals with low-level components

and tasks. It is built on top of both L2C and StarPU [8].
Components have use and provide ports as well as attributes.
StarPU is used to submit and manage tasks.

The COMET runtime is a L2C assembly with three types
of components: user level components (coming from the
COMET programming model), expert components, and glue
components. This L2C assembly is made of all components
(including their use-provide connections) but the dataflow
section of a COMET assembly. An assembly pattern (cf.
further) is used to transform all COMET dataflow sections
into subsets of this L2C assembly (called task sections).

The management related to tasks (such as task submission
to the scheduler, data management, data partitioning) is
done inside specialized components. Such components are
divided into two main categories: expert components and
glue components. Expert components are expected to be
written by experts; an example of such a component is
the runtime component that deals with block partitioning.
Glue components are components generated by the com-
piler presented in Section IV-D, typically to deal with the
management of task sections. Only such components expose
StarPU-specific interfaces so the COMET runtime may use
another compatible tasking runtime without involving users.

Task sections conform to the assembly pattern shown in
Figure 2. Components can be instantiated more than once
(e.g., the TaskGen component is instantiated as many times
as there are metatasks in a dataflow section). Components
may expose a variable number of use or provide ports.
Cardinalities are used to indicate the number of ports: A
cardinality of 1 means that there is a single port, while a
cardinality of many (∗ in Figure 2) means that this generic
port is instantiated as multiple ports. Cardinalities do not
give any information about the actual connections (e.g.,
multiple use ports connected to a provide port). Let us detail
a little more these components.

TaskGen: Using StarPU, this glue component is respon-
sible for submitting a group of independent tasks that work
on a set of partitioned data buffers. The task submission
is done when a call is received from the go provide port.
When tasks are executed, they perform a call on the compute
use port. Because the task submission requires defining the
input/output data fragment of each task, this component
needs to access the actual dependencies using the mapping
use port and to retrieve the actual data fragment through the
partInfoDF use port.

Task: This user component contains the code of a task.
This code is provided through the compute port.

DataflowGen: This glue component coordinates the
submission of task groups (through the use port go), the
data partitioning (through the use port partition), and the
interactions with external components (those providing or
requiring data via the control, state, inData and outData

DataflowGen

TaskGen

✳

1go

✳outData ✳ inData

control
1

Partition

MapTask

Data

1

1 mappingcompute

11 partition

1

1

✳

✳

✳ 1

partInfo

partInfoDF

data

1

1

user
components

component

provide port

use port

state 1

Glue-components

Expert-components

User-components

✳

1

part

Figure 2: Generic COMET runtime assembly associated to a
task section.

provide ports) by doing calls on other component interfaces
of the task section. It also manages the interactions between
this section and the user components outside the section:
input data are gathered using use ports (using inData ports);
output data are retrieved using provide ports (when the
computation ends, using outData provide ports); the port
control enables the submission of all the kernel tasks; the
state provide port enables access to the section running state.

Partition: This expert component is responsible for
data partitioning. Because tasks are submitted on data frag-
ments, and data can have several partitioning during their
life cycle, this component is responsible for the partitioning
and the unpartitioning. This is controlled via its partition
provide port. This component also exposes the partInfo
and partInfoDF provide ports to get information about data
partitioning (e.g., the number of data fragments) or specific
data fragment information (e.g., type, shape, location inside
a data partition, etc.). Currently, there is only a block
partitioning component implemented.

Data: This expert component manages the life cycle
of data inside the task section (when data comes in/out of
the task section, or whenever a data buffer is partitioned).
In particular, it ensures the compliance of task dependencies
over multiple partitions of a given data buffer (i.e., sequential
consistency), preventing tasks to work on invalid data frag-
ments. This component also defines the type of data buffers.
Those services are provided via its data and part ports.

Map: This expert component provides the set of depen-
dencies between the tasks and the data fragments of a given
task group (i.e., alignment) through its mapping provide port.
Because alignment often requires information about involved
data partitions, this component retrieves them via its multiple
partInfo use ports. Currently, there is just a simple map
component that only supports a perfect alignment.

D. The COMET Compiler

The COMET compiler is currently a straightforward
Python code: from a COMET assembly, it generates the



runtime L2C assemly by copying COMET component in-
stances into L2C component instances and by translating
metatasks and dataflow sections of the COMET programming
model into L2C components and assemblies according to
the pattern described in Figure 2. COMET data ports are
transformed in use-provide ports into the runtime assembly.

The partition and mapping information are partially taken
into account: for the partitioning, the block size (per dimen-
sion) is used whereas nothing is used from the alignment but
its type as only a perfect alignment (without any parameter)
is currently supported. Nevertheless, we believe it is not
currently critical as our goal is to study the feasibility and
the performance of mixing components and tasks. For both
cases, the corresponding L2C expert component is selected
by the compiler and inserted in the runtime assembly.

V. EVALUATION

This section evaluates the COMET approach (i.e., both the
programming model and the runtime) on the 2D advection
use-case. It first studies the software engineering properties
of the programming model by analyzing COMET assemblies
of the 2D advection use-case; then it focuses on the per-
formance of the runtime by evaluating the performance of
generated assemblies.

For comparison, the 2D advection spline and Lagrange
variants have been implemented in two versions each. The
reference implementation is directly extracted from GY-
SELA, but rewritten as a standalone C++ prototype. It is
a pure OpenMP fork-join version using a parallel for to
iterate over plans of the five-dimensional data buffers. The
COMET implementation makes use of both components and
metatasks of the COMET model.

A. Software Engineering Evaluation

The software engineering properties of the programming
model are analyzed with respect to the expected features
defined at the end of Section II-C.

1) Algorithmic substitution: The COMET programming
model enables algorithmic substitution through components
(including metatasks) and their composition. Indeed, com-
ponent interfaces are well defined and thus component (i.e.,
subparts of the application algorithm) can be easily replaced
by other components providing (at least) the same interfaces.
In the case of the 2D advection, Figure 1 shows that the
interpolation metatask can be easily replaced by another
metatask in order to substitute the interpolation method.

Expression of algorithms is made possible through the
two kinds of component composition (i.e., both data and
service sharing based composition) brought by the COMET
programming model. Data dependency based composition
enables to compose metatasks inside the dataflow, while
service sharing based composition provides a way to share
code between metatasks of the dataflow, thanks to a use port
connected to a component that sets the task implementation.

This enables reusing code between the implementation of
metatasks as well as relatively fine-grained composition in
task implementation [22]. Indeed, from the 3,246 lines of
code of all the user components of both the spline and
the Lagrange variants (excluding expert components that
contain altogether 798 lines of code shared between the two
variants), 1,576 are shared between the both variants, 1,182
are specific to the spline variant and 488 are specific to the
Lagrange variant (49% of all the user code can be fully
reused). By comparison, in GYSELA, the two variants are
currently developed in separated branches.

2) Expression of both task and data parallelism: The
expression of task parallelism is achieved through to the
composition of metatasks of dataflow sections, while data
parallelism is expressed inside metatask using data parti-
tioning and alignment expressions. In the case of the 2D
advection, the two main metatasks are composed together
to complete one time-step. At runtime, metatasks produce
fine-grained tasks to deal with data parallelism according
to the data alignment rule (defined in both metatasks).
Consequently, the implementation of the two main parts
of the 2D advection can be defined separately and exe-
cuted simultaneously (data streaming), without any artificial
synchronizations between the two units, since task can be
scheduled regardless of the submission order. Finer-grained
decomposition could even be achieved (especially for the
independent field computations of the Grad metatask), but
was not applied to remain close to the reference version
of GYSELA to make comparison meaningful. Thus, expres-
sion of both task and data parallelism is possible without
manually setting any arbitrary optimization choice, only
granularity has to be tuned to get high-performance.

Parallelism expressiveness of the current COMET ap-
proach is limited to the fine-grained composition of mul-
tiple interdependent bags of tasks (produced by metatasks).
Parallel patterns such as reduction or scan for example are
not yet supported. This is due to the fact that the current
set of features has been chosen to validate the approach on
the 2D advection use-case. The addition of such features
is left for future work that, in addition, could study the
extensible properties of the COMET programming model and
its runtime.

3) Optimizations: Optimizations of the 2D advection can
be described separately in the COMET programming model,
thanks to components and assemblies. Indeed, optimizing
partitions and their parameters (e.g., block size and shape)
is just a matter of replacing partition components and tuning
component attributes. Adapting metatask granularity can be
mostly done by tuning assemblies, whenever possible: mul-
tiple metatasks can be aggregated to reduce the size of the
scheduled DAG and the use of temporary data buffers, then
task composition can be replaced by new simple components
to make static calls on the finer-grained task implementation
components. Moreover, new task scheduling strategies can



be implemented to schedule more efficiently the task DAG
produced by dataflow sections over the available resources.

4) High Level architecture: The COMET programming
model ensures the separation between high-level architec-
tural level optimizations and low-level optimizations by
setting the first one inside assemblies and the second one
inside components. Indeed, in the 2D advection, high-level
architectural level optimizations such as the parallelization
method are only described in the assembly while low level-
optimizations only lie inside the code of components.

B. Performance Evaluation

This section deals with the performance evaluation of
COMET on the 2D advection use case, including the spline
and Lagrange variants.

Performance and scalability are evaluated up to 16 cores
on a shared memory node of the MdlS-Poincare cluster
(IDRIS, France). Each node contains 2 sockets of 8 cores
Intel Xeon E5-2670 (2.60GHz).

Each experiment has been done 20 times and the median
is displayed. Most of the figure use logarithmic scales. Error
bars on plots correspond to the first and last quartile. The
compiler used is Intel ICC 15.0.0 (the latest version available
on the machine) and the OpenMP runtime used is the one
proposed by the compiler. Performance results are only
those of the computation kernel. They do not include the
initialization phase that includes loading data from disk.

1) Strong Scaling Performance: Figures 3 and 4 display
the completion time of the strong scalability of the reference
and COMET implementation on the respective spline and
Lagrange variants. They also show the completion time of
an intermediate version to understand the gap between the
reference and the COMET version. This intermediate version
is very close to the COMET version in term of dataflow
but it uses a static OpenMP fork-join scheduling instead
of a dynamic task-based one. This intermediate version
is completely monolithic and sacrifices maintainability for
performances as it does neither split code using subroutines
as in the reference case nor using COMET features (it uses
a sequences of nested loops calling single functions that
work are the finest granularity to expose data dependencies
between computational parts).

Sequential completion time of the reference implementa-
tion is 16% slower than the COMET version on the spline
variant and 12% faster than COMET on the Lagrange variant.
On 16 cores, the COMET version is respectively 18% faster
and 21% slower than the reference implementation on the
spline and Lagrange variants. Completion time of both the
intermediate and COMET version are close (less than 1% in
sequential and up to 6% 8% on 16 core) on the both variants.
All versions scale relatively well until 16 cores both on the
spline and the Lagrange variants: they are from 12.7 to 13.8
times faster than the sequential completion time on the both
the spline and Lagrange variants.

1 2 4 8 16
1

10

100

Cores

C
o
m
p
le
ti
on

ti
m
e
(s
)

Reference version

Intemediate version

Comet version

1

10

100

S
p
ee
d
u
p

Figure 3: Completion time (left) and strong scalability (right)
of the three versions of the spline variant.

1 2 4 8 16
1

10

100

Cores

C
om

p
le
ti
on

ti
m
e
(s
)

Reference version

Intemediate version

Comet version

1

10

100

S
p
ee
d
u
p

Figure 4: Completion time (left) and strong scalability (right)
of the three versions of the Lagrange variant.

The gap between the reference and the intermediate ver-
sion is huge compared to the gap between the intermediate
and the COMET version. This is due to the change of
programming paradigm: by focusing more on the flow of
data in the code, compiler optimizations differ providing a
code more efficient on the spline variant but less efficient on
the Lagrange variant (due to pointer aliasing). However, the
gap comes mainly from sequential optimizations, which are
not the concern of this paper. Let us focus on the differences
between the intermediate and the COMET implementation.

2) Overhead Analysis: Figure 5 shows the relative com-
pletion time of the COMET version over the intermediate
version in function of the number of cores (relative strong
scalability) for both the spline and the Lagrange variants.

The COMET implementation is almost as fast as the
intermediate version in the sequential case for the two

1 2 4 8 16
0.9

1

1.1

1.2

Cores

R
el
at
iv
e
co
m
p
le
ti
on

ti
m
e
of

C
om

et
ov
er

th
e

in
te
rm

ed
ia
te

ve
rs
io
n
(r
at
io
)

Spline variant

Lagrange variant

Figure 5: COMET relative performance over the intermediate
implementation on the spline and Lagrange variants.



Registering Partitionning Submission Others
0

100

200

< 1
23 12

204

< 1
14 8 14

O
ve
rh
ea
d
(m

s)

Many allocations

One allocation

Figure 6: Comet overhead source on the Lagrange variant.

variants (less than 1% slower). But, as the number of cores
grows, the overhead of the COMET version is becoming
higher, reaching a peak of 8% on 16 cores for the spline
variant and 6% for the Lagrange version. As this overhead
is not negligible, its source has been deeply analyzed on the
Lagrange variant.

The source of this overhead lies in the tasking thread of
the COMET runtime, responsible for the registration of data
to StarPU, the data partitioning as well as the submission of
tasks to the scheduler. This thread is not bound to a specific
core, resulting in a higher overhead when it overloads too
much the cores used to complete the scheduled tasks.

Figure 6 breaks down the amount of time taken by each
concern of the tasking thread of the COMET runtime on 16
cores. This thread takes 240 ms to complete his work, which
is much compared to the 1.76 s taken to complete the whole
2D advection computation. The major part of the overhead is
due to the abnormally slow task submission. It is caused by
the many temporary data fragment allocations done during
task submissions. These are used to handle data transfers
between the Grad and the Interpolation metatasks.

However, this overhead can be reduced by allocating the
whole data buffers rather than doing per fragment alloca-
tions. Figure 6 also displays the effect of the two allocation
policies (per fragment allocations vs per buffer allocations)
over the time taken by all the concerns of the tasking thread.
The time taken by the task submission falls down to 14 ms
when one allocation per temporary buffer is used, causing
the tasking thread completion time to drop from 240 ms to
37 ms.

3) Temporary Data Allocation Overhead: In COMET,
temporary buffers are used to ensure the communication
between the bags of tasks generated from metatasks at
runtime: when a bag of tasks writes into a data buffer read
by another bag of tasks, data fragments have to be temporary
stored, waiting to be read, according to the chosen task
scheduling policy. The use of such temporary buffers comes
from task scheduling. Indeed, task scheduling is performed
at runtime and the scheduler can choose either to execute
first all the tasks of the writing bag and then the other tasks
or to interleave the execution of the tasks of the two bags.

Figure 7 shows the relative completion time of the COMET
version over the intermediate one over the number of cores

1 2 4 8 16
0.9

1

1.1

1.2

Cores

R
el
at
iv
e
co
m
p
le
ti
o
n

ti
m
e
of

C
o
m
et

ov
er

th
e

in
te
rm

ed
ia
te

ve
rs
io
n
(r
a
ti
o
)

With many allocations

With one allocation

With TCMalloc

1 2 4 8 16
0.9

1

1.1

1.2

Cores

R
el
at
iv
e
co
m
p
le
ti
on

ti
m
e
of

C
om

et
ov
er

th
e

in
te
rm

ed
ia
te

ve
rs
io
n
(r
at
io
)

With many allocations

With one allocation

With TCMalloc

Figure 7: COMET relative performance over the intermediate
version on the spline variant (top) and on the Lagrange
variant (bottom) using various allocation policies.

using three different allocation policies in the cases of
the spline and Lagrange variants. The new policy called
TCMalloc reuses exactly the code of the many allocation
policy, but it replaces the default GNU C library malloc
implementation by the Google Performance Tools TCMalloc
library1 one at runtime.

The one allocation policy outperforms the many alloca-
tion policy whatever the number of core used on the both
spline and Lagrange variants. Moreover, it does not suffer
from the scalability problems of the many allocation policy.
However, since the whole temporary data buffers are quite
big (around 1 GB), it causes a high memory consumption
that may be unacceptable.

The TCMalloc policy solves this by allocating chunks of
fragments on demand and by reusing them. On 16 cores, the
COMET version with this policy is only about 1% slower
than the intermediate version on both the two variants.
Finally, when using 16 cores, the COMET version using the
TCMalloc allocation policy is 28% faster than the reference
implementation on the spline variant and 16% slower on the
Lagrange variant due to the performance gap between the
reference version and the intermediate one, mainly coming
from sequential compiler optimizations.

The TCMalloc policy is a good trade off between the
two other policies as it provides performance similar to the
intermediate version while reducing memory consumption.
Thus, the use of the COMET model does not add a significant
overhead compared to the intermediate version when using
an adequate temporary buffer allocation policy.

1cf. https://github.com/gperftools/gperftools



VI. CONCLUSION AND FUTURE WORK

To harness today supercomputer computing power while
easing maintainability of HPC applications, this paper has
studied the feasibility of efficiently combining both a soft-
ware component model and a task-based model. Through the
COMET approach, this paper has described how the models
can be combined into a programming model and a runtime
model. The evaluation has been made on a real-world use-
case extracted from the GYSELA application.

Evaluations demonstrate the applicability of the approach.
Experimental results show that independent software codes
can be easily composed and replaced while being efficiently
executed at runtime: performance results are equivalent as
those obtain with the reference implementation. However,
specific care must be taken for the temporary data manage-
ment to achieve high-performance.

Future works include the support of more complex parti-
tioning and alignment functions, and the support of parallel
patterns such as scan or reduction. The support of accelera-
tors such as GPGPU needs also to be investigated as well as
the integration of parallel languages, including the tasking
model of OpenMP.

ACKNOWLEDGMENT

The authors wish to thank Guillaume Latu for his con-
tribution to explaining us the 2D advection part of Gysela.
This work has partially been supported by the PIA ELCI
project of the French FSN.

REFERENCES

[1] M. D. McIlroy, “Mass-produced Software Components,”
Proc. NATO Conf. on Software Engineering, Garmisch, Ger-
many, 1968.

[2] C. Szyperski, Component Software: Beyond Object-Oriented
Programming. Addison-Wesley Longman Publishing Co.,
Inc., 2002.

[3] B. A. Allan and al., “A Component Architecture for High-
Performance Scientific Computing,” International Journal of
High Performance Computing Applications, 2006.

[4] J. Bigot, Z. Hou, C. Pérez, and V. Pichon, “A low level
component model easing performance portability of HPC
applications,” Computing, 2013.

[5] E. Slaughter, W. Lee, S. Treichler, M. Bauer, and A. Aiken,
“Regent: a high-productivity programming language for hpc
with logical regions,” in Intl Conf. for High Performance
Computing, Networking, Storage and Analysis. ACM, 2015.

[6] W. Wu, A. Bouteiller, G. Bosilca, M. Faverge, and J. Don-
garra, “Hierarchical dag scheduling for hybrid distributed
systems,” in International Parallel and Distributed Processing
Symposium. IEEE, 2015.

[7] J. Bueno, J. Planas, A. Duran, X. Martorell, E. Ayguadé,
R. M. Badia, and J. Labarta, “Productive programming of
gpu clusters with ompss,” in International Parallel and Dis-
tributed Processing Symposium. IEEE, 2012.

[8] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacre-
nier, “StarPU: A Unified Platform for Task Scheduling on
Heterogeneous Multicore Architectures,” Concurrency and
Computation: Practice and Experience, Special Issue: Euro-
Par 2009, 2011.

[9] V. Grandgirard, J. Abiteboul, J. Bigot, T. Cartier-Michaud,
N. Crouseilles, G. Dif-Pradalier, C. Ehrlacher, D. Es-
teve, X. Garbet, P. Ghendrih, G. Latu, M. Mehrenberger,
C. Norscini, C. Passeron, F. Rozar, Y. Sarazin, E. Son-
nendrücker, A. Strugarek, and D. Zarzoso, “A 5D gyroki-
netic full-f global semi-Lagrangian code for flux-driven ion
turbulence simulations,” Computer Physics Communications,
2016.

[10] J. Bigot, V. Grandgirard, G. Latu, C. Passeron, F. Rozar, and
O. Thomine, “Scaling GYSELA code beyond 32K-cores on
Blue Gene/Q,” ESAIM: Proceedings, 2013.

[11] V. Grandgirard, “High-Q club: Highest scaling codes on
JUQUEEN – GYSELA: GYrokinetic SEmi-LAgrangian
code for plasma turbulence simulations,” March 2015.
[Online]. Available: http://www.fz-juelich.de/ias/jsc/EN/
Expertise/High-Q-Club/Gysela/ node.html

[12] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion:
Expressing locality and independence with logical regions,”
in Intl Conf. on High Performance Computing, Networking,
Storage and Analysis. IEEE, 2012.

[13] T. Gautier, J. V. Ferreira Lima, N. Maillard, and B. Raffin,
“XKaapi: A Runtime System for Data-Flow Task Program-
ming on Heterogeneous Architectures,” in International Sym-
posium on Parallel and Distributed Processing. IEEE, 2013.

[14] S. Benkner, S. Pllana, J. L. Träff, P. Tsigas, A. Richards,
R. Namyst, B. Bachmayer, C. Kessler, D. Moloner, and
P. Sanders, “The PEPPHER approach to programmability
and performance portability for heterogeneous many-core
architectures,” in ParCo. IOS press, 2011.

[15] A. Espinosa, P. Beckman, M. Hategan, Z. Zhang, M. Wilde,
K. Iskra, I. Foster, B. Clifford, and I. Raicu, “Parallel scripting
for applications at the petascale and beyond,” Computer,
2009.

[16] OpenMP Architecture Review Board, “OpenMP Application
Programming Interface Version 4.5,” 2015. [Online]. Avail-
able: http://www.openmp.org/mp-documents/openmp-4.5.pdf

[17] J. Montagnat, B. Isnard, T. Glatard, K. Maheshwari, and M. B.
Fornarino, “A data-driven workflow language for grids based
on array programming principles,” in Workshop on Workflows
in Support of Large-Scale Science. ACM, 2009.

[18] J. Allard, V. Gouranton, L. Lecointre, S. Limet, E. Melin,
B. Raffin, and S. Robert, “FlowVR: a middleware for large
scale virtual reality applications,” in International Euro-Par
Conference on Parallel Processing. Springer, 2004.

[19] M. Aldinucci, M. Danelutto, P. Kilpatrick, and M. Torquati,
“Fastflow: high-level and efficient streaming on multi-core,”
in Programming Multi-core and Many-core Computing Sys-
tems, 2014.

[20] K.-K. Lau, L. Safie, P. Stepan, and C. Tran, “A compo-
nent model that is both control-driven and data-driven,”
in International Symposium on Component Based Software
Engineering. ACM, 2011.

[21] H. L. Bouziane, C. Pérez, and T. Priol, “A software com-
ponent model with spatial and temporal compositions for
grid infrastructures,” in International Euro-Par Conference on
Parallel Processing. Springer, 2008.

[22] H. Coullon, C. Pérez, and J. Richard, “Feasibility Study of
a Runtime Component-based Model Integrating Task Graph
Concept on a 1D Advection Case Study,” 2016. [Online].
Available: https://hal.inria.fr/hal-01348204


