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Abstract—In this paper, we present the application of a mas-
sively parallel-processing graph database for rapid-response drug
repurposing. The novelty of our approach is that the scalable
graph database is able to host a knowledge graph of medically
relevant facts integrated from multiple knowledge sources and
also act as a computational engine capable of in-database protein
sequence analytics. We demonstrate the performance of the
graph database on a real-world use-case to hypothesize cures for
COVID-19, leveraging its built-in accelerated protein-sequence
matching capabilities at unprecedented scale (to simultaneously
handle data size and query latency requirements for interactive
research). Based on supporting evidence from medical literature,
we show that results generated by computing similarity of
COVID-19 virus proteins across 4 million other open-science
sequences and intelligently traversing over a 150 billion facts from
open-science medical knowledge produces biologically insightful
results. By presenting sample queries and extending application
to use-cases beyond COVID-19, we demonstrate the use and
value of the novel database for hypotheses generation in reducing
the time-to-insight and increasing researcher productivity with
interactivity.

Index Terms—graph database, graph analytics, in-database
analytics, distributed processing, parallel processing, sequence
analytics.

I. PROBLEM STATEMENT

Amidst the pandemic caused by the novel coronavirus,
drug repurposing – the investigation of existing drugs for
new therapeutic purposes – emerged as the first ray of hope
towards the discovery of a medical cure. The state-of-the-art
drug repurposing pipeline involves understanding the protein
structures of the disease-causing organism, interpreting the in-
teractions of the organism’s protein structures with the human
body, mining through properties of potential drug molecules,
connecting the dots across curated literature to explain the
mechanism-of-action, searching for evidence in assay data and
analyzing for potential safety and efficacy using data from
prior trials, and more. This process is done manually and takes
several months today. The cumbersome nature of the problem
is attributed to the time required for a life-sciences researcher
to: (a) understand the disease-causing organism by matching
and comparing protein sequences to previously known or stud-
ied disease-causing organisms (over 4 million sequences), (b)

handle and process multi-modal Big data (protein sequences,
proteomic interactions, bio-chemical pathways, structured data
from past clinical trials etc.), (c) integrate and search for
patterns connecting across the multiple multi-modal multi-
terabyte datasets, (d) install, configure and run a plethora of
tools (genetics, proteomics, molecular dynamics, data science
etc.) to generate insights, and finally (e) verify and validate the
scientific rigor for pharmacological interpretation. This paper
is motivated by a need for rapid response to accelerate the
drug repurposing pipeline amidst a pandemic.

Our proposed technology solution is the design and imple-
mentation of a massively parallel database that (a) stores, han-
dles, hosts and processes multi-modal data represented in the
form of knowledge graphs, (b) provides interactive query and
semantic-traversal capabilities for data-driven discovery, (c)
accelerates domain-specific functions such as Smith-Waterman
algorithm to conduct protein similarity analysis, vertex-centric
and whole-graph algorithms such as PageRank for graph-
theoretic connectivity and relevance analysis, and (d) run-
s/executes a workflow of queries across multiple datasets to
generate drug hypotheses in the order of seconds as opposed
to months. We demonstrate the application of this technology
using an integrated knowledge graph of multiple multi-modal
life-science databases, conduct protein-sequence matching in
parallel and present a novel rapid drug-repurposing method-
ology that is able to query across 4+ million proteins, 155+
billion facts while handling approximately 30 terabytes of data.

Our approach extends the proven value of knowledge graphs
for the drug repurposing problem described in [1]–[4] by
offering a generalizable Big Data platform to other bio-
medical discovery problems beyond the COVID-19 pandemic.
In doing so, we are able to claim the following contributions:
(a) A scalable graph database that offers order-of-magnitude
computational speed-up and interactivity required for knowl-
edge traversal and discovery, (b) An integrated life-sciences
knowledge graph that captures the open-science universe of
available biomedical facts, (c) hypotheses of potential drug
candidates for the ongoing pandemic, (d) reproducible code
and results for future studies on the universe of biomedical
facts (on viruses, proteins, drugs, bio-chemical pathways) as
opposed to the state-of-the-practice limited to disease-specific
knowledge graphs.
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We have organized this paper as follows. Section II de-
scribes the graph database solution. Section III describes the
application of the database to the COVID-19 pandemic by
documenting datasets integrated for the experiments. Section
IV presents results from sample queries run for the rapid-
response drug repositioning experiments and showcases the
performance characteristics of the graph database solution
from ingest to hypothesis generation. We conclude with future
directions in Section IV.

II. THE GRAPH ENGINE

The proposed technology solution builds on prior work on
the Cray Graph Engine [5]. The Cray Graph Engine (CGE)
is an in-memory semantic graph database designed to scale
to hundreds of nodes and tens of thousands of processes on
the Cray XC supercomputer to support interactive querying
of large data sets (∼100s of terabytes). CGE ingests datasets
of N-Triples/N-Quads based on the standardized Resource
Description Framework (RDF) format and enables queries
using the SPARQL query language [6]. RDF data is expressed
as a labeled, directed graph with the “quad” consisting of four
fields: subject, predicate, object and graph. A triple is simply
a quad that is stored in the “default graph”. For example, the
following is a simplified version of an example RDF triple
from the Uniprot COVID-19 data [7] that could be loaded
into CGE:

<urn : P0DTC2> <urn : mnemonic> ”SPIKE SARS2” .

A semantic graph is a collection of such triples with subjects
and objects representing vertices and predicates representing
edges between the vertices. Semantic graph databases differ
from relational databases in that the underlying data structure
is a graph, rather than a structured set of tables. The graph
structure makes semantic databases ideal for analyzing multi-
modal unstructured and structured data that is loosely con-
nected or is schema-less – as is the case with social network
interactions or interactions between proteins and genes in
living organisms [8].

A. Background

The first scalable semantic graph database developed at Cray
(recently acquired by Hewlett Packard Enterprise) was the
Urika-GD appliance, which was built upon the scalable shared
memory model of the Cray XMT2. The XMT2 processor con-
sisted of 128 hardware streams per processor, which could be
used to greatly improve latency tolerance for memory opera-
tions across processors. The Urika-GD database appliance uti-
lized extreme multi-threading to enable parallel search of basic
graph patterns. The Urika-GD database was later ported to the
Cray XC30 architecture by utilizing the Partitioned Global
Address Space (PGAS) programming model and Coarray-
C++ [5]. CGE is developed as a highly parallel distributed
application based on Coarray-C++, which is built on top of
Cray’s PGAS library that enables processes distributed across
compute nodes to share data and synchronize operations.
In Coarray-C++, the distributed processes are referred to as

images, and within this paper the two terms may be used
interchangeably.

CGE consists of two main components: the dictionary and
the query engine. The dictionary is responsible for building
the database, which is the process of ingesting the raw N-
Triples/N-Quads files from the high performance Lustre file
system and converting them to the internal representation
used by CGE. The dictionary stores all unique RDF strings
from the N-Triples/N-Quads and provides a mapping between
the unique strings and the integer identifiers used for the
quads internally by the query engine. Much of the dictionary
build time is dominated by the Lustre I/O time, which has
been demonstrated in previous studies [8], and will be further
discussed in Section IV.

The CGE query engine processes SPARQL queries and
SPARUL update requests, provides a number of built-in graph
algorithms (such as measures of centrality, PageRank, con-
nectivity analysis that are used in [1], [3], [4]) that can be
applied to query data and returns results to the user. The core
work performed by the query engine is matching the basic
graph pattern in the SPARQL queries as well as supporting
operations on the query results, such as FILTER and ORDER,
that allows users to remove and sort solutions, respectively.

Since the Urika-GD appliance, significant effort has allowed
porting CGE to improve the performance and scalability on
the Cray XC supercomputer products with general-purpose
processors and using a high-performance interconnect. The
success of the scalability work demonstrated the ability of
CGE to ingest and query a trillion triples using the well
known Lehigh University Benchmark (LUBM) [9]. Using
the LUBM dataset, CGE was shown to scale efficiently to
hundreds of nodes and tens of thousands of processes, enabling
CGE to perform the standard LUBM queries an order of
magnitude faster than the closest competitors [8]. Further
details describing the design and performance of CGE can
be found in previous publications for the Cray User Group
[5], [8], [10]. We leverage CGE’s distributed data processing
architecture to enable execution of pattern-search queries that
execute orders-of-magnitude faster than other state-of-the-art
graph databases to offer iterative discovery required for data-
driven discovery. Multiple features were added to CGE to
specifically support rapid response drug repurposing. We detail
the new capabilities in the sub-section below.

B. Improvements for Drug Repurposing

Two core CGE improvements were made to support drug
repurposing: (a) the support for user-defined functions (UDFs)
for in-database protein sequence analytics and (b) the ability
to execute such domain-specific UDFs in parallel for speed-
up and scale-out using the SPARQL front-end user interface
described above.

1) User Defined Functions: The syntax for user-defined
functions in CGE follows Apache Jena guidelines [11] since
CGE leverages Jena’s SPARQL query parser interface. The
SPARQL interface allows custom functions inside query ex-
pressions to enable domain specific operations on data as
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part of a query. This is a feature that allows users to define,
express and execute domain-specific mathematical operations
to evaluate and rank query results [11] that are not supported
in SPARQL. Such graph operations can be implemented as
custom functions that are defined by URI in expressions. In
the past, we had leveraged this capability to define a few
custom functions within CGE, such as sqrt, however we never
extended this capability to allow users to define their own
function. Calls to these user-defined functions take the form:

p r e f i x a r q : <h t t p : / / j e n a . h p l . hp . com /ARQ/ f u n c t i o n #>
. . .
a r q : s q r t ( 5 )
. . .

For supporting custom user defined functions (UDF) for
drug repurposing, a new URI, arq:user func, is allowed in
CGE to invoke a callout to a UDF that exists separately from
CGE. A simple C interface is defined for a function named
cge user eval that CGE can execute as part of an expression.
The cge user eval function takes four arguments that provide
the total number of arguments, a list of the arguments, the
return value and the return type. This allows users to pass data
from CGE to the UDF, evaluate the arguments, and return a
primitive value (e.g., boolean, integer or double) that can be
used to evaluate the SPARQL expression.

Since CGE executes in a massively parallel manner, with
potentially tens of thousands of images running concurrently,
any UDF invoked as part of a query is also executed in
parallel on the query solution set. The parallel execution of
the UDF enables it to scale to datasets that may otherwise
be too large by dividing the data across the parallel images.
A UDF can also be applied to the entire solution set in an
embarrassingly parallel manner. Further, the parallel execution
via UDFs enables distributed execution of computationally
intensive algorithms by breaking down complex processing
tasks into images that will have a considerably smaller input
set to process.

2) Performance Improvements: Another improvement
made to CGE focused on improving the performance of
database operations such as FILTER or GROUP. These
operations enable users to compare terms that are found as
part of a query match to apply some order or ranking. The
raw strings for these terms are stored in the CGE dictionary,
which is a distributed hash table that spreads the strings
across all processes. This distribution of the terms results
in significant work pulling terms local to a process when
they are needed as part of an operation, such as FILTER or
GROUP.

To improve the overall performance and scalability of these
operations, the strings required by images are now fetched
as large blocks in a coordinated manner. Each image goes
through the results and creates a list of strings it requires
from each other image. All images then fetch the required
strings from each other as a single block, rather than issue
a remote fetch of each string individually. This increases the
size of each message but significantly reduces the total number
of messages required. This communication pattern matches

what is done in CGE for the core graph operations, such as
JOIN and MERGE, and has been shown in previous studies to
significantly improve performance by reducing the number of
outstanding messages at a time [8]. This CGE improvement
is critical for parallel pairwise comparisons of a query protein
sequence with millions of open-science sequences and rank-
ordering the result set.

III. APPLICATION TO COVID-19
A. The knowledge graph

To demonstrate the power and value of the graph engine
described in the previous section, we integrated a Life Sciences
knowledge graph. We selected a set of open/publicly available
biomedical data resources commonly used in life sciences and
systems biology research. The typical workflow for researchers
is to perform searches in one of the databases, then construct
queries for another database, and iterate. The effort of manu-
ally mapping between the ontologies of various data sources
and piecing together results from multiple query end points
(or using yet another database to perform this translation), is a
cumbersome process. The scalability of CGE enables all of the
relevant databases to be loaded in one environment, enabling
seamless cross-database queries. Although federated queries
could be used to query across multiple databases, this approach
has been shown to be problematic for complex queries, due
to challenges such as network access from firewalled systems,
query rate limits or simply performance problems of complex
federated queries. The scalable load time of CGE also enables
frequent reloads of the data set, including integration of in-
house data on top of a background of the public databases
during the workflow. Further, the performance and scalability
of CGE for the database build process enables updated data to
be quickly pulled in and the database fully rebuilt in less than
an hour. A discussion of scalability and performance for CGE
applied to a Life Sciences knowledge graph was previously
discussed in [8].

The integrated Life Sciences knowledge graph assembled
to study potential drug repurposing candidates for COVID-
19 was generated from a collection of publicly available
databases. Descriptions of the larger databases in the collec-
tion, and those explicitly mentioned in this paper, are described
in more detail below.

1) Uniprot: The UniProt [7] database is the authoritative
collection of functional information on proteins, and includes
annotations, interrelationships, and in some cases, the amino
acid sequences of the proteins themselves. Proteins are the
building blocks used for studying drug protein structure and
interactions. The interactions between proteins are complex
and widely linked, so a graph representation is particularly
useful. Uniprot concentrates on Human proteins, though other
widely studied organisms are also well represented.

The UniProt Consortium is a collaboration between the
European Bioinformatics Institute (EBI), the Swiss Institute
of Bioinformatics (SIB) and the Protein Information Resource
(PIR). It has been a pioneer in Semantic Web technology,
and Uniprot has been distributed in RDF format since 2008.
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Uniprot is continually growing as more scientific data is added.
New Uniprot releases are distributed every four weeks.

For this study, the majority of the Uniprot RDF data is from
the March 19, 2020 release. There is a new UniProt portal for
providing the latest information for COVID-19 coronavirus
protein entries and receptors which is updated independently
of the general UniProt release cycle. For the COVID-19 study
this allowed us to more quickly pull in updated COVID
data. The COVID-19 Uniprot data for the knowledge graph
was updated May 22, 2020. The Uniprot database contains
approximately 87.6 Billion triples. In the form of an N-Triples
(.nt) file on disk it is roughly 12.7 Terabytes. To simplify
querying across multiple databases, we merged all named
graphs into a single default graph.

2) PubChem: PubChem [12] is an open chemistry database
maintained by the National Institutes of Health (NIH).
The PubChemRDF project provides RDF formatted infor-
mation for the PubChem Compound, Substance, and Bioas-
say databases. The knowledge graph for this study used
the V1.6.3 beta version of PubChemRDF download from
ftp://ftp.ncbi.nlm.nih.gov/pubchem/RDF on March 30, 2020.
The PubChemRDF database contains approximately 80 Billion
RDF triples. In the form of N-triples this amounts to about 13
Terabytes on disk.

3) ChEMBL: ChEMBL [13] is a manually curated database
of bioactive molecules with drug-like properties. It brings
together chemical, bioactivity and genomic data to aid the
translation of genomic information into effective new drugs.
The data is updated regularly, with releases approximately
every 3-4 months. ChEMBL-RDF Release 27.0 (May 18,
2020) was integrated into the knowledge graph for this study.
The ChEMBL database contains approximately 539M triples.
In the form of N-triples this amounts to about 81 Gigabytes
on disk.

4) Bio2RDF datasets: Bio2RDF [14] is an open-source
project that uses Semantic Web technologies to pull together a
diverse set of datasets from multiple data providers. In addition
to providing an online Virtuoso-based SPARQL endpoint [15]
for querying across the collection of heterogeneous datasets,
Bio2RDF also provides a portal to download the converted
RDF data files for datasets included in the Bio2RDF database.
The Bio2RDF datasets included in the knowledge graph were
downloaded from [16].

The full Bio2RDF collection consists of approximately 11
Billion triples across 35 datasets and includes the DrugBank,
PubMed, and MESH datasets.

5) OrthoDB: OrthoDB (https://www.orthodb.org) provides
evolutionary and functional annotations of orthologs, i.e.
genes inherited by extant species from their last common
ancestor. Since orthologs are the most likely candidates to
retain functions of their ancestor gene, OrthoDB is aimed at
narrowing down hypotheses about gene functions and enabling
comparative evolutionary studies.

The OrthoDB [17], [18] database contains approximately
2.2 Billion RDF triples describing evolutionary and functional
properties of 40 Million genes from 15 thousand organisms.

TABLE I
KNOWLEDGE GRAPH DATASET CHARACTERISTICS. RAW SIZES BEFORE

DUPLICATE REMOVAL.

Dataset Size (on disk) Size (triples) source

UniProt (Mar 2020) 12.7 TeraBytes 87.6 Billion [7]
PubChemRDF (v1.6.3 beta) 13.0 TeraBytes 80.0 Billion [12]
ChEMBL-RDF (27.0) 81 GigaBytes 539 Million [13]
Bio2RDF (Release 4) 2.4 TeraBytes 11.5 Billion [14]
OrthoDB (v10) 275 GigaBytes 2.2 Billion [17]
Biomodels (r31) 5.2 GigaBytes 28 Million [20]
Biosamples (v20191125) 112.8 GigaBytes 1.1 Billion [21]
Reactome (r71) 3.2 GigaBytes 19 Million [22]

In the form of N-triples this amounts to about 275 Gigabytes
on disk.

6) BioModels: The BioModels [19] database is a reposi-
tory of mathematical models representing biological systems.
It currently hosts a range of models describing processes
like signaling, protein-drug interaction interactions, metabolic
pathways, epidemic models and many more. The models
that BioModels hosts are usually described in peer-reviewed
scientific literature and in some cases, they are generated
automatically from pathway resources (Path2Models). These
models are manually curated and semantically enriched with
cross-references to external data resources (such as publica-
tions, databases of compounds and pathways, ontologies, etc.)

B. Query Mechanism

With the capability of CGE to support UDFs, queries could
now be written that combine information from the knowledge
graph and apply domain specific UDFs to the data in order
to better refine results. For drug repurposing, our approach
utilizes a UDF that performs protein sequence similarity to
infer connections between proteins. This enables connections
to be inferred between proteins that little may be known about,
such as COVID-19, and proteins that are well documented in
open datasets such as Uniprot and ChEMBL.

We chose the Smith-Waterman (SW) protein similarity algo-
rithm for aligning pairs of sequences and computing similarity
scores for the alignment. For two sequences of length m and n,
the SW algorithm returns the optimal local alignment and sim-
ilarity score with a computational time complexity of O(mn)
[23]. The local alignment is useful for providing alignments
describing the most similar regions within sequences, rather
than end-to-end alignments of sequences returned by global
alignments [23]. Since SW returns an optimal local alignment
it is an essential component of many aligners. However, the
computational complexity limits the extent the algorithm is
utilized for comparing large sequence sets [24].

The SW algorithm was chosen for our knowledge graph
because of the preference to score similarity using optimal
local alignment and the availability of a highly optimized
open source implementation as a standalone C/C++ library
that could be loaded by CGE [24]. Given the highly parallel
implementation of CGE, a user can query the knowledge graph
and perform millions of protein similarity computations in a
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matter of seconds, enabling the solutions to easily be filtered
and ranked by similarity score.

To normalize the scores, each sequence is compared to
itself. The product of the square root of those scores is used
as the denominator [25] as outlined in listing 1.

i n t 6 4 t s c o r e = prot cmp ( r e f , r e a d ) ;
i n t 6 4 t m a x r e f s c o r e = prot cmp ( r e f , r e f ) ;
i n t 6 4 t max read sco re = prot cmp ( read , r e a d ) ;
double norm score = s c o r e /

( s q r t ( m a x r e f s c o r e ) ∗ s q r t ( max read sco re ) ) ;

Listing 1. Normalization method of Smith-Waterman scores

IV. RESULTS

A. The COVID-19 Use Case

As mentioned earlier, this work was motivated by the need
to identify drug candidates for the novel COVID-19 virus. Our
approach begins by first allowing researchers to understand
how similar or different the novel virus is to other known
viruses. If parts of the protein sequence that make up the
novel virus have sequence and functional overlaps with other
known viruses, the information in the integrated knowledge
graph helps us extrapolate the search to identify potential drug
candidates that are known to inhibit disease-causing activity
on the known viruses. We share sample queries that implement
the similarity-based extrapolation in the following paragraphs.

1) COVID-19 Similarity: The COVID-19 protein sequence
is made up of several non-structural proteins, envelope pro-
teins, Spike protein, etc. To hypothesize potential drugs that
bind or interact with the different parts of the COVID-19 viral
protein, we first have to identify open-science proteins that
have similar structure to the novel COVID-19 mutation. The
query in listing 2 is an example to find proteins most similar
to the COVID-19 Spike protein sequence.
s e l e c t ? p ro tB ?name ?mnem ? sciName ? sim
where {

# Look up t h e i n f o f o r our p r o t e i n o f i n t e r e s t
? p r o t e i n a c o r e : P r o t e i n ;

c o r e : mnemonic ’SPIKE SARS2 ’ ;
c o r e : s e q u e n c e ? i s o f o r m .

? i s o f o r m r d f : v a l u e ? seq .

# Look up a l l o t h e r p r o t e i n s wi th s e q u e n c e i n f o
? p ro tB a c o r e : P r o t e i n ;

c o r e : s e q u e n c e ? i soformB ;
c o r e : mnemonic ?mnem ;
up : recommendedName ? recommended .

? i soformB r d f : v a l u e ? seqB .
? recommended up : fu l lName ?name .

# O p t i o n a l l y , l ook f o r t h e s c i e n t i f i c name of t h e organ i sm . Th i s
# may n o t e x i s t i f t h e p r o t e i n d a t a i s t o o new , such as f o r covid−19, so
# make i t o p t i o n a l so we s t i l l g e t t h e match .
o p t i o n a l {

? p ro tB up : o rgan i sm ? t a x o n .
? t a x o n c o r e : s c i e n t i f i c N a m e ? sciName .
}

# Compare t h e p r o t e i n o f i n t e r e s t t o each p r o t e i n t o g e t a sim v a l u e
b ind ( a r q : u s e r f u n c ( ? seq , ? seqB ) as ? sim )
f i l t e r ( ? sim >= 0 . 1 )

}
# L i s t t h e p r o t e i n s wi th t h e h i g h e s t sim s c o r e f i r s t
o r d e r by desc ( ? sim )

Listing 2. SPARQL query to rank similar proteins to reference protein

The similarity query in listing 2 first looks up the protein
sequence for SPIKE SARS2 using the Uniprot mnemonic.
Next, the sequences for all proteins that have sequences
and names are retrieved. Finally, each of these sequences is
compared to the sequence for the SPIKE SARS2 and the

similarity score is saved in the variable sim. The bind clause
saves all of the sim values in a temporary table so that they
can be used for other operations and returned to the user. In
this query, any result with a similarity score less than 0.1 is
removed and the results are returned in descending order by
the similarity score.

The protein returned with the highest similarity score was
A0A2D1PX97, which is ”Bat SARS-like coronavirus”, with
a similarity score of 0.817. Several of the top results are
bat coronaviruses or coronaviruses in other species, as shown
in the top 10 results listed in table II. The similarity scores
quickly drop from 0.79 to 0.37, which is the point where
Middle East Respiratory Syndrome (MERS) first appears
in the results with a similarity score of 0.368 for protein
A0A2I6PIX8, which is ”Middle East respiratory syndrome-
related coronavirus”. Following several proteins for MERS are
a number of coronaviruses in other species, including bovine,
human, rabbit and murine, and several non-coronavirus pro-
teins begin appearing such as A0A1B2RX89 for ”Infectious
bronchitis virus” with a similarity score of 0.322. These scores
match up well with research that has suggested that COVID-
19 likely originated from bats and has a close similarity to
MERS [26].

TABLE II
TOP 10 PROTEIN SEQUENCES MOST SIMILAR TO COVID-19 SPIKE

Protein Scientific Name Score
A0A2D1PX97 ”Bat SARS-like coronavirus” 0.817
A0A0U2IWM2 ”SARS-like coronavirus WIV16” 0.817
A0A2D1PXA9 ”Bat SARS-like coronavirus” 0.816

U5WLK5 ”Bat SARS-like coronavirus RsSHC014” 0.814
A0A2D1PX29 ”Bat SARS-like coronavirus” 0.814

U5WHZ7 ”Bat SARS-like coronavirus Rs3367” 0.813
U5WI05 ”Bat SARS-like coronavirus WIV1” 0.813

A0A2D1PXC0 ”Bat SARS-like coronavirus” 0.813
A0A2D1PXD5 ”Bat SARS-like coronavirus” 0.812
A0A4Y6GL47 ”Coronavirus BtRs-BetaCoV/YN2018B” 0.812

2) COVID-19 Drug Repurposing: Our next step was to
leverage the knowledge graph to find potential drugs that could
be repurposed for COVID-19 based upon the similarity score
rankings. To do this a SPARQL query was needed that would
work in reverse – rather than looking for all known targets of
a given compound the query starts with an unknown protein
and searchs for potential compounds that could target it. In this
case we focused on compounds that would have an inhibitory
action on the proteins. The query in listing 3 was used to do
this search.
s e l e c t d i s t i n c t ? p ro tB ? sciName ? l a b e l ? sim

where {
{

# Look up a c t i v i t i e s wi th an i n h i b i t o r y e f f e c t t h a t have s m a l l
# m o l e c u l e s and have gone t h r o u g h a c e r t a i n deve lopmen t phase
s e l e c t ? a c t i v i t y ? a s s a y ? l a b e l
where {
{ ? a c t i v i t y cco : t y p e ’ I n h i b i t i o n ’ } un ion { ? a c t i v i t y cco : t y p e
’ IC50 ’ }
? a c t i v i t y a cco : A c t i v i t y ;

cco : ha sMolecu l e ? m o l e c u l e ;
cco : hasAssay ? a s s a y .

? m o l e c u l e r d f : t y p e cco : Smal lMolecu le ;
cco : h i g h e s t D e v e l o p m e n t P h a s e ? phase ;
skos : p r e f L a b e l ? l a b e l .

f i l t e r ( ? phase >= 3)
}
}

# Look up p r o t e i n s t h a t have a sequence , compare t o our s a r s 2
# p r o t e i n , and s e l e c t on ly t h e t o p X p r o t e i n s based s i m i l a r i t y
{

s e l e c t d i s t i n c t ? p ro tB ? sim
where {
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# Look up t h e s e q u e n c e f o r t h e s a r s 2 s p i k e p r o t e i n
? p r o t e i n a c o r e : P r o t e i n ;

c o r e : mnemonic ’SPIKE SARS2 ’ ;
c o r e : s e q u e n c e ? i s o f o r m .

? i s o f o r m r d f : v a l u e ? seq .

# Look up a c t i v i t i e s t h a t t a r g e t p r o t e i n s . We do t h i s h e r e t o
# make s u r e we on ly s e l e c t p r o t e i n s t h a t a r e known t a r g e t s
? t a r g e t c m p t cco : t a r g e t C m p t X r e f ? p ro tB .
? t a r g e t cco : hasTarge tComponent ? t a r g e t c m p t .
? a s s a y cco : h a s T a r g e t ? t a r g e t .

# Look up known p r o t e i n s and g e t s e q u e n c e v a l u e s
? p ro tB a c o r e : P r o t e i n ;

c o r e : s e q u e n c e ? i soformB .
? i soformB r d f : v a l u e ? seqB .
b ind ( a r q : u s e r f u n c ( ? seq , ? seqB ) as ? sim )

}
o r d e r by desc ( ? sim )
l i m i t 150

}

# Look up our compounds t h a t t a r g e t our p r o t e i n s o f i n t e r e s t , i f any
# do . Th i s i s a r e p e a t from t h e i n n e r−p r o t e i n que ry b e c a u s e we do
# n o t want t h e i n n e r que ry t o g e n e r a t e c o m b i n a t i o n s f o r
# p r o t e i n s / compounds when f i n d i n g t h e most s i m i l a r p r o t e i n s .
# Redoing t h e j o i n s h e r e i s q u i c k .
? t a r g e t c m p t cco : t a r g e t C m p t X r e f ? p ro tB .
? t a r g e t cco : hasTarge tComponent ? t a r g e t c m p t .
? a s s a y cco : h a s T a r g e t ? t a r g e t .

# O p t i o n a l l y , l ook f o r t h e s c i e n t i f i c name of t h e organ i sm .
o p t i o n a l {

? p ro tB up : o rgan i sm ? t a x o n .
? t a x o n c o r e : s c i e n t i f i c N a m e ? sciName .
}
}
o r d e r by desc ( ? sim )

Listing 3. SPARQL query to find potential drugs that could be repurposed

There are three main components to the query. First, the
top inner-query searches ChEMBL for information about com-
pounds that have an inhibitory activity that have been through
a certain development phase. Since the intent is to repurpose
existing drugs, the compounds were limited to only those
that are in phase 3 development or higher for clinical trials
[27]. In the second inner query, all proteins that are known
targets of a given compound are compared to the COVID-19
Spike protein. The results are put into descending order by the
similarity to the SPIKE SARS2 protein and only the proteins
for the top 150 isoforms are returned. There are often multiple
sequences for a given protein and in this case, the top 150
isoforms are associated with approximately the top 50 most
similar proteins. The final part of the query again matches the
selected proteins to the compounds that target them as well as
the activity information from the first inner query. The final
results are returned in descending order by the similarity score
to highlight compounds that could potentially be repurposed
based on similarity to the COVID-19 spike.

The reverse query returns compounds targeting proteins
with similarity scores ranging from 0.2 down to 0.183. Several
of these compounds are for drugs that have already been put
into clinical trials because of their potential to be repurposed
against COVID-19 [28]. Some of the top scoring protein
sequences against the COVID-19 spike found by the reverse
query that are also in clinical trials are shown in table III.

TABLE III
EXAMPLE DRUGS CURRENTLY IN CLINICAL TRIALS FOR COVID-19 THAT

APPEAR IN REVERSE QUERY RESULTS

Protein Compound Name Score
P52333 BARICITINIB 0.194
P17948 RIBAVIRIN 0.189
P17948 RITONAVIR 0.189
P17948 DEXAMETHASONE 0.189
P17948 AZITHROMYCIN 0.189
P08183 LOPINAVIR 0.187

One method we have used to validate the results returned
by the reverse query is to compare the overlap between the
compounds returned with those currently in clinical trials
for COVID-19. Based on the drugs currently part of clinical
trials in early June, we created a list of 196 unique drugs
to compare our results against [28]. For the above query
considering the top 150 isoform sequences most similar to the
SPIKE SARS2 protein, the results returned by the knowledge
graph include 91 of the 196 compounds (46%). The significant
overlap between compounds found by the reverse query with
the clinical trials list also helps define the range of scores
that could be considered interesting. Since the proteins found
by the reverse query all have similarity scores between 0.183
and 0.20, it seems reasonable that compounds targeting other
proteins with scores in the same range could have a beneficial
impact against COVID-19 as well.

3) A New Hypothesis - Tetanus: One potentially interesting
result returned by the reverse query using the SPIKE SARS2
is tetanus toxin, which has the Uniprot identifier P04958 and
mnemonic TETX CLOTE. The reverse query against the spike
returns TETX CLOTE as the highest match with a similarity
score of 0.20. Given the large rate of asymptomatic positive
COVID-19 cases, which the Centers for Disease Control and
Prevention (CDC) currently estimates to be 40% [29], the
TETX CLOTE result caused one unexpected, but interesting
hypothesis - that the tetanus vaccine could be contributing
to the asymptomatic rate by enabling the immune system
to generate a reasonable response to the virus and reduce
the severity of symptoms. According to the CDC, in 2017
approximately 63.4% of adults 19 and older in the US had
received some form of the tetanus vaccine within the last
10 years as recommended [30], with a notable decline in
individuals greater than 65 years old. While tetanus is caused
by a bacteria and COVID-19 is a virus, there are multiple
examples of heterologous immunity between bacteria and
viruses. This heterologous immunity has at least initially been
attributed to amino acid sequence similarities of T and B cell
epitopes for antigens of different pathogens [31].

The high level of asymptomatic and mild cases in chil-
dren in particular has lead many to consider if a childhood
vaccine is a contributing factor due to the immune response
stimulated by the vaccine [32]. The severity of COVID-19
in children is significantly less than adults and some experts
have reported that over 90% of children who test positive
could be asymptomatic or have only mild symtpoms [33]. The
World Health Organization (WHO) reports that 85% of infants
worldwide receive the recommended 3 doses of diphtheria-
tetanus-pertusis (DTP3) vaccine [34], which correlates well
with the symptom rates of COVID-19 observed in children.
Countries such as Brazil have noted poor vaccination coverage
for DTP3 in a significant percentage of their municipalities
[35], which also correlates with the higher mortality rate seen
in Brazil [36].

Other possibly interesting populations are pregnant women
and prison inmates. A recent study of pregnant women being
universally tested for COVID-19 upon admission for delivery
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found that of the 215 women admitted, 33 were positive and
29 of those 33 (87.9%) were asymptomatic [37], which is
approximately double the rate of the general population [29].
There are two vaccines that pregnant women are recommended
to receive with each pregnancy, which are the influenza
vaccine and the Tetanus toxoid, reduced diphtheria toxoid and
acellular pertussis (TDaP) vaccine [38]. Interestingly, the only
childhood vaccine recommended for pregnant women is TDaP
[38]. Additionally, prison inmates in Arkansas, Ohio, North
Carolina and Virginia also had an asymptomatic rate of 96%
[29]. The vaccination policies for all of these states is not
known. However, North Carolina has a published policy of
keeping inmates up to date on certain vaccines, including
TDaP, further supporting the potential correlation with the
asymptomatic rates [39].

A recent study [40] also utilized sequence similarity be-
tween the COVID-19 Spike protein and proteins involved
in viruses targeted by childhood vaccines to determine if a
childhood vaccine could help against COVID-19. Based on the
sequence similarities, the authors hypothesize that the MMR
vaccine could provide protection against COVID-19 and may
explain why children are less susceptible. The Uniprot identi-
fiers for the proteins in that study are Q786F3 (Measles virus
strain Ichinose-B95a) and P08563 (Rubella virus strain M33)
[7]. Using the Clustal Omega alignment program available
from Uniprot [7], the Q786F3 protein has a sequence identity
and similarity percentage with the SPIKE SARS2 protein
of 6.87% and 31%, respectively. The P08563 protein has a
sequence identity and similarity percentage of 10.68% and
24%, respectively. By comparison, the TETX CLOTE protein
using the same tool has a sequence identity and percentage
similarity with the SPIKE SARS2 protein of 12.78% and
30%, respectively.

To further test the potential similarity between the
TETX CLOTE and SPIKE SARS2 proteins, the similarity
query was used with TETX CLOTE supplied as the protein
of interest rather than SPIKE SARS2. The same threshold of
0.2 was used in the query. As expected, the SPIKE SARS2
was found with the same 0.20 similarity. Additionally, there
are three other coronavirus proteins that show up in the tetanus
results for the given threshold, which are shown in Table IV:

TABLE IV
ADDITIONAL SPIKE GLYCOPROTEINS WHICH SHOW HIGH SIMILARITY TO

TETANUS

Protein Mnemonic Scientific Name Score
A0A023PTS3 A0A023PTS3 CVHSA Rhinolophus affinis coronavirus 0.203
A0A023PUW9 A0A023PUW9 CVHSA Rhinolophus affinis coronavirus 0.203
A0A0U2IWM2 A0A0U2IWM2 9BETC SARS-like coronavirus WIV16 0.2

The first two for ”Rhinolophus affinis coronavirus” are
important because a recent study found a SARS strain from
2013, SARSr-Ra-BatCoV-RaTG13, with a 96.1% genomic
identity to COVID-19 that was reported in Rhinolophus affinis
bats [41]. The authors use this identity and other similar
identities to bat SARS strains to illustrate the possible bat
origin of COVID-19. These results further support the possible

bat origin and validate the SW method utilized to find similar
proteins as part of a query.

B. Database Performance

To facilitate COVID-19 research, the Life Science knowl-
edge graph was hosted on a small number of the larger internal
Cray XC-40 development systems. These systems primarily
contained a mix of Intel Broadwell, Skylake and Cascade Lake
processors. The files containing the N-Triples used to build the
database as well as the built database are stored on the attached
Lustre filesystem and striped to match the available number
of object server targets (OSTs) in the file system.

The performance results in this section were run on an
internal 370 node XC-40 development system (336 compute
nodes, 34 service nodes) with a mix of dual-socket 48-
core Skylake nodes, and 48-core and 56-core Skylake nodes,
ranging in frequency from 2.1-2.4GHz. The majority of these
nodes have 192 GB DDR-2666 memory but 63 of the Cascade
Lake nodes have the larger 384 GB DDR4-2933 memory. The
attached Lustre file system is a Sonexion CS-L300N system
with 8 OSTs providing 655 TB of storage. Database build
and load times are dominated by I/O performance to/from the
Lustre filesystem so I/O system performance is an important
consideration. Query execution time reported is the strict query
time and does not include the time required for writing the
results to the Lustre file system which is common practice.

1) Database Build: As previously mentioned in the CGE
background section, the first step done by CGE is to build a
database from a set of input N-Triple/N-Quad files to produce
the compiled database in the representation used by the query
engine. The raw N-Triples input files used for the life sciences
database are 28.29 TB on Lustre. The build process is handled
by the dictionary component of CGE and consists of several
steps, which are outlined in Table V along with the times (in
seconds) for each step.

TABLE V
TIMES OF BUILD STEPS FOR LIFE SCIENCES DATABASE

Build Step 128 nodes x 16 images per node 256 nodes x 16 images per node
Times (seconds) Times (seconds)

Read 1937.04 1613.16
Ingest 385.10 180.61
Sync 54.88 27.34

Update 380.87 154.35
Total Build 2757.89 1975.46
Checkpoint 422.09 375.35

As the numbers show, the build time for the database is
dominated by the time to read the raw N-Triples files from
Lustre, which is expected. The times for the remaining build
steps (i.e., Ingest, Sync and Update) scale well from 128 (2048
images) to 256 nodes (4096 images). A checkpoint of the
built database is written to Lustre so subsequent restarts of
CGE with the same database can load the compiled database
rather than having to ingest the raw N-Triples again. The built
database is only ∼5.4 TB on disk, versus the ∼28.29 TB
of raw N-Triples, and CGE can be restarted with the built
database in approximately 568 seconds on 256 nodes with 16
images per node.
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2) Spike Similarity Query: The first query used to test the
performance of CGE with the life sciences knowledge graph
was the similarity query from listing 2. This query searches the
known proteins from Uniprot that met certain conditions, such
as having a sequence value and a recommended name, and
compares them to the sequence value for the SPIKE SARS2.
The similarity query finds 49,299,877 protein sequences to
compare against the SPIKE SARS2 sequence. Table VI shows
the times for computing the SW calculations for the 49.3
million protein sequences as well as the total query time when
executing on 128 and 256 nodes using either 16 or 32 images
per node.

Looking at the times for the SW calculations we observe
that the time to compute similarity scales well by both image
count (i.e., cores) as well as node count. This is attributed
to the fact that calculation is independent of the others so
all images can compute the calculations for a subset of the
protein sequences in parallel. The scaling also highlights the
advantage of utilizing the SW calculation within the massively
parallel context of CGE. If a knowledge graph executing on a
single process performed the same SW calculations it would
take ∼21,709 seconds (i.e., 10.6 x 2048), essentially making
the query impossible in a serial context. The strict query
times do show reasonable scaling from 128 to 256 nodes, at
least at 16 images per node, but the scaling of the query is
limited by performance limitations of the GROUP operator.
Since the similarity scores are rounded to three decimal places
there are a large number of repeat values, which need to
be removed when storing the values as new variables within
CGE (i.e., ?sim query variable). Due to how CGE distributes
these new variables across images the large number of repeats
can result in several images waiting for a small number of
images to finish processing the values they will store. Further,
the query scaling is also related to the recent performance
improvement made to enable operations such as GROUP and
FILTER to fetch the required strings as blocks, rather than
individually. The protein sequences can be quite long, ranging
from hundreds to several thousand amino acids, so the fetching
of these long strings as blocks from remote processes is
crucial to prevent communication overhead from dominating
the query performance.

3) Spike Reverse Query: The next query used to test the
performance of CGE on the life sciences knowledge graph was
the reverse query from list 3. This query starts at the protein
sequence for SPIKE SARS2 and searches for similar proteins
that are targets of acceptable compounds that have the desired
affect (i.e., inhibitory). The reverse query is considerably more
complex than the similarity query because of the number of
joins that must be done on the large intermediate results to
find only the proteins or compounds that are desired. While
the complex joins impacts the overall query time, the extra
conditions imposed by the joins significantly reduces the
number of protein sequences that must be compared. CGE
has been optimized to filter out solutions early in the query
during the scan and join phases by reusing information from
previous portions of the query [8]. This optimization is critical

for reducing the size of the intermediate results that must be
joined, which is essential for not only performance but also
memory requirements for queries as complex as the reverse
query. For the case of the SPIKE SARS2 reverse query, the
number of proteins compared is only 1,165,914, which is
much smaller than the 49.3 million proteins compared in the
similarity query.

As the numbers show in Table VII, the SW times are a
very small portion of the query time due to the abilities of
CGE to leverage information within the knowledge graph to
significantly reduce the number of proteins considered. The
strict query time for the reverse query is more than double
the time for the similarity query, which is expected because
of the larger number of complex joins in the reverse query.
The majority of the strict query time is dominated by the join.
For example, on 256 nodes with 16 images per node the strict
query time is 49.0 seconds and 34.52 seconds of that is spent
doing the joins. Even with the complex joins, the performance
from 128 to 256 nodes scales reasonably well when using 16
images per node (1.82x speedup), but while the query is faster
with 32 images per node the scaling is not as efficient. The
limited scaling with more cores per node is related to memory
access bottlenecks caused by images accessing memory on the
same node but on a different socket.

Since there are no other known large semantic graph engines
capable of loading a real world life science dataset of this
magnitude the performance of CGE cannot be easily compared
with other database engines. However, previous benchmarks
have clearly demonstrated with the standard LUBM trillion
triples dataset that CGE is at least an order of magnitude faster
than any competitor, especially when performing complex
queries [8]. For the case of LUBM the typical benchmark
query is number 9, which does multiple complex joins to
search the dataset for a certain triangular relationship amongst
entities [9].

TABLE VI
SCALING RESULTS FOR SPIKE SIMILARITY QUERY

Nodes Images/Node Total Images Time for Protein Strict Query
(Threads) Similarity calculation (seconds) Time (seconds)

128 16 2048 10.6 27.0
32 4096 5.6 21.6

256 16 4096 5.2 18.2
32 8192 2.7 17.6

TABLE VII
SCALING RESULTS FOR REVERSE QUERY

Nodes Images/Node Total Images Time for Protein Strict Query
(Threads) Similarity calculation (seconds) Time (seconds)

128 16 2048 0.58 89.4
32 4096 0.33 60.0

256 16 4096 0.21 49.0
32 8192 0.08 37.3

4) Scalability Advantages: The performance and scalability
of CGE has been demonstrated in previous studies [8], [10]
as well as in the results discussed above. This performance
at scale is critical when trying to search such large datasets
interactively. While smaller graph engines could be leveraged
to analyze the same data, the time required to perform even
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simple queries would almost certainly be too high to make
the system useful. The ability of CGE to scale to hundreds
of nodes and tens of thousands of images enables very large
datasets to be ingested quickly and searched in seconds, even
when performing the most complex queries across the graph.
This scalability is also very advantageous for UDFs because
it enables domain specific functions, some of which may be
computationally complex, to easily be applied for improved
refinement of the query results. These unmatched capabilities
of CGE [8] give researchers the ability to search very large,
real world datasets in order to find compounds that could be
effectively repurposed in real time.

C. Insights on the Drug Repurposing Problem

While this study focused primarily on the application of the
knowledge graph and SW sequence comparison to COVID-
19, the changes and queries could be applied to any number
of diseases of interest. For example, if the SPIKE SARS2
mnemonic from the similarity query in listing 2 were changed
to U5TGX1 COWPX, which is a Uniprot mnemonic for
cowpox virus, the similarity query could be used to find the
proteins most similar to the given cowpox. In this case, running
that similarity query returns multiple cowpox viruses as the top
three results, followed by a taterapox and then three camelpox
viruses. More interesting results start showing up at number
seven on the similarity list, which is Uniprot mnemonic
V5QZD2 9POXV for the protein V5QZD2 for ”Vaccinia virus
WAU86/88-1”, with a similarity score of 0.892. Vaccinia virus
has been used more for human immunizations than any other
vaccine due to its similarity to variola virus, which is the
causative agent of smallpox [42].

The reverse query could also be used for other diseases
to search for potential drugs that could be repurposed. For
example, replacing the SPIKE SARS2 mnemonic with the
Uniprot mnemonic KITH HHV11, which is for ”Human her-
pesvirus 1” (HHV1), returns Brivudine as the top compound
for inhibiting protein P06479 with a similarity score of 0.984.
Brivudine is known to have a strong antiviral activity against
varicella-zoster virus and herpes simplex virus type 1 [43]. The
top 10 query results are all in fact for various HHV1 proteins
with compounds such as Penciclovir and Acyclovir, which are
known antivirals that target herpes simplex virus type 1 [43],
[44].

These results clearly demonstrate the ability of CGE to
enable the knowledge graph with the SW sequence similarity
UDF to quickly and effectively find potential drugs that could
be repurposed to target a different disease. These abilities of
CGE can allow researchers to interactively search for potential
candidates and apply subject matter expertise to further refine
the query results to possibly increase the effectiveness of re-
targeted drugs.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we discussed the creation of a real world
life science knowledge graph that brought together multiple
terabytes of data from different data sets. We demonstrated

how CGE, a massively parallel semantic graph engine, can
easily ingest and search a graph database of this scale and
enable researchers to perform complex queries across the
datasets in seconds. Further, we showed how the performance
of CGE gives researchers the ability to interactively query the
given database of 155 billion triples to search for potentially
hidden connections between nodes of the graph that would
otherwise be impossible to find.

This paper also discussed recent changes made to CGE to
enable user defined functions that allow users to apply domain
specific expertise to operations such as FILTER, GROUP and
ORDER. Our work focused on leveraging an open source
implementation of the Smith-Waterman sequence similarity
algorithm as a UDF within a query to apply ranking to
proteins targeted by a known compound based on the similarity
to a given reference sequence. Using the SPIKE SARS2
protein as a reference we showed how a query could be
written that enabled CGE to find potential drugs that could be
repurposed for COVID-19 in a matter of seconds. Additionally,
we demonstrated that these abilities of CGE are not specific
to COVID-19 and could easily be used to find potential drugs
to repurpose for other known or new diseases of interest.

Using our two main queries of interest we demonstrated
the strong scaling of the Smith-Waterman function within
a query and showed good overall scaling for the queries
themselves. The scaling tests showed some future areas to
focus on for improving scaling. First, the GROUP operator has
performance bottlenecks caused by too many duplicates being
generated and the queries did not scale as well as desired with
increased core counts. However, even with these limitations
we were able to show good scaling for the complex queries,
further demonstrating the unique capabilities of CGE.

Finally, we have shown that the unique capabilities of CGE,
including massive parallelism, complex query performance
and the scale of data that can ingested, combined with a
protein sequence similarity can enable researchers to quickly
and effectively repurpose existing drugs to target new diseases.
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