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Abstract
Person re-identification (Re-ID) poses a unique chal-

lenge to deep learning: how to learn a deep model with mil-
lions of parameters on a small training set of few or no la-
bels. In this paper, a number of deep transfer learning mod-
els are proposed to address the data sparsity problem. First,
a deep network architecture is designed which differs from
existing deep Re-ID models in that (a) it is more suitable
for transferring representations learned from large image
classification datasets, and (b) classification loss and veri-
fication loss are combined, each of which adopts a different
dropout strategy. Second, a two-stepped fine-tuning strategy
is developed to transfer knowledge from auxiliary datasets.
Third, given an unlabelled Re-ID dataset, a novel unsuper-
vised deep transfer learning model is developed based on
co-training. The proposed models outperform the state-of-
the-art deep Re-ID models by large margins: we achieve
Rank-1 accuracy of 85.4%, 83.7% and 56.3% on CUHK03,
Market1501, and VIPeR respectively, whilst on VIPeR, our
unsupervised model (45.1%) beats most supervised models.

1. Introduction
Person re-identification (Re-ID) is the problem of match-

ing people across non-overlapping camera views, which
typically arises in a surveillance application. Despite the
best efforts from the computer vision researchers, it re-
mains an unsolved problem [67]. Earlier works focus
on either designing view-insensitive feature representations
[8, 57, 23, 33, 65, 36], or learning an effective distance met-
ric [56, 34, 28, 3, 61, 63, 35], or both [11, 26]. Recently,
inspired by the success of deep neural networks, particu-
larly deep Convoluational Neural Networks (CNNs) in var-
ious vision problems [22, 44, 48, 12], deep Re-ID models
started to attract attention [25, 58, 6, 1, 43, 49, 50, 29, 4, 55].

However, unlike other visual recognition problems, es-
pecially closely related ones such as face verification, only
limited success has been achieved so far by deep Re-ID
models: they only marginally improve over the hand-crafted
feature + metric learning based alternatives on large datasets
such as Market1501 [66], and are outperformed on small
datasets such as VIPeR [10]. Lack of large labelled train-
ing set is an obvious reason. Collecting matching pairs of
person images in a camera network is a notoriously diffi-
cult task [64]. As a result, even the largest published Re-
ID datasets only have modest sizes: 1,360 unique identities

in CUHK03 [25] and 1,501 in Market1501 [66]. In con-
trast, the widely used LFW dataset [17] for face verification
has 5,749 identities – faces of celebrities are much easier
to collect and label than passers-by captured by a surveil-
lance camera network. Importantly, one could easily col-
lect a much larger auxiliary dataset of faces to assist in the
model learning: one of the state-of-the-art results on LFW
was obtained by pretraining the deep model on an auxiliary
face dataset of 200M images of 8M identities [41].

Given insufficient training samples, transferring feature
representations learned from a larger auxiliary dataset be-
comes necessary. Indeed, transfer learning has been con-
sidered in most existing deep Re-ID works. In particular,
given a small Re-ID dataset with only a few hundreds of
labelled identities, existing models typically pretrain with
larger Re-ID datasets followed by fine-tuning on the target
set, with a notable exception of [55] which learns a sin-
gle model jointly across multiple Re-ID datasets before the
fine-tuning in each. In other words, only Re-ID datasets are
considered as auxiliary datasets – hardly ideal because all
Re-ID datasets published so far are relatively small. Impor-
tantly the domain gaps between different Re-ID datasets are
often large due to the drastically different camera viewing
conditions; designing the most suitable method to prevent
negative transfer is thus a challenging task [40].

We argue that to transfer knowledge that is generalis-
able to any Re-ID dataset, we should go beyond existing
Re-ID datasets and consider much larger sources. An obvi-
ous choice would be the ImageNet dataset [5] which con-
tains millions of images of thousands of object categories
and has been shown to be useful as an auxiliary dataset for
model pretraining for a variety of visual recognition tasks
[7]. However, transferring knowledge from ImageNet to
a Re-ID dataset has a number obstacles. First, the object
categorisation task of ImageNet is very different from the
object instance verification task of person Re-ID. Second,
the inputs to a Re-ID model are person detection images
in CCTV surveillance videos, which have very different as-
pect ratios (people are typically upright) and much lower
resolutions. This is the reason why most recent deep Re-ID
models [55, 4, 50, 29, 42] have very different network ar-
chitectures compared with those of the models excelled on
the ImageNet object categorisation task, e.g. having smaller
filter size, and being shallower with most pooling layers re-
moved. Such models are designed for training from scratch
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on Re-ID datasets, and are unsuitable for knowledge trans-
fer from ImageNet.

The proposed deep Re-ID network architecture in this
work is designed specifically for transferring generalisable
feature representations learned from ImageNet to Re-ID
datasets. To this end, we make two key design choices: (1)
The base network structure is a standard GoogleNet [48]
which has been optimised for ImageNet. (2) Two losses
are combined. These include an identity classification loss
which is chosen because the model needs to be pretrained
on the auxiliary ImageNet dataset for the object classifi-
cation task. The other loss is a verification loss, which
aims to learn a feature representation for matching person.
We argue that by combining the two losses, our model can
bridge the large task discrepancy between object categori-
sation and object instance verification, as well as the large
domain gap between ImageNet and Re-ID datasets.

Apart from having different architecture and training ob-
jectives compared to existing deep Re-ID models, the pro-
posed model also has the following distinctive features. (1)
Since all target Re-ID datasets are relatively small given
millions of model parameters, avoiding overfitting is of
paramount importance. Dropout is a widely adopted tech-
nique for overcoming overfitting. In our model, two dif-
ferent dropout strategies are employed for the two different
losses. (2) We propose a two-stepped fine-tuning strategy
after the model is pretrained due to the unique combina-
tion of the two losses. Compared to the conventional one-
stepped fine-tuning strategy, it is much more effective as
shown in our experiments (see Sec. 5.3).

Learning a Re-ID model given a set of unlabelled data
is a more challenging task, but also has more practical uses
in real-world applications – a Re-ID system is typically in-
stalled for a camera network monitoring a large public space
(e.g. a train station or a shopping mall) which can easily
consist of hundreds of cameras. Even labelling a few hun-
dreds people across all camera views is infeasible. How-
ever, person detection images can be readily obtained in
each view using a person detector, resulting in an unlabelled
Re-ID dataset. Transfer learning from labelled source data
to unlabelled target data is an unsupervised1domain adapta-
tion problem which has not been studied by existing deep
Re-ID models. In this work, a novel co-training based un-
supervised transfer learning model is proposed. Specifi-
cally, the model alternates between a graph regularised dis-
criminative dictionary learning model and a soft-label self-
training deep model, with the former providing the soft-
labels for the latter and the graph regularisation provided
in the opposite direction. We show that such a deep/non-
deep hybrid co-training framework can effectively prevent
model drift and yield Re-ID performance that is better than

1By ‘unsupervised’, we mean target-unsupervised domain adaptation,
a definition adopted by [9, 62, 32].

most existing supervised learning based models.

2. Related Work
Deep Re-ID model Existing deep Re-ID models [25, 58,
6, 1, 43, 49, 50, 29, 4, 55, 42] differ significantly in their
network architectures, which are largely determined by the
training objectives/losses. Specifically, most existing works
cast the Re-ID problem as a deep metric learning problem
and employ pairwise verification loss [58, 1, 43, 49, 50, 42]
or triplet ranking loss [6, 29, 4], or both [52]. Correspond-
ingly the overall network architecture is a Siamese CNN
network with either two or three branches for the pairwise
or triplet loss respectively. None of them uses an identity
classification loss with the only exception of [55] which has
an one-branch architecture. In contrast, our model has a
Siamese two-branch architecture with an identity classifi-
cation loss for each branch and pairwise verification loss
across the two branches. This architecture is similar to the
one used for deep face verification [47]. Combining the two
loses in [47] aims to exploit the strengths of the two losses:
the classification loss pulls different classes apart and the
verification loss makes the intra-class distance small. In
contrast, we choose the combination so that the model can
be pretrained on the ImageNet object classification task –
among the two losses the classification loss makes sure that
the ImageNet-learned representation is relevant whilst the
verification loss guides the adaptation towards the person
Re-ID dataset/verification task.

Apart from the overall architecture (one, two, or three
branches), existing models also have very different base
network structure (the convolution/pooling layers in each
branch). It is noted that most recently proposed deep Re-ID
models [52, 50, 29, 4, 55, 42] have base networks tailor-
made for the Re-ID problem, that is, they take into con-
sideration the smaller input image size and different (non-
square) aspect ratio of person detection images in a Re-ID
dataset. In particular, the filter-size/stride step are typically
much smaller with fewer pooling layers, compared to the
ImageNet-oriented GoogleNet [48] or VGG Net [44], so
that they can be learned from scratch using Re-ID datasets
alone. However, this simplified base network architecture,
together with the lack of the classification-verification loss
combination mean that the existing models are unable to
exploit the rich transferable feature representation learned
from ImageNet.
Dropout strategy Dropout [46] is a widely adopted tech-
nique in deep learning to counter overfitting, a problem that
is particularly acute in Re-ID due to the small data size.
Given the two losses, we propose to use different dropout
strategies for each loss-associated layers. Specifically, the
standard random dropout [46] is deployed for the classifi-
cation loss layers, whilst for the pairwise verification loss
layers, we introduce pairwise-consistent dropout, that is,
each pair of compared training data points share the same



dropout mask. We show experimentally that such a modifi-
cation can bring about 3% improvement in Re-ID accuracy.
Deep transfer learning Transfer learning or domain
adaptation is an extensively studied topic [39]. Transfer
learning is widely used for deep learning when a target task
is short of labelled data. The most common deep trans-
fer learning strategy is fine-tuning [60]: first train a base
network using a large source data and then copy the first
n layers to the corresponding layers of the target network,
followed by randomly initialising the remaining layers and
finally fine-tune only them or all layers. A systematic study
is presented in [60] which examines how transferable fea-
tures of different layers are between the source and target
domains. It concludes that the generalisation ability dimin-
ishes when the discrepancy between the source and target
tasks increases. Note that the source and target tasks consid-
ered in [60] were classifying different subsets of ImageNet,
so the task/domain discrepancy studied is nowhere near as
big as in our ImageNet→ Re-ID transfer setting. As a re-
sult, the conventional one-stepped fine-tuning strategy be-
comes inadequate. To overcome the large task discrepancy
between classification and verification, we propose a two-
stepped fine-tuning strategy whereby the network is first
fine-tuned with the classification loss only, followed by fine-
tuning with both classification and verification losses.

Note that beyond fine-tuning, several recent works take a
multi-task joint training approach [30, 9, 62, 31, 32, 55], one
of which is designed specifically for Re-ID [55]. Most of
them aim to minimise the discrepancy between the marginal
[30, 9, 62] or joint [31] distributions of the source and tar-
get data, e.g., by introducing a cross-domain loss that is de-
signed to blur the domain boundary [9]. However, these
works assume that the tasks are the same or similar in
the two domains, e.g., classifying the same object classes
shared by two datasets. They are thus unsuitable when the
source and target domains have completely different tasks,
in our case object categorisation in ImageNet and person
matching in Re-ID – aligning the data distributions of the
two datasets would not make any sense. The joint learning
+ multi-task learning + fine-tuning based deep Re-ID model
in [55] is clearly not suitable for transferring from ImageNet
to Re-ID with the different source and target tasks.
Deep unsupervised domain adaptation In theory, any
unsupervised deep learning methods can potentially be ap-
plied for domain adaptation when the first n layers are pre-
trained on the source data. These include auto-encoder [13]
and dictionary learning [19] which can be implemented as
neural network layers and integrated as the later/top lay-
ers of a CNN network [53]. The main limitation of an
unsupervised model is that it cannot learn discriminative
features. Hence soft-label self-training based deep unsu-
pervised learning has become popular recently [16]. In
this work, a novel co-training [37] based unsupervised do-

main adaptation method is proposed to overcome the main
drawback of self-training based methods, i.e., model drift
[45]. Combined with the proposed two-stepped fine-tuning
method, this gives us a powerful deep unsupervised Re-ID
model that outperforms not only alternative unsupervised
models, but also most supervised models which use train-
ing labels. Recently a number of deep unsupervised trans-
fer learning models are proposed [9, 62, 32]. Nevertheless,
the domain gap between different Re-ID datasets is sig-
nificant and cannot be overcome by just aligning the data
distributions, making them less effective than the proposed
co-training based unsupervised learning method, as demon-
strated in our experiments.
Our contributions are as follows: (1) A new deep Re-
ID network architecture is designed for transferring fea-
ture representation learned from large image classification
datasets. It is unique in its loss combination and dropout
strategy. (2) A two-stepped fine-tuning strategy is fur-
ther developed for deep transfer learning. (3) A novel co-
training based unsupervised domain adaptation method is
proposed for unsupervised Re-ID. (4) We present compre-
hensive experimental evaluations on 5 benchmarks. Our ex-
periments show that the proposed models outperform the
state-of-the-art deep Re-ID models by a significant margin.

3. Deep Re-ID Model
3.1. Network Architecture
Overview The overall network architecture of the pro-
posed deep Re-ID model is illustrated in Fig. 1. It is es-
sentially a two-branch Siamese network that takes a pair
of input person detection images as input and aims to
learn a deep representation of person appearance that is
identity-discriminiative so that images of the same per-
son can be matched correctly whilst visually similar peo-
ple can be distinguished. The model has two training
tasks/objectives/losses: an ID classification loss and a pair-
wise verification loss. As a result, the network contains
four parts (see Fig. 1): a base network shared by the two
branches, a loss-specific dropout unit, an ID classification
subnet, and a pairwise verification subnet. The two main
branches of the network have the same base network archi-
tecture and share their parameters, hence the name Siamese.
After feature vectors are computed for the input images
using the base network, they are fed into a loss-specific
dropout unit so that either a pairwise-consistent dropout or
the standard random dropout is applied to the features. Af-
ter that, the pairwise verification subnet takes a pair of fea-
tures and learn to distinguish whether they come from the
same person or not. In the meantime, the person ID classi-
fication subnet learns to classify each feature output of the
base network into a class corresponding to the input image
person ID.
Base network The base network is a CNN that learns a
deep representation from the input images. Various CNN
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Figure 1. The proposed deep Re-ID network architecture.

architectures can be considered. In this paper we use
GoogLeNet [48]. This is different from the base networks
used by most existing deep Re-ID models. We deliberately
choose an existing network that is competitive in the Ima-
geNet classification benchmark, and has been widely used
in many other vision problems, rather than designing a sim-
plified bespoke Re-ID network. This is because we aim to
use the network to transfer generalisable feature represen-
tations from the much larger ImageNet dataset. Among the
recently proposed networks that achieved good classifica-
tion performance on ImageNet, GoogLeNet is chosen over
VGG net [44] due to the fact that it has much smaller pa-
rameter size2.
Loss specific dropout unit Given an input image x, the
base network produces a D-dimensional vector of output y.
It will then enter a loss specific dropout unit where the oper-
ation depends on whether the output of the unit ỹ is fed into
the classification subnet subject to the classification loss or
the verification subnet with a pairwise verification loss. For
the former, the standard dropout operation [46] takes place.
Concretely it will randomly set part of the elements of y to
zero. Formally, we have

ỹ = r ∗ y (1)

where the D-dimensional vector r is a dropout mask and
∗ denotes an element-wise product. Each element of r is
a random variable sampled following a Bernoulli process,
i.e., the d-th element rd ∼ Bernoulli(p) and has a proba-
bility of p to be 1. Given a different image in a mini-batch,
a different random dropout mask will be applied and the
output is then fed into the classification subnet.

Such a completely random dropout operation is never-
theless not appropriate when the output ỹ is to be fed into
the verification subnet. In particular, as to be detailed later,
given a mini-batch of training images, each pair of im-
ages will have their output vectors ỹi and ỹj subject to an

2We found that the residual networks [12] have a similar performance
as GoogLeNet when used as the base network in our model.

element-wise subtraction operation in the subnet. There-
fore, if two randomly generated dropout masks ri and rj
are applied, the difference of two vectors could be caused
by the different random masks rather than the appearances
of the two compared people – a clearly undesirable effect.
To address this problem, we introduce a pairwise-consistent
dropout for the verification subnet, that is, we make sure
that ri = rj when the i-th and j-th images are compared in
the verification subnet. Interestingly, although it is intuitive,
we could not find any published work that discuss this need
to design different dropout strategy for layers used as input
to pairwise or triplet losses. For example, all relevant codes
we could find on GitHub use the standard random dropout.
We show in our experiments that by adopting the pairwise-
consistent dropout for the verification loss, a 3% improve-
ment can be obtained compared to the random dropout.
Person ID classification subnet The person ID classifica-
tion part learns a softmax classifier with a cross-entropy loss
that distinguishes different people from each other. After
the features are extracted from the base network and the
random dropout is applied, a softmax layer with N nodes
are then connected, where N is the unique person number
in the training set.
Pairwise verification subnet The pairwise verification sub-
net first takes two feature vectors ỹi and ỹj as input. They
are first fused with element-wise subtraction. Subsequently,
the difference vector is passed to a rectified linear unit
(ReLU). After a fully connected (FC) layer, the last layer
of the verification network is a softmax layer with two out-
put nodes, corresponding to whether or not the input image
pair contains the same person. Note that for pairwise ver-
ification, the margin based contrastive loss is much widely
used beyond Re-ID [47]. However, for Re-ID, with a few
exceptions [50, 51], this subtraction + binary cross-entropy
loss is more popular [52, 58, 49]. We find empirically that
using the contrastive loss leads to worse performance in our
model. It is also worth pointing out that more sophisticated
differencing operations have been developed to deal with



the mis-alignment issue of compared person detection im-
ages [25, 1]; however they cannot be applied this late in our
network architecture after a forward-pass of the GoogLeNet
base network. A full-blown Mahalanobis metric learning
loss [42] could also be deployed in our verification subnet,
but that will sacrifice the testing efficiency as the model can-
not be used as SIR (single image representation) [52] model
any more.
3.2. Model Training and Testing

Our network is too big to train effectively from scratch
using existing person Re-ID datasets. Transfer learning us-
ing other datasets as auxiliary data is thus necessary. The
deep transfer learning models developed in this paper will
be described in the next section. Here we focus on the test-
ing part, that is, after the model is learned, how to use it
for matching a probe image against a set of gallery images
in a test set. Note that since the test people have different
identities as the training people, the ID classification subnet
is redundant during testing. The verification subnet could
potentially be used to generate a matching score – given the
probe image and each gallery image, they can be fed into
the network to compute the same-identity/different-identity
score. However, by doing so the model becomes a cross im-
age representation (CIR) model [52], which means that the
input image pair have to go through the FC layer in the sub-
net and the softmax loss layer. Instead, we intend to use our
model as a SIR model, that is, we pre-compute the output
vector of the base network y for the gallery; and when any
probe comes in, we compute its feature output and compare
with the gallery output vectors using a simple Euclidean dis-
tance, which is about 3 magnitude faster in our model than
entering the verification subnet and computing the softmax
score as the distance. This testing procedure is clearly more
suitable for real-time applications than those of the alterna-
tive CIR models [25, 52, 43, 50, 29, 42].
4. Deep Transfer Learning for Re-ID

We consider two transfer learning settings: supervised
when the target Re-ID dataset is labelled with person iden-
tities, and unsupervised when it is unlabelled.
4.1. Supervised Transfer Learning
Staged transfer learning As in existing Re-ID works,
there are two scenarios under the supervised setting: the
target Re-ID dataset is ‘large’, i.e. having more than 1,000
identities, for instance CUHK03 [25] and Market1501 [66],
and it is ‘small’ with less than 1,000, e.g. VIPeR [10].
Existing deep Re-ID models are trained from scratch for
the large datasets, i.e., without transfer learning. For the
small datasets, the models are typically pretrained on large
datasets (e.g., CUHK03+Market1501), and then fine-tuned
on the small target dataset. We call this an one-staged trans-
fer learning method based on an one-stepped fine-tuning
strategy.

With the unique combination of classification and veri-

fication losses and the corresponding two subnets, transfer
learning from ImageNet is conducted for our model regard-
less of the target dataset size. Specifically, for a large Re-ID
dataset, the transfer learning is one-staged, i.e., ImageNet
→ Re-ID dataset, whilst two-staged transfer learning is re-
quired when the target dataset size is small, i.e., ImageNet
→ large Re-ID datasets → small Re-ID dataset. Impor-
tantly, in each stage, we develop a two-stepped fine-tuning
strategy for more effective transfer learning compared with
the conventional one-stepped one.
Two-stepped fine-tuning This strategy is described
based on the second stage of the small dataset scenario,
i.e. large Re-ID datasets→ small Re-ID dataset. The same
strategy is adopted for the ImageNet→ large Re-ID dataset
transfer learning.

Suppose we have a large source Re-ID dataset3 S and a
small target dataset T withNs andNt unique person identi-
ties respectively. Given an initial model trained using S, our
goal is to transfer the learned feature representation from S
to T . Note that the softmax ID classification layer in the ini-
tial network cannot be re-used because the Ns and Nt iden-
tities have no overlap. The original Ns-nodes softmax layer
thus has to be replaced with a randomly initialised one with
Nt nodes. In the first step of the fine-tuning, we freeze all
other layers and train only the newly added softmax layer,
i.e., the classification subnet. Freezing the other parts of net-
work (base network + verification subnet) is critical for this
stage of training: without locking them, the randomly ini-
tialised parameters of the softmax layer will backpropagate
harmful gradients to the base network, generating ‘garbage
gradients’ that will derail the model adaptation. After the
softmax layer is fully trained so that the learned features
from S can do a decent job in classifying the Nt new iden-
tities, in the second stage we fine-tune the softmax layer
as well as all other layers of the network using the target
dataset T . We will show in our experiments (see Sec. 5.3)
that the proposed two-stepped fine-tuning strategy is much
better than an one-stepped one.
4.2. Unsupervised Transfer Learning

Now theMt target training images of a unknown number
of identities are unlabelled. For simplicity of symbols, we
assume they are collected from two camera views denoted
as A and B respectively. Let’s denote the training set as
X = {Xa,Xb}, where Xa = {xa1 , ..., xa

Ma
} contains Ma

images in view A, while Xb = {xb
1, ..., xbMb

} for the Mb

images in view B, we thus have Mt = Ma + Mb. For
each image x, an D-dimensional feature vector y = φ(x) is
computed by the base network to represent its appearance,
where φ denote the mapping function learned by the base
network using the source dataset S. We wish to learn a
better network using T with Mt unlabelled images yielding
an updated mapping function φ̃.

3If more than one are used, they are simply merged into one.



Self-training One solution to the unsupervised transfer
learning problem is to use the same two-staged supervised
transfer learning model with two-stepped fine-tuning. In-
stead of using the identity labels to set the training objec-
tives, we use soft (pseudo) labels. Specifically, for each
of the Ma images from camera A xai ∈ Xa, we assign it
with a unique class label. After that, each of the Mb images
from cameraB is assigned with the same label as its nearest
neighbour from A based on ||φ(xai ) − φ(xb

j)||2. Note that
these labels clearly do not correspond to the real identity la-
bels: for a start, there could be multiple images per person
in each camera, so there are less thanMa identities; second,
the nearest neighbour can only give a visually similar per-
son which by no means is always the same person. These
soft labels are thus highly noisy. In a self-training strategy,
the fine-tuned network will produce an updated mapping
function φ̃ which will be used to generate another set of
soft labels for retraining. Model drift is thus a big prob-
lem: the errors in the soft labels will be propagated with the
iterations and quickly magnified.
Co-training One solution to the model drift problem is
co-training [2, 54]. It was first designed for using the same
model with two sufficient and yet conditionally independent
views (feature representations) as inputs to label some un-
labelled instances for each other [2]. Since in most problem
settings, such views do not exist, in practice one often has
a co-training style algorithm whereby two different mod-
els with the same features or even same model with same
feature but different parameter settings are used [54]. The
key is that both models need to be somewhat effective and
importantly complementary to each other.

In our case, we have already got the self-training deep
CNN as one of the two models. The other unsupervised
model needs to be of similar effectiveness yet complemen-
tary. To this end, we choose a graph regularised subspace
learning model [15, 59]. Such a model aims to learn a dis-
criminative subspace where the data distribution is smooth
with regard to a K-nearest neighbour (KNN) graph con-
structed in the input feature space. In such a learned sub-
space, data clusters can be formed to provide the soft-labels
for the self-training deep model. In the meantime, it uses
the deep model learned feature vector y = φ(x) as model
input as well as to construct the graph for regularisation.

Formally, given our pretrained deep Re-ID model, we
obtain a feature matrix from the base network output Y =
[Ya, Yb] ∈ RD×Mt , where Ya = [ya

1 , ... ,y
a
Ma

] ∈
RD×Ma and Yb = [yb

1, ... ,y
b
Mb

] ∈ RD×Mb . We aim
to learn a subspace defined by a dictionary D and a new
representation Z in the subspace. D and Z can be estimated
jointly by solving the following optimisation problem:

(D∗,Z∗) = min
D,Z
‖Y −DZ‖2F + λΩ(Z) s.t. ‖di‖22 ≤ 1,

(2)
where the first term is the reconstruction error evaluating

how well a linear combination of the learned atoms can
approximate the input data, and ||.||F denotes the matrix
Frobenious norm. Ω(Y) is the graph regularisation term
that is weighted by λ:

Ω(Z) =
∑
ij

Wij‖zi − zj‖22. (3)

where the graph is encoded by an affinity matrix W ∈
RMt×Mt for Mt data points where Wi,j 6= 0 only when yi

and yj are from two different camera views and are nearest
neighbours. With the learned new representation Z, we can
generate soft labels for the unlabelled target data, that is, the
cross-view nearest neighbours are obtained by ||zai − zbj ||2
instead of ||φ(xai )−φ(xb

j)||2. With these soft-labels, another
round of self-training of the deep model is carried out and
the updated base network then produces input vectors and
new graph for the subspace learning model. This iterative
process normally converges after 2-3 iterations.

5. Experiments
5.1. Datasets and Settings
Datasets Five widely used datasets are used including
two large datasets and three small ones. CUHK03 [25]
contains 13,164 images of 1,360 identities from 6 cameras.
We use the 20 standard training/test splits as provided in
[25]: 100 identities are randomly selected for testing and
another 100 for validation, whilst the remaining 1160 for
training. Both manually cropped and automated detected
person images are used for our evaluations. As in most pre-
vious works, we adopt the single-shot setting. Market1501
[66] contains 32,668 detected person bounding boxes of
1,501 identities from 6 cameras. We use the training and
test splits provided in [66] under both the single-query (SQ)
and multi-query (MQ) evaluation settings. VIPeR [10] con-
tains 632 identities and each has two images in two views
with distinct view angles. The 632 identities are randomly
divided into two equal halves, one for training and the other
for testing. The training process is repeated for 10 times
with different training/testing splits and the averaged per-
formance is reported. PRID [14] extracts pedestrian images
from recorded trajectory video frames. It has two camera
views, each contains 385 and 749 identities, respectively.
Only 200 identities appear in both views. In each of 10
single-shot data split, 100 out of that 200 people are chosen
randomly for training, while the remaining 100 of one view
are used as the probe set, and the remaining 649 people’s
images of the other view are used as gallery, which thus
includes the 100 people in the probe set. CUHK01 [24]
contains 971 individuals captured from two camera views.
There are two settings; the first is the single-shot setting,
that is, one image for each individual in each camera view
is randomly selected for both training and testing, and 485
identities are used for training and the other 486 for test-
ing. Under the other setting only 100 identities are used for



testing with the rest 871 for training. We use both settings
under the supervised setting and only the first setting is used
under the unsupervised setting for fair comparisons with the
published results.
Evaluation metrics We use the Cumulated Matching
Characteristics (CMC) curve to evaluate the performance
of Re-ID methods. Due to space limitation and for easier
comparison with published results, we only report the cu-
mulated matching accuracy at selected ranks in tables rather
than plotting the actual curves. Note that we also use mean
average precision (mAP) as suggested in [66] to evaluate
the performance on Market-1501.
5.2. Implementation Details

We use the Caffe [18] framework to implement our mod-
els. In this section we will give some implementation details
on input data organisation, detailed structure of the verifica-
tion and classification subnets and training settings.
Input data organisation As described above, our net-
work has two different tasks/training objective: the ID clas-
sification task and pairwise verification task. There are
different ways to organise the training images into mini-
batches for model training. The simplest way is to organ-
ise the training images into pairs. Specifically, one could
randomly select positive and negative image pairs and pack
them into one minibatch. However, this is very inefficient
– GPU memory is often the hardware bottleneck limiting
the number of pairs one could include in each minibatch.
To overcome this problem, we follow the minibatch gener-
ation scheme introduced in [6] which organises the mini-
batch according to person identities and generates pairs dy-
namically. In particular, we keep only one set of base
network parameters in the GPU memory and organise our
minibatches as follows: In each iteration, we randomly se-
lect K person; for each person we then randomly select M
images. TheseK∗M distinct images are loaded to form one
minibatch. For pair generation, we first exhaustively gener-
ative all the positive and negative pairs according to person
identity and then randomly duplicate the positive pairs till
the numbers of the positive and negative pairs are equal, i.e.,
balanced. In this way, much more image pairs can be gen-
erated in each minibatch for better training of the model.
In our experiments, we randomly select 32 people in each
mini-batch, and two images for each person, resulting in
3,968 positive and negative pairs being generated respec-
tively.
Verification subnet As shown in Fig.1, each pair of im-
ages, after going through the GoogeLeNet base network and
pairwise-consistent dropout, are represented by two 1,024D
vectors. Inside the verification subnet, they are first subject
to an element-wise subtraction to produce a single 1,024D
vector. After passing through a ReLU layer, this vector is
then fed into a 1024-dimensional FC layer, followed by a
two-node softmax layer.
Classification subnet The classification subnet consists

of a single N nodes softmax layer where N is the unique
person identities in the training set.
Auxiliary losses The original GoogLeNet [48] has an-
other two auxiliary losses/branches extended from the mid-
dle layers of the network. We follow this design pattern by
adding extra ID classification and pairwise verification sub-
nets on the two extended branches. This results in a total 6
losses in our network.
Training setting The initial learning rate is set to 0.001
and is multiplied by 0.1 every 40K iterations. For super-
vised two-stepped transfer learning from ImageNet to large
Re-ID datasets(CUHK03 and Market-1501), the network is
trained for 20K and 150K iterations for each step, respec-
tively. To perform two-stepped transfer learning from large
to small Re-ID datasets (e.g. VIPeR), we train the network
for 20K iterations for each step.
Data augmentation To reduce overfitting, we also per-
form data augmentation on the Re-ID datasets as in most
deep Re-ID works. Similar to [1], for each training image,
we generate 5 augmented images around the image center
by performing random 2D transformation.
Parameter Settings For training our supervised models,
the weight between the verification loss and classification
loss is 3:1. For our unsupervised co-training method, there
is one free parameter λ (see Eq.2) which needs to be deter-
mined. This is done by cross-validation using half of the
training data as the validation set.

For all other details about the model architecture and
training, please see the source code to be released soon.
5.3. Supervised Transfer Learning
Results on large datasets On the two large Re-ID
datasets, namely CUHK03 and Market, one-staged fine-
tuning is employed in our model, that is, pretraining on Ima-
geNet (ILSVRC 2012) followed by two-stepped fine-tuning
detailed in Sec. 4.1. The results of our model are compared
with the state-of-the-art deep and non-deep Re-ID models in
Table 1 and Table 2 respectively (they are grouped together
in the tables). Due to space limit, only the most competi-
tive ones since 2015 are chosen. We can make the follow-
ing observations: (1) Our model significantly outperforms
the state-of-the-art: on CUHK03, the gap is 10.1% using
the manually cropped images and 16.0% using the detected
ones. The gap is even bigger for Market, particular on the
mAP metric: 26.0% over Gated S-CNN [50] under the sin-
gle query setting. (2) The best competitors on these two
large datasets are all deep learning based. However, their
advantages over the hand-crafted feature based models are
modest (especially on Market) and far less pronounced than
what is widely observed in other visual recognition tasks.
This is because the large datasets are still relatively small to
release the full potential of a deep model. However, with
our model, the gap is clear now. The main reason, as we
explained earlier, is that our model is able to transfer fea-
ture representations learned from ImageNet thanks to the



Manual Detected

XQDA [26] 52.2 46.2
MLAPG [27] 57.9 51.1

DNS [61] 62.5 54.7
LSSCDL [63] 57.0 51.2

Siamese LSTM [51] - 57.3
IDLA [1] 54.7 44.9
DGD [55] 75.3 -

Gated S-CNN [50] - 68.1
EDM [42] 61.3 52.0

Joint Learning [52] - 52.1
CAN [29] 65.7 63.1

Ours 85.4 84.1
Table 1. Supervised results (Rank 1 matching accuracy in %) on
the CUHK03 dataset. ‘-’ means no reported result is available.

Single query Multi-query
R1 mAP R1 mAP

XQDA [26] 43.8 22.2 54.1 28.4
SCSP [3] 51.9 26.3 - -
DNS [61] 61.0 35.6 71.5 46.0

Siamese LSTM [51] - - 61.6 35.3
Gated S-CNN [50] 65.8 39.5 76.0 48.4

CAN [29] 48.2 24.4 - -
Ours 83.7 65.5 89.6 73.8

Table 2. Supervised results on Market-1501

VIPeR PRID
CUHK01

(Nt=871/485)

SCSP [3] 53.5 - -
LSSCDL [63] 42.6 - -

TMA [35] 43.8 - -
`1 GL [20] 41.5 30.1 -/50.1

Siamese LSTM [51] 42.4 - -
Metric Ensemble [38] 45.9 - -

DNS [61] 51.1 40.9 -/69.0
IDLA [1] 34.8 - 65.0/47.5
DGD [55] 38.6 64.0* -/66.6

MCP-CNN [4] 47.8 22.0 -/53.7
Gated S-CNN [50] 37.8 - -

EDM [42] 40.9 - 86.6/-
Joint Learning [52] 35.8 - 72.5/-

CAN [29] - - 81.0/-
Ours 56.3 43.6 93.2 / 77.0

Table 3. Supervised results on VIPeR, PRID and CUHK01. *The
DGD results on PRID were obtained by using 10 times more train-
ing images from the original PRID video dataset, giving it a huge
unfair advantage.

selected base network (GoogLeNet) and the training objec-
tives (classification + verification loss). In contrast, none of
the compared models transfer knowledge from other aux-
iliary sources – we found that they cannot even if they are
pretrained on ImageNet.
Results on small datasets On the three smaller datasets,
two-staged transfer learning are required, i.e., ImageNet→
CUHK03+Market → VIPeR/PRID/CUHK01. The com-

Single query Multi-query
R1 mAP R1 mAP

SID 76.6 51.7 83.6 62.2
PV 74.6 55.0 81.5 63.1
TL 63.3 41.5 72.4 49.7

SID + PV 83.7 65.5 89.6 73.8
SID + TL 80.4 59.3 86.1 67.8
PV + TL 71.0 52.4 79.0 60.7

SID + PV + TL 83.1 65.1 88.7 73.0
Table 4. Comparing different loss selections on Market1501.

parative results are presented in Table 3. Note that the
compared hand-crafted feature based models have two sub-
groups: those with one type of feature and those using
multiple based model fusion/ensemble. In addition, most
compared deep models use transfer learning, but one-staged
(typically from CUHK03+Market) and one-stepped fine-
tuning. It can be seen that our deep Re-ID model achieves
the best results on all three datasets. The improvements on
the two smallest, VIPeR and PRID, are around 3%, but on
the larger CUHK01, the gap is remarkable. In contrast, the
existing deep Re-ID models struggle on the small datasets,
and none of them can beat the best hand-crafted features
based models. This is again due to their inferior transfer
learning ability.
Loss selection We start our ablation study by first exam-
ining the selection of losses. We argue that it is the combi-
nation of ID classification loss and pairwise verification loss
that enables our model to effectively transfer useful rep-
resentations from the classification-oriented Imagenet and
adapt it to the verification task of Re-ID. To validate this
claim, we consider three losses: softmax ID classification
(SID), pairwise verification (PV) and triplet loss (TL), and
their combinations. All three have been used in existing Re-
ID models, but never before has SID been combined with
PV. We use the same base network pretrained on ImageNet
and test on Market. We can draw the following conclusions
from the results in Table 4: (1) When used alone, SID and
PV perform similarly with TL being the worst; (2) When
SID is used together with PV or TL, the performance im-
proves dramatically. But without SID, PV+TL gives worse
result than PV alone. This suggests clearly that having the
classification loss is indeed the key for knowledge transfer
from ImageNet. (3) When all three losses are combined the
performance is slightly worse which means that with SID
and PV, the TL loss is redundant.
Pairwise-consistent dropout and two-stepped fine-
tuning Two other contributions made in our model is
the pairwise-consistent dropout and the two-stepped fine-
tuning. Table 5 shows that the pairwise-consistent dropout
brings about 3% improvement on both Market-1501 and
VIPeR. Note that triplet loss (TL) also benefits, albeit to
a smaller extent. We expect whenever these two losses
are used, this pairwise-consistent dropout should be chosen



Loss Type Dropout Strategy Market-1501 VIPeR

SID + PV
Random 80.8 53.1

Pairwise-consistent 83.7 56.3

SID + TL
Random 79.3 51.9

Pairwise-consistent 80.4 52.3
Table 5. Rank-1 results of different dropout strategies

R1 R5 R10 R20

One-stepped 47.6 77.2 86.8 93.1
Two-stepped 56.3 83.3 90.5 96.0

Table 6. Two-stepped vs. one-stepped fine-tuning VIPeR

VIPeR PRID CUHK01

DLLR [21] 29.6 21.1 -
CDTL [40] 31.5 24.2 27.1
`1 GL [20] 33.5 25.0 41.0

Ours 45.1 36.2 68.8
Table 7. Unsupervised transfer learning results

over the standard random dropout. Table 6 suggests that the
two-stepped fine-tuning is even more critical, bringing in
about 8.7% at Rank 1 on VIPeR.
5.4. Unsupervised Transfer Learning

Our co-training based unsupervised transfer learning
model is compared against the best reported results on the
three small datasets in Table 7. Note that to the best of our
knowledge, no published deep Re-ID model has attempted
this challenging setting. The results clearly show that we
can beat the existing hand-crafted features based models by
big margins. Compared with the supervised learning re-
sults in Table 3, our unsupervised model is very compet-
itive, beating most of them, particularly the deep learning
based ones. This indicates that with the developed unsuper-
vised deep learning model, we can readily deploy a Re-ID
system to a new camera network requiring only some per-
son detections but no manual labelling. This is thus a sig-
nificant step towards real-world deployment of automated
Re-ID.

Our ablation study shows that the two models employed
in the co-training framework: a soft-label self-training deep
model and a discriminative subspace learning model are
both effective and co-training yield clear improvements. In
addition we compare the proposed model with existing deep
unsupervised transfer learning models such as [9] to demon-
strate that our model is far more effective.
5.5. Evaluations on Base Network Selection

In this experiment we compare our base network,
GoogLeNet and the one used in the DGD model [55] which
we call DGDNet4. It is chosen because it is representative
of the trending smaller/shallower bespoke Re-ID network
and has obtained the best results among existing deep Re-

4Note that we only use their base network, and do not follow their
joint-training + domain guided dropout + individual dataset fine-tuning
pipeline. Instead, we use the same one/two-staged and two-stepped fine-
tuning transfer learning strategy exactly as our models for fair comparison.

Dataset Network Loss I.Net Pre.? R1 mAP

Market
DGDNet

SID
YES 47.5 23.1
NO 47.8 23.8

SID + PV
YES 71.3 48.9
NO 82.7 63.4

GoogLeNet
SID

YES 76.6 51.7
NO 55.0 31.4

SID + PV
YES 83.7 65.5
NO 68.7 45.3

VIPeR
DGDNet SID + PV

YES 37.4 N/A
NO 51.5 N/A

GoogLeNet SID + PV
YES 56.3 N/A
NO 37.0 N/A

Table 8. Base network comparison

ID models. Apart from the base network, the other part of
the models are identical, i.e., one-staged transfer learning +
two stepped fine-tuning for large Re-ID datasets and two-
staged transfer learning + two stepped fine-tuning for small
Re-ID datasets. Table 8 shows that: (1) With only SID loss,
the smaller base network performs much worse on Market
with or without pretraining on ImageNet. However, with the
SID+PV combination, the results with DGDNet are much
improved, but transfer learning from Imagenet now has a
negative effect. (2) With GoogLeNet as base network, trans-
fer learning from ImageNet becomes crucial – it is too big
to be trained from any Re-ID dataset from scratch. (3) On
the small VIPeR dataset, with our two-staged transfer learn-
ing, the two base networks have quite different behaviours:
With the large Market+CUHK03 as auxiliary dataset, our
model with DGDNet as base network is quite effective pro-
vided no pretraining on ImageNet is conducted, but not as
effective as the GoogLeNet base network with ImageNet
pretraining (51.5% vs 56.3%) – this shows the advantage
of using a deeper base network, that is, it can learn more
generalisable feature representations that can benefit small
Re-ID datasets. In summary, this results shows that even
for smaller deep networks tailor-made for Re-ID, combin-
ing classification loss with verification loss is hugely bene-
ficial; but a better network design would be adopting a base
network tailor-made for ImageNet and using ImageNet as
auxiliary dataset for transfer learning.
5.6. Alternative Unsupervised Transfer Learning

Models
We first examine the effectiveness of the co-training

strategy. Our co-training model alternates between a soft-
label self-training deep model and a graph-regularised sub-
space learning model. Table 9 shows that both models are
effective on its own and when combined in our co-training
framework, boost the performance by 2-3%.

In addition, we compare our model with two alternative
unsupervised transfer learning methods. The first one com-
bines a CNN with an autoencoder. Autoencoders (AE) [13]
is widely used in unsupervised learning and can be stacked
on top of a CNN model to turn it into an unsupervised



R1 R5 R10 R20

Self-training 42.8 66.9 77.3 85.9
Subspace 42.3 71.5 79.8 87.5

AE 36.4 62.3 74.0 81.9
Adversarial [9] 22.8 38.6 50.3 63.9

Ours 45.1 73.1 81.7 89.4
Table 9. Evaluations on alternative unsupervised model on VIPeR.

model. In our CNN+autoencoder model, the input layer of
the autoencoder is the feature output of the base network;
the middle layer dimension is set to 512 and the output layer
has the same dimension as the input layer (1,024). Formally,
for each input image xi in the target dataset T , the autoen-
coder is learned to minimise the following objective:

J(xi) =
1

2
||φ(xi)− fd(fe(φ(xi)))||22 (4)

Where fe and fd denote the mapping functions of the en-
coder and decoder respectively. Note that since the size of
T is too small to train the AE from scratch, we initialize the
parameters of the AE layers by first pretraining them using
images in the source dataset S. The second model com-
pared is the deep unsupervised domain alignment model
using gradient reversal [9]. Specifically, we add a domain
classifier connected to the feature extractor (i.e. our base
network) via a gradient reversal layer that multiplies the
gradient by a certain negative constant during the back-
propagation based training. The results in Table 9 show that
both the compared models yield much weaker performance
than the proposed co-training based model. The autoen-
coder model is weaker because it is not discriminative. The
gradient reversal based models fare even worse, which sug-
gests that the domain adaptation problem for Re-ID poses
unique challenges that cannot be addressed by simple do-
main alignment.
5.7. Qualitative Results

To gain some insights into what the model has actu-
ally learned and the contribution of knowledge transfer
from large auxiliary dataset such as ImageNet, we visu-
alise in Fig. 2 some feature responses at the first convolution
layer of our GoogLeNet base network which is trained on
Market-1501 using the proposed pipeline. For comparison,
we also visualise the feature responses of the same layer of
another GoogLeNet base network. The only difference be-
tween these two networks is that the second one is trained
from scratch rather than using ImageNet pretrained param-
eters. In particular, the first row of Fig. 2 shows the original
input images of two people under different camera views,
whilst the second and the third row shows the correspond-
ing feature responses of the two models.

It can be seen clearly that the learned features by the
ImageNet pretrained model fire accurately at specific body
parts. In contrast, the features learned by the network with-
out ImageNet pretraining are much more fuzzy. This sug-
gests that one of the key benefits of pretraining on Imagenet

is that the model is more aware of the concept of visual ob-
jects and thus is able to delineate object (person) and object
parts (e.g. head, torso, arms etc.) more accurately, which
lays a solid foundation for discovering discriminative fea-
tures for matching people.

6. Conclusion
We have proposed a number of novel deep transfer learn-

ing models to tackle the challenging person Re-ID problem
with small datasets. Our experiments validated the claim
that using a deep base network together with a combina-
tion of classification and verification loss is key for transfer-
ring representations learned from large image classification
datasets. Importantly, we show for the firs time that, a co-
training based deep unsupervised transfer learning model
can perform effective Re-ID without any labelled data.
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