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Abstract

The Small-Set Expansion Hypotheg¢Raghavendra, Steurer, STOC 2010) is a natural hardness as-
sumption concerning the problem of approximating the edgaesion of small sets in graphs. This
hardness assumption is closely connected tolthigjlue Games Conjectui@ghot, STOC 2002). In
particular, the Small-Set Expansion Hypothesis implies tmique Games Conjecture (Raghavendra,
Steurer, STOC 2010).

Our main result is that the Small-Set Expansion Hypotheasiis fact equivalent to a variant of the
Unique Games Conjecture. More precisely, the hypothesgusvalent to the Unique Games Conjec-
ture restricted to instance with a fairly mild condition dretexpansion of small sets. Alongside, we
obtain the first strong hardness of approximation result$hf® BaLancep SeparaTor and Minivum LIN-
EAR ARRANGEMENT problems. Before, no such hardness was known for thesegmat#ven assuming the
Unique Games Conjecture.

These results not only establish the Small-Set Expansiqotthesis as a natural unifying hypothesis
that implies the Unique Games Conjecture, all its consecggeand, in addition, hardness results for
other problems like B.ancep Separator and Minimum LiNear ARRANGEMENT, but our results also show
that the Small-Set Expansion Hypothesis problem lies attimebinatorial heart of the Uniqgue Games
Conjecture.

The key technical ingredient is a new way of exploiting threcure of the Wique Games instances
obtained from the Small-Set Expansion Hypothesis via (Reghdra, Steurer, 2010). This additional
structure allows us to modify standard reductions in a way #ssentially destroys their local-gadget
nature. Using this modification, we can argue about the esiparnn the graphs produced by the reduc-
tion without relying on expansion properties of the undiedyUnique Games instance (which would be
impossible for a local-gadget reduction).
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1 Introduction

Finding small vertex or edge separators in a graph is a fuedtah computational task. Even from a
purely theoretical standpoint, the phenomenon of vertek edge expansion — the lack of good vertex
and edge separators, has had numerous implications inaaltihes of theoretical computer science. Yet,
the computational complexity of detecting and approxingexpansion, or finding good vertex and edge
separators in graphs is not very well understood.

Among the two notions of expansion, this work will concernatiypwith edge expansion. For simplicity,
let us first consider the case ofdaregular graphG = (V, E). The edge expansion of a subset of vertices
S C V measures the fraction of edges that le&veFormally, the edge expansiai(S) of a (non-empty)
subsetS C V is defined as,

IE(S,V\ S

ds| ’
whereE(S, V \ S) denotes the set of edges with one endpoing iand the other endpoint X \ S. The
conductance or the Cheeger’s constant associated witlrab& @ is the minimum of®(S) over all setsS
with at most half the vertices, i.e.,

OG(S) =

Og = min Og(S).
G = min c(S)

These notions of conductance can be extended naturally ieragular graphs, and finally to arbitrary
weighted graphs (segection 3. Henceforth, in this section, for a subset of verti@&# a graphG we
will use the notationu(S) to denote the normalized set size, ii£S) = |S|/nin an vertex graph.

The problem of approximating the quantiy; for a graphG, also referred to as the the uniforma&sest
Cur (equivalent within a factor of 2), is among the fundamentalbfems in approximation algorithms.
Efforts towards approximating@s have led to a rich body of work with strong connections to sjaéc
techniques and metric embeddings.

The first approximation for conductance was obtained byréiscanalogues of the Cheeger inequality
[Che7Q shown by Alon-Milman AM85] and Alon [Alo86]. Specifically, Cheeger’s inequality relates the
conductancebg to the second eigenvalue of the adjacency matrix of the gragu @ficiently computable
guantity. This yields an approximation algorithm fdg, one that is used heavily in practice for graph
partitioning. However, the approximation fdig obtained via Cheeger’s inequality is poor in terms of a
approximation ratio, especially when the valuedgf is small. AnO(logn) approximation algorithm for
®s was obtained by Leighton and RabR99]. Later work by Linial et al. [LR95] and Aumann and
Rabani AR98] established a strong connection between thesst Cur problem and the theory of metric
spaces, in turn spurring a large and rich body of literatiere recently, in a breakthrough result Arora
et al. JARV04] obtained anO(+/logn) approximation for the problem using semidefinite prograngm
techniques.

Small Set Expansion. It is easy to see thabg is a fairly coarse measure of edge expansion, in that it is
the worst case edge expansion over &t all sizes. In a typical graph (say a randahnegular graph),
smaller sets of vertices expand to a larger extent than séishalf the vertices. For instance, all s&s
of n/1000 vertices in a random-regular graph have(S) > 0.99 with very high probability, while the
conductanceg of the entire graph is roughfy2.

A more refined measure of the edge expansion of a graph ispaneion profile. Specifically, for a
graphG the expansion profile is given by the curve

®6(5) = min (S) Vs e [0,Y7].
u(S)<o



The problem of approximating the expansion profile has vecemuch less attention, and is seemingly far
less tractable. The second eigenvalefails to approximate the expansion of small sets in graphs. O
one hand, even with the largest possible spectral gap, teedén's inequality cannot yield a lower bound
greater thari/2 for the conductancég(5). More importantly, there exists graphs such as hypercuieraev
dg is small (say), yet every sticiently small set has near perfect expansi®(S) > 1 — ¢). This implies
that®g (and the second eigenvalug) does not yield any information about expansion of smafi.set

In a recent work, Raghavendra, Steurer, and TeRfli1(Q give a polynomial-time algorithm based on
semidefinite programming for this problem. Roughly spegkthe approximation guarantee of their algo-
rithm for ®g(6) is similar to the one given by Cheeger’s inequality dax, except with the approximation
degrading by a lodys factor. In particular, the approximation gets worse as the af the sets considered
gets smaller.

In the regime whemg(6) tends to zero as a function of the instance sizan O(log n)-approximation
follows from the framework of RackeRac08§. Very recently, this approximation has been improved to
a O(+/logn - log(l/s))-approximation BKN*10]. Our work focuses on the regime whdr; () is not a
function of the instance size In this regime, the algorithm oRST1Q gives the best known approximation
for the expansion profilé,(d).

In summary, the current state-of-the-art algorithms fqragimating the expansion profile of a graph
are still very far from satisfactory. Specifically, the fmlling hypothesis is consistent with the known
algorithms for approximating expansion profile.

Hypothesis(Small-Set Expansion Hypothesi®R$1(Q). For every constan > 0, there exists dficiently
smalls > 0 such that given a graph G it iINP-hard to distinguish the cases,

Y&s: there exists a vertex set S with volun{€) = § and expansio®(S) < 7,
No: all vertex sets S with volum&S) = § have expansio®(S) > 1 — .

For the sake of succinctness, we will refer to the above merpioblem assiL-Ser Expansion with
parametersr, 6). Apart from being a natural optimization problem, thea& -Ser Expansion problem is
closely tied to the Unique Games Conjecture, as discussi inext paragraph.

Recently, Arora, Barak, and Steuré&k§S1( showed that the problemmarL-Ser Expansion(n, §) ad-
mits a subexponential algorithm, namely an algorithm toatrin time exp{’/5). However, such an al-
gorithm does not refute the hypothesis that the problemu.SSer Expansion(r, 6) might be hard for every
constant; > 0 and stficiently smalls > O.

Unique Games Conjecture. The Khot's Unique Games Conjecturého0Z] is among the central open
problems in hardness of approximation. At the outset, thigecture asserts that a certain constraint satis-
faction problem called the Unique Games is hard to approanma strong sense.

An instance of Wique Games consists of a graph with vertex s¥t a finite set of labelsH], and a
permutationr,._,, of the label set for each edge @) of the graph. A labeling- : V — [R] of the vertices
of the graph is said teatisfyan edge«, w), if 7, ,(F(w)) = F(v). The objective is to find a labeling that
satisfies the maximum number of edges.

The Unigue Games Conjecture asserts that if the label satge Enough then even though the input
instance has a labeling satisfying almost all the edges,NPihard to find a labeling satisfying any non-
negligible fraction of edges.

Inrecent years, Unique Games Conjecture has been showplpaptimal inapproximability results for
classic problems like Mx Cur [KKMOO7], VerteEX Cover [KRO8] Sparsest Cut [KV05] and all constraint
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satisfaction problems{ag0§. Unfortunately, it is not known if the converse of any of skeimplications
holds. In other words, there are no known polynomial-tireductionsfrom these classic optimization
problems to Wique Games, leaving the possibility that while the its implicationsedrue the conjecture
itself could be false.

Recent work by two of the authors establishe@\eersereduction from the BaLL-Ser Expansion prob-
lem to Unique GamesRS1(. More precisely, their work showed that Small-Set ExpandHypothesis
implies the Uniqgue Games Conjecture. This result sugghatsthe problem of approximating expansion
of small sets lies at the combinatorial heart of the Uniquen€aproblem. In fact, this connection proved
useful in the development of subexponential time algorgtion Unique Games by Arora, Barak and Steurer
[ABS1Q. It was also conjectured irjS1Q that Unique Games Conjecture is equivalent to the Small-Se
Expansion Hypothesis.

1.1 Results (Informal Description)

In this work, we further investigate the connection betw&eniL-Ser Expeansion and the Unique Games
problem. The main result of this work is that the Small-Sgpdhsion Hypothesis is equivalent to a variant
of the Unique Games Conjecture. More precisely, we showahening:

Theorem (Main Theorem, Informal) The Small-Set Expansion Hypothesis is equivalent to aggutnat
the Unigue Games Conjecture holds even when the input icetaare required to be small set expanders,
i.e., sets of roughlyn vertices for some small constahhave expansion close fio

As a corollary, we show that Small-Set Expansion Hypothiegdies hardness of approximation results
for BaLancep Separator and Minimum LiINear ARRANGEMENT problems. The significance of these results
stems from two main reasons.

First, the Unique Games Conjecture is not known to imply hasg results for problems closely tied
to graph expansion such asiRncep SeraraTor and Minimum LINEAR ARRANGEMENT. The reason being that
the hard instances of these problems are required to haadcglobal structure namely expansion. Gadget
reductions from a unique games instance preserve the giodgaérties of the unique games instance such as
lack of expansion. Therefore, showing hardness famBcep SeparATOR OF MINIMUM LINEAR ARRANGEMENT
problems often required a stronger version of the Unique €a@onjecture, where the instance is guaran-
teed to have good expansion. To this end, several such t&pathe conjecture for expanding graphs have
been defined in literature, some of which turned out to be &K *08]. Our main result shows that the
Small-Set Expansion Hypothesis serves as a natural uniiisahgption that yields all the implications of
Unique Games Conjecture and, in addition, also hardnes#tgder other fundamental problems such as
BALANCED SEPARATOR.

Second, several results in literature point to the closeection between¥mii-Ser Expansion problem
and the Unique Games problem. One of the central implicataithe Unique Games Conjecture is that
certain semidefinite programs yield optimal approximafimnvarious classes of problems. As it turns out,
hard instances for semidefinite programs (SDP integraégysyfor Max Cur [FS02 KV05, KS09, RS09,
VErRTEX Cover [GMPTO7, Unique Games [KV05, RS09 and Sarsest Cur [KV05, KS09 RS09 all have
near-perfect edge expansion for small sets. In casengfue) Games, not only do all known integrality gap
instances have near-perfect edge expansion of small setstlge analysis relies directly on this property.
All known integrality gap instances for semidefinite pragraing relaxations of Uniqgue Games, can be
translated in to gap instances fan&.L-Ser Expansion problem, and are arguably more natural in the latter
context. Furthermore, all the algorithmic results fenns.-Ser Exeansion, including the latest work of Arora,
Barak and SteureBS1( extend to Unique Games as well. This apparent connectianfavanalized in
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the result of Raghavendra et alR$1Q which showed that Small-Set Expansion Hypothesis implies
Unique Games Conjecture. This work complements that of Raggidra et al.RS1Q in exhibiting that the
SmaLL-SET Expansion problem lies at the combinatorial heart of the Unique Garmeblpm.

We also show a “hardness amplification” result feraS-Ser Expansion proving that if the Small-Set
Expansion Hypothesis holds then the current best algorittmBvarL-Ser Expansion due to RS1q is
optimal within some fixed constant factor. One can view tlduction as a “scale change” operation for
expansion problems, which starting from the qualitativelhass of a problem about expansion of sets with a
suficiently small measuré&, gives the optimal quantitative hardness results for gmoislabout expansion of
sets with any desired measure (larger tharirhis is analogous to (and based on) the result&EMIO07]
who gave a similar alphabet reduction forigue Games. An interesting feature of the reductions in the
paper is that they produce instances whose expansion of setslclosely mimics a certain graph on the
Gaussian space.

2 Preliminaries

Random walks on graphs. Consider the natural random walk ®hdefined byG. We write j ~ G(i) to
denote a random neighbor of vertigr G (one step of the random walk started)nThe stationary measure
for the random walk is given by the volume as defined earli¢h wfi) = G({i}, V). If G is regular, them

is the uniform distribution ofV. In generalu is proportional to the degrees of the vertice$GinWe write

i ~ u to denote a vertex sampled according to the stationary mea#uG is clear from the context, we
often writei ~ V instead ofi ~ u.

Spectral gap of graphs. We identify G with the stochastic matrix of the random walk @nWe equip the
vector spacéf: V — R} with the inner product

(.90 = E 1990

We defing| f|| = (f, f)1/2. As usual, we refer to this (Hilbert) spacelagV). Notice thatG is self-adjoint
with respect to this inner product, i.€f,Gg) = (Gf,g) for all f,g € Lo(V). Letd; > ... > A, be the
eigenvalues of. The non-zero constants are eigenfunction& efith eigenvaluel; = 1.

For a vertex seb C V, let 15 be the{0, 1}-indicator function ofS. We denote bys(S, T) = (1s, Gl T)
the total weight of all the edges (& that go betwee® andT.

Fact 2.1. Suppose the second largest eigenvalue of & iBhen, for every function € L,(V),
(f.GH < B2 +a-(If|? - (E)?).

In particular, ®g(5) > 1 -6 — A for everys > 0.

Gaussian Graphs. For a constanp € (-1, 1), letG(p) denote the infinite graph ov@® where the weight
of an edgeX, y) is the probability that two standard Gaussian random lkibasX, Y with correlationp equal

x andy respectively. The expansion profile of Gaussian graphsvengdy ®g(,) (1) = 1 - I',(u)/u where

the quantityl’, (i) defined as

r = P {x=ty>t},
p(/J) (Xy) gp{ Y }



whereg, is the 2-dimensional Gaussian distribution with covareantatrix

)

andt > O is such thaP).g, {X > t} = u. A theorem of Borell Bor85 shows that for any set of measure
i, (GP)S,S) < I,(u). This expansion profile will be frequently used in the pagestate the results
succinctly.

Noise graphs. For a finite probability spaceX, v) andp € [0, 1], we defineT = T, o to be the following
linear operator ot (Q),
Tf(X) = px+ (1 -p) ]EQ f(xX).
X ~

The eigenvalues of are 1 (with multiplicity 1) ando (with multiplicity |Q| — 1). The operatoiT
corresponds to the following natural (reversible) randoatkvon Q: with probability p stay at the current
position, with probability (- p) move to a random position sampled according to the measure

Product graphs. If G andG’ are two graphs with vertex sets andV’, we letH = G ® G’ be the
tensor producbf G andG’. The vertex set oG isV x V’. Fori € V andi’ € V’, the distributionH(i, ") is
the product of the distribution$(i) andG’(i’). ForR € N, we letG®R denote théR-fold tensor producf G.
Sometimes the powdR of the graph is clear from the context. In this case, we migbpdhe superscript
for the tensor graph.

3 Results

Towards stating the results succinctly, we introduce th@®namf a decision problem beingSE-hard. It is
the natural notion wherein a decision problensBE-hard if the $1aLL-Ser Expansion (1, §) reduces to it
by a polynomial time reduction for some constarand alls > 0 (SeeDefinition 5.6.

3.1 Relation to the Unique Games Conjecture

We show that the Small-Set Expansion Hypothesis is equivatea certain variant of the Unique Games
Conjecture with expansion. Specifically, consider theofeihg version of the conjecture with near-perfect
expansion of sficiently small sets. The hypothesis is as follows:

Hypothesis 3.1(Uniqgue Games with Small-Set Expansioipr everye,n > 0 and M € N, there exists
6 = 6(e,M) > 0and g= q(e,n, M) € N such that it isSNP-hard to distinguish for a givetynique Games
instancel{ with alphabet size g whether

Yes: TheUnique Games instanced is almost satisfiableppt(/) > 1 — &.

No: TheUnique Games instance?{ satisfiesopt(i{) < n and its constraint graph G satisfi@S) > 1 - ¢
for every vertex set with < u(S) < Mé.

The main result of the paper is the following reduction frommS.-Ser Expansion t0 UNiQuE GAMES On
instances with small-set expansion.

1The hypothesis infS1qQ is not quite the same. However, the reduction and its aisily$RS1q also work for this hypothesis.
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Theorem 3.2. For every ge N and every,y > 0, it is SSE-hard to distinguish between the following cases
for a givenUnique Gawmes instancel{ with alphabet size Q:

Yes: TheUnique Games instanceld{ is almost satisfiableppt(2/) > 1 — 2¢ — 0(¢)

No: The optimum of th&nique Games instance?( is negligible, and the expansion profile of the instance
resembles the Gaussian gragh(l — ). More precisely, théJnique Games instanced satisfies
opt(U) < O(q‘s/ (2‘8)) + v and in addition, the constraint graph G @f satisfies

VS c V(G). D(S) > Og(1-g) (U(S)) — Y/u(S).

The proof of the above theorem is presente®éaction 6.3 Together with Theorem 1.9 froniRE 14,
Theorem 3.2mplies the following equivalence:

Corollary 3.3. The Small-Set Expansion Hypothesis is equivalettyipothesis 3.XUnique Games with
Small-Set Expansion).

Remark 3.4. If we choosey < &, then the constraint grapB in the No case satisfie®(S) > Q(+e)

for every vertex seS with u(S) € (b,1/2) for an arbitrarily small constartt > 0. In other words, the
best balanced separator@has cost(+/). A hardness of Unique Games on graphs of this nature was
previously conjectured inJKK *08], towards obtaining a hardness fokilRNcED SepARATOR.

As already mentioned, for several problems such as Gbr, the the hard instances for the semidefinite
programs have very good expansion of small sets. For instdrerd instances for semidefinite programs
(SDP integrality gaps) for Wk Cur [FS02 KV05, KS09, RS09, VerTEX Cover [GMPTO07, UNiQuE GAMES
[KV05, RS09 and Sarsest Cur [KV05, KS09 RS09 all have near-perfect edge expansion for small sets.
In fact, in many of the cases, the edge expansion in the ghaghklg mimics the expansion of sets in some
corresponding Gaussian graph. Confirming this observaban techniques imply an optimal hardness
result for Max Cut on instances that are small-set expanders. More prectbelySmall-Set Expansion
Hypothesis implies that the Goemans-Williamson algoriteraptimal even on graphs that are guaranteed
to have good expansion of small sets, in fact an expansidilgtbat resembles the Gaussian graph. For
the sake of succinctness, we omit the formal statement oEthét.

3.2 Hardness Amplification for Graph Expansion

Observe that the Small-Set Expansion Hypothesis is a pqreliitative assumption on the approximability
of expansion. Specifically, for every constanthe hypothesis asserts that there exists séraech that
approximating expansion of sets of siZis NP-hard. The hypothesis does not assert any quantitativendepe
dence on the set size and approximability. Surprisinglysh@v that this qualitative hardness assumption
is suficient to imply precise quantitative bounds on approxinmghdf graph expansion.

Theorem 3.5. For all g € N ande,y > 0, it is SSE-hard to distinguish between the following two cases for
a given graph H= (Vu, ER)

YEs: There exist g disjoint sets;S .., Sq C Vy satisfying for all I [q],

pS)=1 and  du(S) <+ 0fe).



No: For all sets SC Vy,
DOH(S) = Dg1-g/2) (U(S)) = Y/uS)

wheredg1-./2)(1(S)) is the expansion of sets of volup(&) in the infinite Gaussian grap&(1-£/2).

The above hardness result matches (upto an absolute coiastam), the recent algorithmic result (The-
orem 1.2) of RST1Q approximating the graph expansion. Furthermore, bothrtkieand the N cases of
the above theorem are even qualitatively stronger thanarsthall-Set Expansion Hypothesis. In thesY
case, not only does the graph have one non-expanding set,daut be partitioned into small setsl| of
which are non-expanding. This partition property is usefitdome applications such as hardness reduction
to Minmmum LINear ARRANGEMENT. IN the No case, the expansion of all sets can be characterized onheby t
sizeu(S). Specifically, the expansion of every &of vertices withu(S) >> v, is at least the expansion of
a set of similar size in the Gaussian graptl — £/2).

Here we wish to draw an analogy to the Uniqgue Games Conjeciure Unique Games Conjecture is
gualitative in that it does not prescribe a relation betwiggisoundness and alphabet size. However, the
work of Khot et al. KKMOO7] showed that the Unique Games Conjecture implies a quawtitiorm of
itself with a precise relation between the alphabet sizesmumhdness. Theoref5 could be thought of as
an analogue of this phenomena for the Small-Set Expansaligm.

As an immediate consequence of Theor&® we obtain the following hardness of thaiBncep Sepa-
rATOR and Mintmum LINEAR ARRANGEMENT problems (See Appendi.3 for details).

Corollary 3.6 (Hardness of Brancep Separator and Miv Bisection). There is a constant ¢ such that for
arbitrarily small € > O, itis SSE-hard to distinguish the following two cases for a given dr&p= (V, E):

YEs: There exists a cUS,V \ S) in G such tha(S) = 3 and®g(S) < & + 0(e).
No: Every cut(S,V \ S)in G, withu(S) € (1—10 %) satisfiesbg(S) > c/e.

Corollary 3.7 (Hardness of Nkimum LINEAR ARRANGEMENT). It is SSE-hard to approximatéMiNnimum Lin-
EAR ARRANGEMENT t0 any fixed constant factor.

4 Warm-up: Hardness for Balanced Separator

In this section we present a simplified version of our reducfrom SuaLL-Ser Expansion tO BALANCED
SeparaTOR. Though it gives sub-optimal parameters, it illustrateskéy ideas used in the general reduction.

4.1 Candidate Reduction from Unique Games

A natural approach for reducingnMhue Games to BALANCED SEPARATOR iS to consider variants of the reduction
from Unique Games to Max Cur in [KKMOOQ7] (similarly, one could consider variants of the reductioonf
Unique Games to thegeneralizedSearsest Cut problem KV05]).

Let U be a unique game with alphabet sReand vertex seV. (We assume that every vertex of the
unigue game participates in the same number of constrdihts.assumption is without loss of generality.)
The candidate reduction has a parameter 0. The graphH = H.(U) obtained from this candidate
reduction has vertex sstx {0, 1}R and its edge distribution is defined as follows:

1. Sample a random vertexe V.



2. Sample two random constraints ¢, ), (u, v’, 7’) of ¢ that contain the verten. (Henceforth, we will
write (U, v, 7) ~ U | uto denote a random constrainttf containing vertex.)

3. Sample a random edgg {’) of the boolean noise graph_. with noise parametex.

4. Output an edge between £(y)) and ¢’, 7’(y")). (Here,x(y) denotes the vector obtained by permuting
the coordinates of according to the permutation)

Completeness. Suppose there is a good assignmentV — [R] for the unique gamd{. Then, if we
sample a random vertaxe V and two random constraint,, ), (U, v’, 7") ~ U | u, with probability very
close to 1 (much closer that), the labels assigned toandv’ satisfyz~(F(v)) = (7/)"1(F(v)). Consider
the vertex se6 = {(U,X) | Xrw = 1}. in the graphH. We haveu(S) = 1/2. We claim that the expansion
of this set is essentially/2 (up to a lower-order term depending on the fraction of aanst of Z{ violated
by F). Consider a random edgewith endpoints 4, 7(y)) and ¢’,7’(y’)), where the vertices,v’ € V and
the permutations, 7’ are generated as specified above.rLetr=X(F (v)) andr’ = (7')"1(F(v)). The edgee
crosses the c# if and only if y, # y',,. As argued before, with probability very close to 1, we haver’.
Conditioned on this event, the probability that# y,- is equal tae/2. This shows thab has expansion/2.

Soundness. Suppose no assignment for the unique g&heatisfies a significant fraction of constraints.
Let S be a vertex set in the grapt. The goal is to lower bound the expansionSfwhich is the same as
upper bounding the fraction of edges with both endpoinB)irLet f : VRx {0, 1}R — {0, 1} be the indicator
function ofS. Following the analysis ofi{KMOOQ7], we consider functiong,: {0, 1}} — [0, 1],

gu(X)=( P {f(v,7(y))} .

u,v,m)~U|u,
y~T (%)

(The graphH turns out to be the square of a grabp in which we would just create edges of the form
((u, x), (v, 7(y))). The functiong,(X) evaluates to the probability that the &tontains a random neighbor
of (u, X) in this graphHg.) By construction, the fractiokl (S, S) of edges oH with both endpoints it is
exactly
H(S,S) = E (gu, T1-c9u) -
ueV

SinceU does not have a good assignment, standard argumentsgmeaiprinciple and influence decoding,
see KKMOO7]) imply the following upper bound ohi (S, S),

H(S,S) < U]EV I—e(uy) +0(1).

(The notatiorn(1) hides a term depending on the maximum fraction of comégraf 2/ that can be satisfied.
For us, this term is not significant.) Herg, is the expected value a@f, andT';_.(-) is the noise stability
profile of the Gaussian noise graph with parameteiVe would like to show that every s8tthat contains
au fraction of the vertices of satisfiesdH(S, S) < I'1—.(u) + o(1). However, the functiol;_,, is, of course,
not concave. Hence, this upper bound holds only;iis close tqu for most verticesi € V.

In fact, it is very easy to construct examples that show thatcandidate reduction is not sound. For
example, consider a unique gaméthat consists of two disjoint parts of the same size (i.ethovit any
constraint between the two parts). The reduction presd¢imgglobal structure, in the sense that the griiph
also consists of two disjoint parts of the same size (with dgeebetween the parts). Hence, this graph
contains a vertex set with volum# and expansion O irrespective of the optimal value of theumgpmei/.
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In fact, any cut in the underlying graph @f can be translated to a cutlhand the resulting functioh may
have the valueg, as (very close to) O or 1.

This example shows that the above candidate reduction dgmank if one makes assumptions about
structure of the constraint graph of the underlying unigamg?{. However, such an assumption raises
the question if Wique Games could be hard to approximate even if the constraint grapRpamding. This
issue turns out to be delicate as demonstrated by the ddgofir Unioue Games with expanding constraint
graphs PAKK *08]. This algorithm achieves a good approximation fondde Gawmes if the expansion of the
constraint graph exceeds a certain threshold.

4.2 Structured Unique Games from Small-Set Expansion

In this work, we present a veryfiierent approach for fixing the above candidate reductiotiedasof assum-
ing expansion properties of the constraint graph, we asshat¢he underlying unique game is obtained by
the reduction from SaLL-Set Expansion to Unique Games in [RS1Q 2. This specific form of the underlying
unique game will allows us to modify the reduction such ti&t global structure of the constraint graph
is no longer preserved in the graph obtained from the regluctin particular, our modified reduction will
break with the paradigm of composing unique games with Igadgets.)

In the following, we describe the reduction froru&L-Ser Expansion to UniQue Games. Let G be a
regular graph with vertex s&t. For technical reasons, we assume thatontains a copy of the complete
graph of weight; > 0. (Since we will be able to work with very smaj] this assumption is without loss of
generality.) Given a paramet® e IN and the grapl, the reduction outputs a unique garbe= UR(G)
with vertex setvVR and alphabetH]. The constraints of the unique garé correspond to the following
probabilistic verifier for an assignmeRt VR — [R]:

1. Sample a random vertexe VR.

2. Sample two random neighboBsC ~ G®R(A) of the vertexA in the tensor-product grapB®R.

3. Sample two random permutatiomg, nc of [R].

4. Verify thatrg'(F (r(B))) = (rc) " (F(nc(C))).

Raghavendra and Steur&$1(Q show that this reduction is complete and sound in the falgwsense:

Completenesslif the graphG contains a vertex set with volumgR and expansion close to 0, then the
unigue gamel{ = UR(G) has a partial assignment that labelsesarp 1/e fraction of the vertices and
satisfies almost am fraction of the constraints.

Soundnessilf the graphG contains no set with volume/R and expansion bounded away from 1, then no
assignment for the unique garéé= UR(G) satisfies a significant fraction of the constraints.

Hence, if one assumes the Small-Set Expansion Hypothésis,the kind of unigue games obtained
from the reduction are hard to approximate.

We remark that the completeness of the reduction seems wisheusual, because we are only guar-
anteed a partial assignment for the unique game. Howewvisretisy to check that the KKMO reduction
presented in the previous section also works if there is arpgrtial assignment in the completeness case.
The only diference is that one now gets a Sewith u(S) = a/2 and expansion roughby/2.

2We remark that unique games of this form do not necessarilg Bapanding constraint graphs. In fact, it is still possithlat
the constraint graph consists of two disconnected compsnen



4.3 Reduction from Small-Set Expansion to Balanced Separait

We now show how the combination of the above two reductiomsbeamodified to give a reduction from
SMALL-SET ExpansioN tO BALANCED SeparaTOR. Let U = UR(G) be the unique game given by the reduction
of Raghavendra and Steurer. If we consider the gidphiven by the reduction isection 4.1each vertex
of H, is now of the form A, x), whereA € VR andx € {0, 1}R.

The intuition is that in this case, we can think»o&s picking asubseff the vertices imA, and that just
the knowledge of this subset (instead of the whol@)df suficient for the provers to provide a good answer
to the corresponding unique game. In particularAet {A; | X = 1} is the subset picked by. Then the
argument for the completeness caseRBLq actually shows that one can still find a good labeling foran
fraction of the vertice#\, where the label oA only depends od’ 3.

Formally, if we replaceA with the tupleA’(x) defined by taking = A; if X, = 1 andA’ = 1L otherwise.
This gives a graptH’ with the vertex set being a subset &f ¢ {1L})R x {0,1}R. The the argument in
completeness case for showing thiihas a balanced cut of expansion rougiif can in fact be extended
to show thatH’ also has a balanced cut of expansion rougiiB.

The soundness analysis in the previous reduction did natyslwork becausk had the same structure
asG®R, since we essentially replaced every vertexG8R by a gadget0, 1R to obtainH. However, the
structure ofH’ is very diferent from that oGG®R.

For example, consider the verticAs= (U, Up, ..., UR) andB = (v1, Uy, ... UR) in VR which only difer
in the first coordinateX, B are not necessarily adjacent). bet {0, 1}R be such thak; = 0. Then, while
(A, X) and B, X) are diterent vertices iH, (A’(X), X) and B'(X), X) are in fact the same vertex H'! On the
other hand, ifx; = 1, then &’(x), X) and B'(x), X) would be two diterent vertices irH’. Hence, the gadget
structure ofH is no longer preserved id’ - it is very different from a “locally modified” copy o&®R.

For the purposes of analysis, it will be more convenient tokttof A’ being obtained by replacing;
wherex = 0, by a random vertex db instead of the symbal.. Instead of identifying dferent vertices in
H with the same vertex iRl’, this now has theféect of re-distributing the weight of an incident of, ),
uniformly over all the vertices tha#\(, X) can map to. LeMy denote a Markov operator which mafigo a
randomA’ as above (a more general version and analysis of such opecato be found ifsection §.

We now state the combined reduction. The weight of an eddeifinal grapHi’ is the probability that
it is produced by the following process:

Sample a random verteéxe VR,

Sample two random neighbdBsC ~ GER(A) of the vertexA in the tensor-product grapB®R.
Samplexg, xc ~ {0, L}R.

SampleB’ ~ My,(B) andC’ ~ My.(C).

Sample two random permutatiomg, mc of [R].

o o M 0 N R

Output an edge between the vertiegéB’, xg) andnc(C’, xc) (n(A, X) denotes the tupler(A), 7(X))).

As before, letf : VR x {0, 1}R denote the indicator function of a sethtf, with (say)E f = u = 1/2. We
define the functions

AN EEfrAzZY) and ¢ga0E E E f(B,X).

B~G®R(A) B'~My(B)

3Given a non-expanding small s8fif A’ NS contains a single element, then we assign the labgto A. If A’'N Sis nota
singleton, we do not labe\.
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By construction, each verteX\(x) of H” has exactly the same neighborhood structureras (r.x) for
all m € SgandA’ € My(A). Hence, the fraction of edges crossing the cut can also itemwin terms off as
(F,H ) =(f,H'f).

We will show thatf gives a cut (actually, a distribution over cuts) with the saawpansion in the graph
H, such that the functionga satisfyPa{EE ga € (¥/10,9/10)} > 1/10. Recall that showing this was exactly the
problem in making the reduction fBection 4.1work.

SinceEaEy ga = 1, we haveEa (Ey ga)? > 2. The following claim also gives an upper bound.

Claim 4.1. Ea (Exga)? < p2/2 + u/2

Proof. We have

2 2 2
]EgA) = E ( E E E fj E E (]E E fj
A~VR\B~GER(A) X B'~My(B) A~VRB~G®R \ X B'~M(B)

2
= [E (]E E fj
B~VR\ X B'~M(B)
-l e )
B~VR | \ X1 B{~My, (B) X2 B,~Mx, (B)

=E E f(B,x E f(BY, Xo) .
X1 B, ~My, (B) (By 1)(B’2,xz)~M(B’1,x1) (B2, %)

E,(
A~VR\X

N

For the last equality above, we defilveto be a Markov operator which samplé&,(x;) from the correct
distribution given B}, X). Sincex, X, are independent, can just be sampled uniformly. The fact tHit
andB/, come from the same (randorB)can be captured by sampling each coordinatB/odis

By = { (BYi if (x1)i = (%2)i =0

random vertex iV  otherwise

Abusing notation, we also udd to denote the operator on the space of the functions whictagee the
value of the function over randont, X2) generated as above. Thengifs the second eigenvalue bf, we
have

2 — — — — —
E(Boa) < (TMD < 1@+ (1P~ ED?) < Q-2+ 240
Finally, it can be checked that the second eigenvalud & 1/2 which proves the claim. |
This gives thalEx ga cannot be always very far from Formally,

Ea(Ega—p)? _ p(l-p)
—ul = < < .
PAEgA = ul >} 2 272
Hence, fory = 2/5, the probability is at mo¥/32 < 9/10. This can now be combined with the bound from
Section 4.1that gives

H'(S.9) < ET1, (Ega) +0f1).

SinceE ga > Y10 with probability at least/i0 over A, these “nice”A’s contribute a volume of at leagtioo.
Also, for a niceA, we havel'y_. (Ega) < (Ega)(1 - Q(+¢)). Hence,

H’(S, S) < (u — Y/100) + Y100- (1 — Q(Ve)) + o(1)

which shows thaB has expansio®( vz).
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5 Additional Preliminaries

Unigue Games. An instance of Whioue Games represented a&l = (V, &, 11, [R]) consists of a graph over
vertex setV with the edges between them. Also part of the instance is a set of latbgls-[{1, ..., R}, and
a set of permutationt = {r,, : [R] — [R]}, one permutation for each edge: (w,v) € &. An assignment
F: vV — [R] of labels to vertices is said to satisfy an edge (w, v), if 7,,(F) = F(v). The objective is to
find an assignmerft of labels that satisfies the maximum number of edges.

As is customary in hardness of approximation, one definepavgision of the blique Games problem
as follows:

Problem 5.1(Unique Games (R, 1 — g, 7)). Given a Wique Gawmes instanceld = (V,E, 11 = {myy, : [R] =
[R] | e = (w,v) € &}, [R]) with number of labelsR, distinguish between the following two cases:

— (1- g)- satisfiable instances: There exists an assignmdntof labels that satisfies a1 ¢ fraction of
edges.

— Instances that are not n-satisfiable: No assignment satisfies more thamp-faction of the edge§.

The Unique Games Conjecture asserts that the above depigiblem isNP-hard when the number of
labels is large enough. Formally,

Conjecture 5.2(Unique Games Conjectur&lfo02]). For all constantse,n > 0, there exists large enough
constant R such thatinique Games (R, 1 — g,1) is NP-hard.

Graph expansion. In this work, all graphs are undirected and possibly weighteet G be a graph with
vertex setv. We writeij ~ G to denote a random edge sampled fr@nfwith random orientation). For two
vertex setsS, T C V, let G(S, T) be the fraction of edges going frogito T, i.e.,
def
G(S,T)= P {ieS,jeT}.
J~
Theexpansiof ®(S) of a setS C V is the fraction of edges leavir§normalized by the fraction of edges
incident toS, i.e.,

def G(S,V\S) PijclieS j¢T)

©6(S) = GiS.V)  PjclieS)

:ij]FG{J¢T||eS}.

Thevolumeof a setS is the fraction of edges incident on it and is denotedi(8) = def G(S, V). The fraction
of edges leaving the set is denotedd§$) = def G(S,V\9).
Small-Set Expansion Hypothesis.

Problem 5.3 (SuaLL-Ser Expeansion (17,6)). Given a regular grapes = (V, E), distinguish between the
following two cases:

YEs: There exists a non-expanding &€ V with u(S) = § and®g(S) <7
No: All setsS C V with u(S) = § are highly expanding havings(S) > 1 -

4The technically more precise termdsnductance
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Hypothesis 5.4(Hardness of approximatingvaLL-Ser Expansion). For all > 0, there exist$ > 0 such
that the promise problerBviaLL-Ser ExpansioN (17, 6) is NP-hard.

Remark 5.5. It is easy to see that for the problemu&1-Ser Expansion (1, 8) to be hard, one must have
¢ < 7. This follows from the fact that if we randomly sample a Setontaining & fraction of the vertices
(and hence, having volum#for a regular graph), the expected fraction of edges crggbia set isi(1 — 6)
and hencé ®&g(S) = 1-6. However, for it to be possible that for all sets wit{8) = 6 havedg(S) > 1-n,
we must have < 7.

Definition 5.6. Let £ be a decision problem of distinguishing between two disjé@milies (cases) of
instances denoted Hyres, No}. For a given instancg of P, let Case(Z) denote the family to whicld
belongs. We say tha® is SSE-hard if for somen > 0 and allé € (0,7), there is a polynomial time
reduction, which starting from an instanGe= (V, E) of SuarLL-Ser Expansion(z, 6), produces an instande
of # such that

— 3S C Vwith u(S) = s anddg(S) <y =  Case(Z) = Ys.
—VScVwithu(S)=6,d(S)>1-n = Case(Z) = No.

For the proofs, it shall be more convenient to use the folhgwiersion of the SaLL-Ser Expansion
problem, in which we high expansion is guaranteed not onfys&is of measuré, but also within an
arbitrary multiplicative factor o#.

Problem 5.7 (SuaLL-Ser Expansion (7, 6, M)). Given a regular grapts = (V, E), distinguish between the
following two cases:

YEs: There exists a non-expanding &t V with u(S) = § and®g(S) < 7.
No: All setsS c V with x(S) € (. Ms) havedg(S) > 1- 1.

The following proposition shows that for the purposes ofvgihg that® is SSE-hard, it is sifficient to
give a reduction from @aLL-Ser Expansion (17, 8, M) for any chosen values @t M and for allé. We defer
the proof toSection A.2

Proposition 5.8. For all > 0, M > 1and all§ < 1/M, there is polynomial time reduction froBuarL-Ser
Expansion (%, 6) to SmaLL-SET Expansion(n, 5, M).

Invariance principle. The following theorem on the noise stability of functionseowa product prob-
ability space is an easy corollary of Theoren# 4n Mossel et al. JOO05. Recall thatl',(u) =

Py g, 1X >ty > t}, whereg, is the 2-dimensional Gaussian distribution with covaréanmtrix(; 'i)
andt > 0 is such thalP(x ).g, {x > t} = p.

Theorem 5.9. Lety > 0, p € (0,1) and letQ be a finite probability space. Then, there existé > 0 such
that the following holds: Every function: QR — [0, 1] satisfies either

(T, 8) <T,(Ef)+v.

or maxer Infi(T1—sf) > 7. (Here, T, and T, are the natural noise operators on(QR) with correlation
parametersgp and 1 — ¢ as defined above.)
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Below we define generalizations of the operatbtg and M used inSection 4 We show that these
operators can be viewed as somewhat extended versions mbigeoperators which randomize each coor-
dinate of a product space with some probability. The opesat@ define can be viewed as noise operators
with additional “leakage” property, in the sense that pathe output encodes the information about which
coordinates were randomized. The second eigenvalue @& tgators can be easily estimated by relating
it to the eigenvalue of the corresponding noise operator.

Random walks with leaked randomness. Suppose we have a collection of grags},.z with the same
vertex seV (and with the same stationary distribution). We consider (reversible) random walks defined
by this collection and compare their spectral propertid® flrst random walk is defined ah If the current
state isx*, we choose the next staxé by sampling a random index~ Z and then taking two random steps
from x! in G, i.e., we sample ~ G,(x!) andx® ~ G,(X). The second random walk is defined\drx Z. If
the current state isq, z*), we choose the next stat# (z*) by sampling a random neighbarof x* in G,
then we choose a random indBx~ Z and a random neighbof ~ G,2(x) according tdG,2. The following
lemma shows that these two random walks have the same noreiggmvalues. (Recall that we identify
graphs with their stochastic operators.)

Lemma 5.10. Let (Z, v) be a finite probability space and 1¢B,},c~ be a family of graphs with the same
vertex set V and stationary measureT hen the following two graphs have the same non-zero eafss.

— the graphE,.z G2 on V,
— the graph H on \& Z defined by
Hf(x,Z)= E E E f{(¥%72).

X-Gya (X)) 2~Z X~G ()

Proof. Let M be the following linear operator dm(V x 2Z),
Mf(x 2 = Z’]E E f(X,Z).

~Z X~Gz(X)
Notice that its adjoint operatdvl* (with respect to the inner product ip(V x Z)) is given by

M*f(x,2= E E f(X,Z).
(2 X~Gy(X) Z~Z (x.2)
(The operator above is the adjoint B, because each of the random walksare reversible and have the
same stationary measure.). The grapleorresponds to the operatbt*M, which has the same non-zero
eigenvalues aMM*. The operatoMM™ is given by
MM*f(x',Z)= E E E E f0&72).
7~Z %~Gy(X) X2~Gy(X) 2~Z
The subspacéf | Vx € V. E, f(x,2 = 0} C Ly(V x Z) is part of the kernel oMM*. Hence, all eigen-
functions with non-zero eigenvalue are in the orthogonahmlement of this space. The orthogonal com-
plement consists of all functions such thatf (x, zZ) does not depend an Let f be such a function and set
f(X) = f(x,2). Then,
MM f(x)= E E E f(&= E Gf(x).
( ) 2~Z x~G(x1) x2~G(X) ( ) ~z ° ( )
Thus, MM* acts on this subspace in the same waEa&2, which means that the two operators have the
same eigenfunctions (and eigenvalues) in this space. m]
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Noise graph with leaked randomness. Let {J_,T}E be thep-biasedR-dimensional boolean hypercube.
If we sample a random poirt from this space, theg = T with probability 8, independently for each
coordinate € [R].

Let (@, v) be a finite probability space. Fare {L, T}; andx € QR let My(x) be the distribution over
QR obtained by “rerandomizing” every coordinateofvherez has valueL. In order to sampled ~ My(X),
we samplex’ ~ Q, independently for every coordinate [R] with z = L. If z = T, then we copy the value

of xin this coordinate so that = x. Observe tha]EZN{l’T};e M; = T;fg is the usual noise graph @R with

correlation parametet, as defined previously in this section.
Consider the following stochastic linear operalidion Lo(QR, {L, T}E),

Mi(x2= E E f(X,2). (5.1)

z~u,T}§ X ~Mz(x)

The following lemma shows that the second largest singaarevofM is the same as the second largest
eigenvalue of the corresponding noise graph.

Lemma 5.11. Let f e Lo(QR, {1, T}E) and let M be as ir(5.1). Then,
IMFIZ < (E £)? + 8- (IfI* - (E £)?) .

Proof. We have|M f||2 = (f, M*M f) whereM* is the adjoint ofM. This operatoM*M is the same as the
(second) operator inemma 5.10for G, = M,. Hence,M*M has the same non-zero eigenvalueEas2.
From the definition ofM,, it is clear thatM§ = M,. Further, T = [E, M, is the noise operator oR with
correlation parameted. We conclude tha*M has second largest eigenvagieThe lemma follows from
Fact 2.1 O

6 Reduction between Expansion Problems

Let G be a graph with vertex s&tand stationary measure Our reduction map& to a graphH with vertex
setVR x QR for Q = [q] x {L, T}g. Here,R, q € N andg > 0 are parameters of the reduction. We impose
the natural product measure &n

£ if z=T

d Ya €
B ifz=1 L

P((.2) = {

As before, we describkl in terms of a probabilistic process defined ®ywhich generates the edge
distribution ofH. (SeeFigure 1for a more condensed description.) The process uses tlosviog three
auxiliary graphs (already introduced &2 and85):

— First, the noise graphy = Ti@fiv’v, which resamples independently every coordinate of a giren
tuple A e VR with probability ey. (Here,ey > 0 is again a parameter of the reduction. We think of
ey as rather small compared to other parameters.) This néiisetigely adds a copy of the complete

graph with weighty to G, which we assumed i84.2

— Next, the noise graphg = Tﬁg, which resamples independently every coordinate of a girauple
(x,2) € QR with probability 1— p. (Forx € [q]R andz € {L, T}E, we write (x,z) € QR to denote the
tuple obtained by merging corresponding coordinates aidz to an element of). In other words,
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we identify [o] Rx (L, T}[Fj andQR.) The correlation parametgrof T, is the most important parameter
of the reduction, because the grafhplays the role of a dictatorship test gadget in our reductiva
think of p as being close to 1.

— Finally, we consider the gragtt, on QR for Q = V x [q] andz € {1, T}%. For (A, X) € QF, the graph
M, resamples every coordinate in whizhas valueL.

Our reduction proceeds in three phases:

In the first phase, we sample a random vertex VR and take two independent random steps from
A according to the grapfiyG®R, i.e., we samplé3 and C from the distributionTyG®R(A). We end the
first phase by sampling two random permutatiagsand nc. The permutations are required to satisfy
the property that if we divide the domaiR][into contiguous blocks of sizR/k, then each such block is
permuted in place. We define the §gtof such permutations as

Mg:={neSr | Vje{0,....k=1}. mn({IRk+1,...,(+DRA}) = {IRkk+ 1,...,(+DR/}} .

This phase exactly corresponds to the reduction fremLS Ser Expansion to UniQue Games in [RS1(.

In the second phase, we sample a rand®dtuple (xa, za) in QR and take two independent random steps
from (xa, za) according to the grapig, i.e., we sampleXg, zs) and §&c, Zc) from Tq(Xa, za). This phase
corresponds to typical dictatorship test reduction (a&KKNIOQ7]).

In the third phase, we apply the grapht, and M,. to the R-tuples 6. xg) and C, xc) respectively,
to obtain @', xz) and C’, x;). The final step of this phase is to output an edge betwgel’, X5, zs) and
nc(C, X, zc). (For a permutationr of [R] and anR-tuple X, we denote byr(X) the permutation oX
according tar, so that £(X))i = Xi.)

We remark that the random permutationsandsnc in the first phase and the resampling according to
M in the third phase introduce symmetries in the grapthat dfectively identify vertices. In particular,
any two vertices invR x QR of the form @A, x,2) and (A, x,2) have the same neighbors k (i.e., the
distributionsH(A, x, 2) andH(x(a, x, 2)) are identical). This kind of symmetry has been used ingiratiity
gap constructions (se&Y05]) and hardness reductions (s&10Q).

The kind of symmetry introduced by thd, graph in the third phase seems to be new. In the third phase,
we dfectively identify vertices 4, x,2) and @', X, 2) if they differ only in the coordinates in whichhas
value L. Formally, the vertex4, x, 2) has the same distribution of neighbors as the verdéxx(, 2) if (A’, X')
is sampled fromM(A, X).

Remark 6.1 (Reduction to Wique Games with expansion) We note that the above reduction can also be
viewed as creating atdue Games instance with alphabet sizg For a vertex A, x, 2) € Vy andl € [q], let
(A, % 2) + | denote the vertexA, X', z), wherex; = x; +| modq for all i € [R]. We define an equivalence
relation onVy by taking @A, x,2) = (A, x,2) + | for all A,x,zand!| € [q]. Let H/[q] be a graph with one
vertex for each equivalence class of the above relatiorn,Ats each edge iy, we add an edge iH/[q]
between the equivalence classes containing the corresgpwertices ofVy. We claim thatH/[q] can then
be viewed as a kloue Games instance® as described iTheorem 3.2

We now describe the constraints for the edgesijfiq]. We identify each equivalence class with an
arbitrarily chosen representative element in it. Fan{ z2) € Vy, let [(A, X, 2)] denote the representative of
the equivalence class containing it. Consider an edggyibetween(rg (B', X5, z8)) and (nc(C’, X zc)).

5In the terminology used in the literature, one can say thagtiaphH is alabel-extendedjraph of a Wque Games instance
with alphabet sizeq].
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The Reduction

Input: A weighted graplG with vertex setv.
Parameters: R, g,k € N, andey, 3,0 > 0.
Output: A graphH = (Vy, Ey) with vertex seVy = VR x [q]R x {T, J_}E.

LetITx denote the set of permutations & jwhich permute each block of si®/k in-place i.e.

Mg :={neSr | Vje{O,...,k=1}. 7 ({iRk+1,...,>(+DRK}) = {iRk+1,...,(+DR/k}} .

The weight of an edge ik is proportional to the probability that the following prdidléstic process
outputs this edge:

— Reducing from SmaLL-SET ExpaNsiOoN t0 UNIQUE GAMES.

1. Sample amR-tuple of verticesA ~ VR,

2. Sample two random neighbaBsC ~ GER(A) of A.
3. SampleB ~ Ty(B) andC ~ Ty(C).

4. Sample two permutationss, ¢ € Ik

— Combination with long code gadgets.

6. Sample Xa, za) € QR, whereQ = [q] x {L, T}z.
7. Sample Xg, zg), (Xc, Zc) ~ Ta(Xa, Za).

— Redistributing the edge weights

7. Sample B, X;) ~ M (B, xg) and €', X)) ~ Mz (C, xc)
8. Output an edge betweéms(B', Xg. zs)) and(nc(C’. X5 zc))-

Figure 1: Reduction between expansion problems

Let 7g(B’, X, 28) = [nB(B’,x’B,zB)] +1g andnc(C, X, Zc) = [nc(c',x'c,zc)] +lc. Then the constraint
corresponding to this edge requires that an assignmentingapertices inH/[qd] to [g] must satisfy

F ([nB(B’, X, zB)]) +lg=F ([nC(C’, X, zc)]) +lc modq.

We note that the expansion propertiedbare inherited byH/[q], since any set of measurein H/[q]
is also a set of measuygein H. In the Yes case, each of the se&, ..., Sq mentioned inTheorem 3.5
will provide an assignment for the abovevidue Games instance, satisfying £ ¢ — o(e) fraction of the
constraints. In the dlcase, we will argue that each assignment corresponds tooh setasure Aq in H,
and the unsatisfiability of the instance will follow from tegpansion of the corresponding setgdn
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6.1 Completeness

Lemma 6.2. Let H = (Vy, Ex) be constructed from G= (V, E) as in the reduction irFigure 1 If there
is a set SC V satisfyingu(S) € [ﬁ ﬂLR] and ®g(S) < n, then there exists a partitionsS. .., Sq of V4
satisfying:

1. Forall (A, x,22eVyand Ll €[q], (A, x,2eS = (Ax 2+l €S, .
2. For each all Ie [q], cDH(sl)<2(1—p2+n+zgv)+(1—p2+n+zgv)2+“‘pﬂm—ﬂ(k).

Note that the first property, together with the fact tBaf. .., Sq form a partition also implies that for
alll € [d], u(S) = 5-

Proof. We first describe a procedure for assigning verticegro Sy, ..., Sq. This procedure assigns all
but 2-2M) fraction of the vertices, which we shall distribute arbilsalater. Let (A, x, 2) be a vertex iVy,
whereA e VR, x e [g]Randz e {T, L}R.

For all j € [K], we define the set®V; = {i e {((i-URk+1,...,IR/k} |z # L}. Let A(W,) denote the
multisetA(W;) = {A; lie WJ-}. We take,

j"=inf{j|IAW;) nS| =1}

If JA(W;)N S| # 1 foranyj € [K], then we do not assign the verteXk &, 2) to any of the se§y, ..., Sy. Else,
let Ai- be the unique element iy(Wj:) N S. We assign

(A X, 2) € Sy..

Note that the assignment to sets is determined only by theloadesi € [R] for which z # L. The first
property is easily seen to be satisfied for all the verticas dhe assigned, as the s{at‘t,-}je[k] are identical
for (A, x,2) and A, x, 2)+1, for anyl € [q]. The following claim proves that most vertices are indessigned

to one of the setSy, ..., Sq.
Claim 6.3. P(a x2)~vy, {|A(WJ) NS|l#1Vje [k]} < 2790

Proof. Note that over the choice of a random, &, 2) € Vy, the intersection sizegV, N S|,...,\Wxk N ]
are independent random variables distributed as BinomiizR(k). The probability that all of them are not
equal to 1, can then be bounded as

k
P {AW)NSIZ 1Y) = (1- 7 -u8- (- w8

(AX,2)~Vy
R k K 1\¢
< [1-- —= -@a-wr¥%| < [1-=]| .
( < TR LR ) ( 30)
The last inequality assumes thytk > 4 so that (1- k/r)¥* > 1/3. m|

We now bound the expansion of these sets. A random edge iebetiwo tuples of the form
(nB(B’, Xg, zB)) and(nc(C’, xg:,zc)), whererg andzc are two random permutations Iy andB’,C’ are
generated fronG®R as inFigure 1 For a fixed € [q], the expansion 08§, is equal to the following proba-
bility taken over the choice of a random edge

P{(rc(C. % 20)) ¢ S | (ne(B'. Xg. 26)) € S} = P{(C". % 2c) ¢ S | (B'. X, 28) € S1).
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Here we used the fact that the membership in &sét invariant under permutations Ifi. The following
claim analyzes the above probability.

Claim 6.4. P{(C".x.z) ¢ S | (B'. X 28) €SI} < 2(L—p? + 26y +1) + (L —p? + 26y + 1) + “‘pﬂ

Proof. Let {W(B) denote the multiseM/J(B) = {i € {(-DK/Re1, ..., KR} | (zg)i # L} and Iet{W.(C) be

et et
defined similarly. Defing = inf {j | |B’(WJ(B)) N S| = 1} when the set on the right is non-empty dnel 1
otherwise. Letj¢ be the analogous quantity far. In the cases wheyj, j& <Kk, let W}?) NS = {Bi’*} and

B B
wOns = {cigc}. We can bound the required probability by the probabilityt titherj, # ji or i, # iz
or (XC)| # 1.

P{(C % 2c) ¢S | (B X 28) € S} < P{ic # i | (B %5, 28) € S
+P{(je = ig) A (ic % i5) | (B X, 28) € S
+P{(je = Jg) A (ic = g) A ((xav #1)| (B %5.28) € SI}
< Plic+ izl ia<k + Plie+ia| (= ic) A (i <¥)

+P{OQ #1 | (0@ =1) A (iz =1¢))

In the second inequality above, we drop conditionings thairaelevant and use {A A B} < P {A| B}. We
now analyze each of the above terms separately.
The first term can be further split as

s<kl = P{j 5 <k}

5 <k +Pljz

P{j¢
To havej; > jg, it must be the case thtw(c) N S| # 1, while we also haveN(B) N S| = 1 by definition of

jg- Ifig ¢ W(C) this must be becausec)i; = L or C’ ¢ S. The former happens with probability-1p?

as we already have thatg)i; = T. The latter even happens with probability at mgst 2¢y, as it could be
due to the edgeag, C’B) gomg out ofS or one of the vertices being perturbed By. Combining, we get

a bound of (1- p? + 1 + 2ey) for the case wheif such thaC/, € S and the the events above must happen
for W(B) andi’, giving again a bound of (% p? + n + 2sy). The termP {JC k} can be bound
|dent|cally We then get

P{j¢ B<k = 2(1-p%+n+2ev).
We now consider the terih {ié #ig (j’é = jg) A (j’{3 < k)} For this to happen, the above events must
occur forboththe pair W(C)) and(i*C,Wj(?)). This gives
B

Plic #ip

(l5=lc) A (e <K} < @-p®+n+2ev)?

Finally, given ji = ji andiy = ig, the probability that Xg)iz # (X)i; is at most ﬁ This is
true because for any ((xp)i, (zg)i) and ()i, (zc)i) are same with probability? and unlform inQ with
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probability 1— p2. Also, for anyi, i = ig = i¢ in particular means thatg); = (z); = T. Conditioned on
this, we can bound the probabilitxy)i: # (X¢)iz as

1-p2) - (1-Yq) - B2 1-p?
P{0) # 0) | Gl = o) = 7} = (R <GP

Combining the bounds for the three terms proves the claim. m]

It remains to partition the vertices not assigned to any es#tsS;, ..., Sq. We simply assign any such
vertex @A, X, 2) to the seSy, . Itis easy to see th&y, . .., Sq still satisfy the first property. Since the measure

of the extra vertices added to each s&?, the expansion of each set increases by at md¥2 m|

6.2 Soundness

Let G be a graph with vertex s&tand stationary measure LetH be the graph obtained from the reduction
in Figure 1 The vertex set oH is VR x OR. Recall thatQ = [q] x {1, T}z. Let f: VRx QR — [0,1]. We
think of f as a cut inH (or convex combination thereof).

We define two symmetrizations d¢fas follows

f(A X 2) = E f(z(Ax2) and /(A X, 2) = f(n(A, X, 2)).

E
(A, X)~Mz(A.X)
By the symmetries of the graph, L
(f,HfY =(f,Hf) = (f’, Hf").
We write f4(x,2) = (A x,2) and consider the average (with noise)fgfover the neighbor of a vertex
AinGR,

= E E fl.
9A B~GR(A) B~Ty(B) B

We will apply the techniques oKIKKMOOQ7] to analyze the functionga. We first express the fraction of
edges that stay within the cut defined byn terms of the functionga.

Lemma 6.5.
(f,Hfy = E |[Tagall®.
A~VR

Proof. Using the construction dfi and the symmetry of’, we get
(fHfy= E E ( E E E f_é(xB,zB))z
A~VR (x2~QR * B~GR(A) B~Ty(B) (*8.28)~Ta(x2)

— 2
=E E ( E _E Tofy(x2
A~VR(x,z)~QR(B~GR(A) B~Tv(B) “ B( ))

2
= E E T X, Z
E (XMR( aga(x 2))

= E |[Tagal®. O
A~VR

We now show that for most tuples the functiongya have the same expectationliag. To this end, we
show thatEa (E ga)? ~ (E f)2.
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Lemma 6.6. )
E (E < (E ) + 8| f|1%.
E_(Eoga) < @2+ pIfI
Proof. LetQ = V x [g]. We have
2 — 2
E (E = E E E E f'(BxzZ
A~VR(QR gA) A~VR(B~GR(A) B~Tv(B) (x2~QR ( ))

— 2
< E E(Ef(Bxz Cauchy-Schwarz
A~VRB~GR(A) B~Ty(B) X ( z ( )) ( Yy )

— 2
= E (Ef'(AXx2). 6.1
(A’X%QR(Z (A x.2) (6.1)

Let M be the following stochastic operator bp(QR x {1, T}F),

Mh(A,x,z0) = E E h(A',X,2).
z~u,T}[F§ (A, x')~M5(A,X)

Recall thatf’(A, x,2) = Eg x)~myax f(A', X, 2). With this notation, the right-hand side (8.1) simplifies
to ||M f||2. Therefore,

2 — — —
E (Ega) <IIMfI? < (E f)?+BIIfI? < (E f)* +BIfI?.
A~VR Y QR

The second inequality uses thdt M has second largest eigenvatigsee emma 5.1). The last inequality
uses thaff is obtained by applying a stochastic operatorfon m|

The following lemma is an immediate consequence of the pmsviemma l(emma 6.9 and Cheby-
shev’s inequality.

Lemma 6.7. For everyy > 0O,

P Bz Ef+yVET) <2 I <o,
Proof. Lemma 6.6shows thatEa(ga — E f)? < 8iIf|2. HencePa{lga — E f| > ¥ VE T} < BIIfIZ/(2E f).
O

6.2.1 Decoding a bliQue Games assignment

The goal is decode from an assignmerit : VR — [R] that maximizes the probability

-1 -1
AR BGHA) AT ) BT, (@) oo (! (Fr(A)) = 7' (Fre(®)] - (6.2)

(The expression above is roughly the success probabilifiyeohssignmerfe for the Unique Games instance
obtained by applying the reduction froR$1J on G.)

As usual, we decode according to influential coordinate$ @fter symmetrization). More precisely,
we generate a assignmetby the following probabilistic process: For evefye VR, with probability
1/2, choose a random coordinate{ine [R] | Infi(T1_sga) > 7} and with probabilityl/2, choose a random
coordinate infi € [R] | Infi(T1sfy) > 7}. If the sets of influential coordinates are empty, we choose a
uniformly random coordinate irH].
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The following lemma follows immediately from the technigua [KKMOOQ7]. The reason is thg6.2)
is the success probability of the assignmErfor a Unioue Games instance defined ouR. For A e VR, the
function g is the average over bounded functioffs QR — [0, 1], whereB is a random neighbor oA
in the Uxique Games instance and where input coordinatesfgfare permuted according to the constraint
betweenA andB. More precisely,

x,2)= E E Ef - X, Z wherefi(x, 2) = E f(B',X,2).
9a(x.2) B~GR(A) B~Ty (B) & re(®) %) 82 = o B | )

Lemma 6.8. For everyr, § > 0, there exists a constant0 such that

E E P “LF(ra(A)) = n5X(F(7g(B c P {3i. Infi(T .
E B ermi s E g mk i {nA( (7a(A))) = m5 (F(ma( )))} > A~VR{ i(T1-sga) > 7}

Lemma 6.9. For everyv,B,y > 0, g€ N, andp € (0, 1), there existr, § > 0 such that

(FLHE) <T(Ef)+2y +v+5,2+ AII:/R{EH. Infi(T1_59a) > 7} .

Proof. Recall thatLemma 6.5shows(f, Hf) = Ea|[Tagall?. The operatoiT, is anR-fold tensor operator
with second largest eigenvalye The invariance principleTheorem 5.9 asserts that there exists > 0
such that|Tagall® < [ 2(Ega) +vifInfi(T1-s9a) < 7 for all coordinates € [R]. Together with,emma 6.7
we get

(f.Hf) = ElTagal® <T,2 (Ef+yVEf)+v+s2+ P 3 Infi(Tasgn) > 7}
STR(Ef)+2y +v+5A2+ A]R/R {3i. Infi(T1-s9a) > 7}
The second inequality above used tha{(-) is 2-Lipschitz. m|
Putting togetheLemma 6.8andLemma 6.9 we get the following lemma as immediate corollary.
Lemma 6.10. For everyB > 0, g € IN, andp € (0, 1), there existg > 0 such that either
(f,Hf) <T2(E f)+ 583,
or there exists an assignment KR — [R] such that the probability6.2)is at least’.
Proof. Choosingy = v = /3 in Lemma 6.9we get that for some, s > 0,

(f,Hf) = ElTagal® <T2(Ef)+48"3+ P _{3i. Infi(T1_s9a) > 7} .
A A~VR
Taking = ¢8*/2 for the constant in LemmalLemma 6.8&hen proves the claim. O

6.2.2 Decoding a very small non-expanding set i@

The following lemma is a slight adaptation of a resultiRH1(J (a reduction from &aLL-SeT Expansion to
Unique Games). We present a sketch of the proof$ection A.1
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Lemma 6.11. Let G be graph with vertex set V. Leta distribution on pairsugfles(A, B) be defined by
choosing A~ VR B ~ G®R(A) and thenA ~ Ty(A), B ~ Ty(B). Let F: VR — [R] be a function such that
over the choice of random tuples and two random permutatiansgg € Ik,

By B (e (Fea(A)) = ! (Flra(B))) > &

Then there exists a setSV with u(S) € [ 1&g, 2| satisfying®s(S) < 1 - 7.

Putting togetheLemma 6.1landLemma 6.1Qwe get the following lemma — the main lemma for the
soundness of the reduction.

Lemma 6.12. Let G be a graph with vertex set V. Let H be the reductiokigure 1 applied to G with
parameters Ry € N, ey, > 0andp € (0,1). The vertex set of H is®/x QR, whereQ = [q] x {L, T};.
Then there exists = £(B, g, p) > 0 such that either

Vi VRx QR [0,11.Vy > 0. (f,Hf) <T(Ef)+58Y3,

or there exists a vertex setSV withu(S) € [§, 2] anddg(S) < 1-{/k.

6.3 Putting things together

Theorem (Restatement 6fheorem 3.5 Forall g € N ande,y > 0, it is SSE-hard to distinguish between
the following two cases for a given graphH(Vy, En)

YEs: There exist g disjoint sets;S .., Sq C V4 satisfying for all I [],
w(S) = %4 and  ®yx(S) < &+ 0(e).

No: For all sets Sc Vy,
DH(S) > Dg-e/2) (U(S)) = Y/u(S)

wheredg1-./2)(u(S)) is the expansion of sets of volum(@) in the infinite Gaussian grap(1-¢/2).

Proof. The follows by proper choice of parameters for the reduciiohRigure 1 Giveng, ¢,y, we choose
the various parameters in the reduction as below:

- B= min{zy—go, s}, so that the error®/3 < y in Lemma 6.12and the errorlg—ﬁzﬂ = O(£?) in Lemma 6.2

— k= Q(log(Ys)), so that the 2 error term inLemma 6.3s O(&?).

— ey = &2 andn = min{e?, §}. Here,l = {(B.q.p) is the constant given byemma 6.12 The above
choices ensure that the error tegn+ 7, in Lemma 6.2areO(g?) andzy < é for applyingLemma 6.12

— k 38
- M= max{ﬁ—g,a}.
- R= b’%’ wheres € (0, i) is the one for which we intend to show a reduction frommS.-Ser Expansion
(7,6, M).
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Given and instanc& = (V, E) of SuaLL-Ser Expansion (77, 6, M), let H be the graph obtained from the
reduction inFigure 1with these parameters.

From Lemma 6.2 we get that the ¥s case of SiaLL-Ser Expansion (1,8, M) implies the ¥s case of
the above problem. On the other hdneimma 6.12gives that a contradiction to theoNtase of the above
problem produces a s&in G with measure betweeé and :/—‘}{ with @(S) < 1 - é By our choice of

parameters, this is a set of measure betwi@and Mé with expansion - % < 1 - 5. This contradicts the
No case of SiaLL-Ser Expansion (7, 6, M). O

Theorem (Restatement ofheorem 3.2 For every ge IN and every,y > 0, it is SSE-hard to distinguish
between the following cases for a giveriqQue Games instanced with alphabet size q:

YEs: TheUnique Games instancel/ is almost satisfiableppt(L/) > 1 — 2¢ — 0o(¢)

No: The optimum of th&nique Games instancel( is negligible, and the expansion profile of the instance
resembles the Gaussian gragi(l — £). More precisely, thdJniQue Games instanced satisfies
opt(U) < O(q/®=) + y and in addition, the constraint graph G @f satisfies

VS c V(G). DG(S) = Pg(1-g) (U(S)) = Y/u(s).

Proof. Let all the parameters for the reductionkigure 1be chosen as in the proof fdtheorem 3.5re-
placinge by 2¢. Let H be the graph generated by the reduction starting from aanneG of SmaLL-Ser
Expansion (77,6, M). Let U be the Unque Games instance defined on the grapiy[q], as described in
Remark 6.1

We claim that any partitiorsy, . . ., Sq of the vertices irH, satisfying the first property ihemma 6.2
corresponds to an assignment to the verticesljfig] and vice-versa. A partition is simply a function
F: Vy — [q]. Restricting the function to the representatives of eaplivalence class gives an assignment
for the vertices inH/[g]. Note that herd- also satisfies that’q{ x,2) = [(A. X, 2] +| = F((A,x,2) =
F ([(A, % 2)]) + 1. Similarly, given an assignmetit, we can extend it to all the vertices i by defining
F((AXx2)=F([(Ax2])+lif(Ax2=[Ax2]+]

In the Yes case, we construct an assignment to thaequk Gawmes instance?{ using the partition
Si1,...,Sq. The fraction of edge(SnB(B’, X5, z8), 1c(C, xg:,zc)) that are not satisfied is exactly the prob-

ability thatF (zs(B', X, 28)) # F (nc(C’, X zc)) for a random edge. However, this is exadfiy[q P+ (S))
which is at most 2 + o(e) by Theorem 3.5

In the No case, we note that we can construct a partiBen . ., Sq from any assignmeri. The fraction
of unsatisfied edges is agdiiiq PH(S) > 1 - q(I'1—+(Yq) + v) by Theorem 3.5Also, any se in H/[q]
corresponds to a s& in H with x(S) = u(S), whereS contains all the vertices for each classSn The
edges leaving andS are the same and hence their expansion is identical. m]
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A Further Proofs

A.1 Reduction from SMALL-SET ExpansioN t0 UNIQUE GAMES

In this section, we sketch a proof of the following slight ptilan of a result in[RS14.

Lemma (Restatement dfemma 6.1). Let G be graph with vertex set V. Let a distribution on pairtiples
(A, B) be defined by choosing AVR, B ~ G®R(A) and thenA ~ Ty(A), B ~ Ty(B). Let F: VR - [R] be a
function such that over the choice of random tuples and twdoa permutationsa, g € Ik,

BB (e (FCea(A)) = ! (Flra(B))) > &

Then there exists a setSV with u(S) € | g, 2| satisfying®s(S) < 1 - 1.

Let R = R/k and letAr, Bg denote tuples of lengtR’ generated by a a process similar to the used for
generatingd, B (which have lengthR). Using the reduction from partial to total unique gamesis1(Q, we
can show the following for completely random permutatianstéad of block-wise random) permutations
m. gt [R]— [R].

Claim A.1. Given a function F VR — [R] as above, there exists a function:R//R — [R’] such that

P_ {ni{(F'(nh(Ar)) = 15 {(F (r5(Br))} > /K

(Ar .Br) mpmp~Sr
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Proof. We construct a randomized functiéit which given anR'-tuple, embeds it as one of the blocks (of
sizeR’) in a randonmR-tuple, and then outputs a value according to the value of theR-tuple.

Formally, letAr_r, Br_r denote tuples of sizR — R generated by independently picking each pair of
coordinates to be an edge@with noisesy. For j € [K], let Ag_r +j Ag denote arR-tuple generated by
insertingAr after the ( — 1) block in Az_r. Letz') be a random _permutation i, which is equal to
identity on theJth block. To defineF’, we then generate a randojnAr_r, Br_r and fix |thobaIIy For
each mputAR/ we thenindependentlghooseT 4 € {Ar_r, Br_r], apermutatlonr ) , and defind~’ (AR/) as:

) @) (F (7D (Ta) +) Ar)) - -0RK () (F (xD(Ta) +j Ar)) € ((-DR/K, IR
F'(Ar) =
1 otherwise

Letra be the permutation which is, on thej™ block andzr(‘) elsewhere. DeflneB S|m|larly Note that both
np, g are distributed as random elementsrmf Condltloned ofla = Arr, Tg = Brr (or vice-versa),
the required probability is at least

P P P P (rXF(raArr +) AR))) = 15 (F(rs(Brr +; Br)))
] (Ar_r-Brr’) (Ar.Bg) 7AmB~Tlk
{

_ 1 1 1 A0

= & BB TR Faal®) = m5 (FraB)) = .

Since we hav@ s = Ar_r, Tg = Br_r Or vice-versa with probability /2, the required probability is at least
/2K m|

Let ¢’ denotes/2k.

To construct the se& C V, we proceed as irqS1(Q by defining the influence of a single vertex on the
output ofF. ForU € VR-Landv e V, let U ~ Ty(U) andd ~ Ty(v). Fori € R, we usel +; i to denote the
tuple Us,...,Ui_1,0,U;,...,Ur) € VR in which v is inserted at théth position. We define the function
Fu (v), which measures how often is the indexahosen byF, when applied to a random permutatioiof
U + 0.

Fu@) = (B Bl B P +i9) = ()

We shall need the following (slight variants of) statemegrtsved in RS1(. We include the proofs in
the appendix for completeness.

Lemma A.2 (Glorified Markov Inequality) Let Q be a probability space and let,X: Q — R, be two
jointly distributed non-negative random variables o¥&r SupposéE X < yEY. Then, there exists € Q
such that Xw) < 2yY(w) and Y(w) > EY/2.

Proposition A.3. Let F: VR — [R] satisfyP(z g Prrs {n,;l(F(nA(A))) = ngl(F(nB(é)))} > [/, and the
functions ky: V — [0, 1] be defined as above. Then,

1.
uﬁ? 1U]Fv Fu(v) = (A1)
2. forallU € ER-1,
E Ful) < (A.2)

ey R/ 9
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£ FudFwle A.3
(UW)eER -1 (vlvz)EE[ u()Fw(e2)] > (A3)

Assuming Lemmai.2 and PropositiorA.3, we can now complete the proof of Lemrad. 1

Proof. By (A.3) and @A.1), we have that

[Fu)Fw()] > & = & E [Fu(o1) + Fw(v2)]

E
(UW)eER - 1(vlv) €E (U,W)eER - 1(v1v )EE

Using LemmaA.2, this gives that there existit, W*) € ER -1 such that

[FU (v1)Fw: (v2)] = 2R' and E [Fu-(v)Fw-(v2)] = % (EFy- + EFw:)

(v1, (v1.02)€E

We now construct the s&randomly, by choosing eaete V to be inS with probability (Fy-«(v)+Fw-(v))/2.
We first check that the expected volume of the set is large.

Fu-(v) + Fw-(v) Fu:(v1) + Fw-(v2)
EuS) = E |- W
'U( ) U~V|: 2 (v1,02)€E 2
[M] (Usinga + b > abfor a,b € [0, 1])
(v1.02)€E 2
é//
Z R

Combining this with A.2), we get thatE u(S) € [4‘;,,

probability 1— expQ(IV])), u(S) € [BR,, eva]
To show that the expansion of the set is bounded away from Shaw a lower bound on the expected
number of edges that stay within the set, denote®(8; S).

WR,] Also, by a Chernfi bound, we have that with

EG(S,S) = E Fu-(v1) + Fw-(v1) | [ Fu-(v2) + Fw-(v2)
(v1.02)€E 2 2
- 1. 1. 2 )
= 2 ]F)eE Fu-(v1)Fw-(v2) + vl,E)eE[FU*(vl) +F2, (vz)]
1.
> 7, B Fu)Fw (@)
> 5 ElFu+Fw)/2l = §-Eu(S)

Thus, we have ,
E[G(S.S)- 5u(S)| > $EuS) > &

In particular, we get that with probability at IeaﬁR— over the choice oS G(S,S) = % - u(S). Hence,
with probability -5 W - e 2D we haVQu(S) € [SR,, SVR,] andG(S,S) > & - u(S). For such a set we have
Ds(S)=1-(G(S,S)/u(S) <1- — , which proves the claim. m|
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A.2 Stronger Small-Set Expansion Hypothesis

Proposition (Restatement dProposition 5.8 Forall n > 0,M > 1and all§ < 1/M, there is polynomial
time reduction fronBmaLL-SeT Expansion (%, 6) t0 SmaLL-SET Expansion(y, 6, M).

Proof. Lety’ = % The reduction is in fact, the trivial one which, given antameeG = (V, E) of SuaLL-
Set Expansion (77, 6) treats as an instance oM&.L-Ser Expansion (77,6, M). If we are in the ¥s case of
SmaLL-SET Expansion (17, 6), then there is a s@& with u(S) = 6 and®s(S) < 7 < 5. Hence, we are also in
the Yes case of SiaLL-Ser Expansion (17, 8, M).

For the other direction, assume that weroéin the No case of SiaLL-Ser Expansion (17, 6, M) and there
exists a se6 with u(S) € (% %) and®g(S) < 1 - 5. Then the fraction of edgds(S, S) stay insideS
is at least; - u(S). If u(S) > 4, then we randomly sample a sub&étof S with volumed. For each edge
(u,v) C S, the chance that(v) € S’ is 62/u(S)?. Then

EG(S,S) <1_(52/#(5)2)-77-#(5) <

0 0

]E(DG(S’) =1- 1-

Zl=

Then, we cannot be in thed\tase of SiaLL-Ser Expansion (177, 8). Whenu(S) < 6, we simply create a set
S’ by adding extra vertices 16 to increase its measure doThen,

G(S,S G(S,S -u(S
v6(s)=1- S8 4 _C69) g 1k g

A.3 Hardness of MintmuM L INEAR ARRANGEMENT aNd BALANCED SEPARATOR

Corollary A.4 (Hardness of BLancep Separator and Min Bisection). There is a constant ¢ such that for
arbitrarily small € > 0, itis SSE-hard to distinguish the following two cases for a given dr&p= (V, E):

YEs: There exists a cUS,V \ S) in G such tha(S) = 3 and®g(S) < & + 0(e).
No: Every cut(S,V \ S) in G, with(S) € (. 3) satisfiesia(S) > cVe.

Proof. The result follows immediately by applyingheorem 3.5with the givene and takingq = 2,y
o( V). In the No case we get that for all seBwith u(S) € (&.3), G(S,S) < T'1_¢/2(1/10) + o( Va)
u(S)(1 - c+/e) + o(+/e) for somec > 0. Thus®g(S) > ¢’ /e for somec’ > 0.

o Al

The following corollary uses the fact that in thestase ofTheorem 3.5we actually partition the graph
into many non-expanding sets instead of finding just one sath

Corollary A.5 (Hardness of Mumum LiINEAR ARRANGEMENT). It is SSE-hard to approximatéviinivum Lin-
EAR ARRANGEMENT t0 any fixed constant factor. Formally, there exists € such that for everg > 0, it is
SSE-hard to distinguish between the following two cases fonegigraph G= (V, E), with |V| = n:

YEs: There exists an ordering: V — [n] of the vertices such th& - [|7(u) — 7(v)I] < en

No: For all orderingsz: V — [n], Ey)-~£ [I7(u) — 7(v)[] = cVen
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Proof. Apply Theorem 3.3akingq = [2/¢],& = ¢/3 andy = ¢. In the Yes case, we pick an arbitrary
orderingr which orders elements in each of the s81s.. ., Sq contiguously. For these sets, all edges in the
set have length at mosfq and at most’ + o(¢) fraction of the edges leave the sets. Thus,

E [In(u) —#()]] < 2+&n+o(en) < en
(up)~E a

The proof for the M case follows from an observation dKSV0€], that for a graplG if every setS
with 11(S) € (3, 2) hasG(S, V \ S) > 6, then for any ordering: V — [n], E(y-e [Ir(U) — 7(v)]] > §-n (else
one can obtain a contradiction by optimally ordering thenpoand cutting randomly between the positions
n/3 and 21/3). Here G(S,V\S) > 1/3-T'1_,/6(1/3) > ¢’ Ve for somec’ > 0. Thus E()-e [|I7(u) — 7(v)I] >
£ -nforallz: V - [n]. O
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