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Abstract—In this paper we explore the performance limits
of Apache Spark for machine learning applications. We begin
by analyzing the characteristics of a state-of-the-art distributed
machine learning algorithm implemented in Spark and com-
pare it to an equivalent reference implementation using the
high performance computing framework MPI. We identify
critical bottlenecks of the Spark framework and carefully study
their implications on the performance of the algorithm. In
order to improve Spark performance we then propose a num-
ber of practical techniques to alleviate some of its overheads.
However, optimizing computational efficiency and framework
related overheads is not the only key to performance – we
demonstrate that in order to get the best performance out
of any implementation it is necessary to carefully tune the
algorithm to the respective trade-off between computation time
and communication latency. The optimal trade-off depends on
both the properties of the distributed algorithm as well as

infrastructure and framework-related characteristics. Finally,
we apply these technical and algorithmic optimizations to three
different distributed linear machine learning algorithms that
have been implemented in Spark. We present results using five
large datasets and demonstrate that by using the proposed
optimizations, we can achieve a reduction in the performance
difference between Spark and MPI from 20x to 2x.

I. INTRODUCTION

Machine learning techniques provide consumers, re-

searchers and businesses with valuable insight. The rapid

proliferation of machine learning in these communities has

been driven both by the increased availability of powerful

computing resources as well as the large amounts of data

that are being generated, processed and collected by our

society on a daily basis. While there exist many small and

medium-scale problems that can be easily solved using a

modern laptop, there also exist datasets that simply do not

fit inside the memory capacity of a single machine. In

order to solve such problems, one must turn to distributed

implementations of machine learning: algorithms that run

on a cluster of machines that communicate over a network

interface. There are two main challenges that arise when

scaling out machine learning to tackle large-scale problems.

The first challenge relates to algorithm design: in order to

learn in a distributed environment one must determine how

the training data should be partitioned across the worker

nodes, how the computations should be assigned to each

worker and how the workers should communicate with

one another in order to achieve global convergence. The

second challenge relates to implementation and accessibility.

Well-established high performance computing frameworks

such as Open MPI provide rich primitives and abstractions

that allow flexibility when implementing algorithms across

distributed computing resources. While such frameworks

enable high performance applications, they require relatively

low-level development skills, making them inaccessible to

many. In contrast, more modern frameworks such as Hadoop

and Spark adhere to well-defined distributed programming

paradigms, provide fault tolerance and offer a powerful

set of APIs for many widely-used programming languages.

While these abstractions certainly make distributed comput-

ing more accessible to developers, they come with poorly

understood overheads associated with communication and

data management which can severely affect performance.

In this work we aim to quantify and understand the differ-

ent characteristics of Spark- and MPI-based implementations

and, in particular, their implications on the performance

of distributed machine learning workloads. Our goal is to

provide guidance to developers and researchers regarding

the best way to implement distributed machine learning

applications. Therefore we will proceed as follows:

1) We analyze the performance of a distributed machine

learning algorithm implemented from scratch in both

Spark and MPI. We clearly decouple framework-

related overheads from computational time in order to

study Spark overheads in a language agnostic manner.

2) We propose two techniques for extending the func-

tionality of Spark specifically designed to improve

the performance of machine learning workloads. We

demonstrate that these techniques, combined with C++

acceleration of the local solver, provide over an order

of magnitude improvement in performance.

3) We demonstrate that, in order to achieve optimal

performance using either framework as well as the

proposed extensions, it is crucial to carefully tune

the algorithm to the communication and computation

characteristics of the specific framework being used.
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4) Finally, we study the effect of the proposed Spark

optimizations across five large datasets and apply

them to three different distributed machine learning

algorithms. We show that the performance of Spark

can be improved by close to 10× in all cases.

II. DISTRIBUTED MACHINE LEARNING

In distributed learning we wish to learn a best-fit classi-

fication or regression model from the given training data,

where every machine only has access to its own part of

the data and some shared information that is periodically

exchanged over the network. The necessity of this peri-

odic exchange is what makes machine learning problems

challenging in a distributed setting and distinguishes them

from naively parallelizable workloads. The reason is that

the convergence of machine learning algorithms typically

depends strongly on how often information is exchanged

between workers, while sending information over the net-

work is usually very expensive relative to computation. This

has driven a significant effort in recent years to develop

novel methods enabling communication-efficient distributed

training of machine learning models. In what follows we

will focus on the class of synchronous learning algorithms.

Such algorithms are more suitable for the purposes of this

study than their asynchronous counterparts [1], [2], [3] since

they can be naturally expressed as a sequence of map and

reduce operations and can thus be implemented using the

Spark framework.

A. Algorithmic Framework

We consider algorithms that are designed to solve regu-

larized loss minimization problems of the form

min
α∈Rn

ℓ(Aα) + r(α), (1)

where A ∈ R
m×n denotes the data matrix consisting of m

training samples and n features. The model is parameterized

by the vector α ∈ R
n and ℓ : Rm → R and r : Rn → R

are convex loss and regularization functions respectively.

The data matrix A contains the training samples {r⊤i }
m
i=1

in its rows and hence the features {ci}
n
i=1 in its columns.

The matrix can be partitioned column-wise according to

the partition {Pk}
K
k=1 such that features {ci}i∈Pk

reside

on worker k where nk := |Pk| denotes the size of the

partition. Alternatively, the matrix can be partitioned row-

wise according to the partition {P̂k}
K
k=1, such that the

samples {ri}i∈P̂k
reside on worker k, where mk := |P̂k|.

The model is then learned in an iterative fashion as

illustrated in Figure 1: During one round of the algorithm, a

certain amount of computation is performed on each worker

(1) and the results of this work are communicated back to the

master (2). Once the master has received the results from all

workers it performs an aggregation step (3) to update some

global representation of the model. This information is then

broadcast to all workers (4) and the next round can begin.

Figure 1: Four-stage algorithmic pattern for synchronous

distributed learning algorithms. Arrows indicate the syn-

chronous communication per round.

Let us introduce the hyperparameter H which quantifies the

number of local data vectors that are processed on every

worker during step (1). This will prove to be a useful tuning

parameter allowing users to optimally adapt the algorithm to

a given system. In this paper we will cover three prominent

algorithms that adhere to this strategy in more detail:

CoCoA: We have implemented the COCOA algorithm

as described in [4]. The data is partitioned feature-wise

across the different workers and the regularization term in

(1) is assumed to be separable over the coordinates of α.

Given this partitioning, every worker node repeatedly works

on an approximation of (1) based on its locally available

data. The COCOA framework is flexible in the sense that

any algorithm can be used to solve the local sub-problem.

The accuracy to which each local subproblem is solved is

directly tied to the choice of H . For more detail about the al-

gorithm framework and sub-problem formulations, we refer

the reader to [4]. In our implementation we use stochastic

coordinate descent (SCD) as the local solver, where every

node works on its dedicated coordinates of α. Hence, in

every round, each worker performs H steps of SCD after

which it communicates to the master a single m-dimensional

vector: ∆vk := A∆α[k], where ∆α[k] denotes the update

computed by worker k to its local coordinate vector during

the previous H coordinate steps. ∆v ∈ R
m is a dense

vector, encoding the information about the current state of

α[k], where α[k] itself can be kept local. The master node

then aggregates these updates and determines the global

update v
(t+1) = v

(t) + γ
∑

k ∆vk which is then broadcast

to all workers and all local models are synchronized. We

use γ = 1 for our implementations of COCOA and tune

remaining algorithmic parameters accordingly.

Distributed mini-batch SCD: This algorithm differs

from COCOA only in how the local updates ∆α[k] are

computed. While in COCOA local SCD updates are imme-

diately applied, for mini-batch SCD, every worker computes

the gradient gi for a subset Sk ⊂ Pk of size H of

its local coordinates and then determines the update as

∆vk = −γ
∑

i∈Sk
gici, where γ ∈ R

+ is the stepsize.

The master node aggregates these updates, updates v and

broadcasts this vector back to the workers.



Distributed mini-batch SGD: In contrast to the for-

mer two algorithms, mini-batch stochastic gradient descent

(SGD) requires separability of the loss term in (1) over the

samples and assumes the data to be distributed row-wise.

Then, in every round, each worker computes a gradient over

a subset Sk ⊂ {ri}i∈P̂k
of size H of its local samples.

These gradients are then communicated to the master node

which aggregates them to compute an approximation of the

global gradient g̃ ∈ R
n and perform a gradient step on

α: α
+ := α − γg̃ before the new parameter vector is

broadcasted to the workers.

B. Performance Model

After introducing the hyper-parameter H , the execution

time of a distributed algorithm can be modelled as fol-

lows: Let us denote Nǫ(H) the number of rounds needed

to achieve a suboptimality of ǫ given H and Tǫ(H) the

corresponding execution time. Then, we can write

Tǫ(H) = Nǫ(H) (t1 + t2H) , (2)

where t1 denotes the fixed overhead of a single round

(including communication and aggregation cost), and t2
denotes the execution time to perform a single update on

the worker. Since Nǫ(H) is a decreasing function in H
there is an optimal value H⋆ minimizing the execution time

Tǫ in a given setting. As we will demonstrate this optimal

value is very sensitive to the specific infrastructure the

algorithm is executed on. While finding a general function

from for Nǫ(H) that can be used to model convergence

for any dataset and/or algorithm remains an interesting

research topic we will provide a model for COCOA in our

experimental setup in Section VI.

III. PROGRAMMING FRAMEWORKS FOR DISTRIBUTED

COMPUTING

There exist many different programming frameworks and

libraries that are designed to simplify the implementation

of distributed algorithms. In this work we will focus on

Spark, due to its widespread use, and compare it to the well

established MPI framework.

A. Spark

Apache Spark [5] is an open source general-purpose

cluster computing framework developed by the AMP lab

at the University of California, Berkeley. The core concept

underpinning Spark is the resilient distributed dataset (RDD)

which represents a read-only collection of data elements,

spread across a cluster that can be operated on in parallel.

With this abstraction, Spark allows the developer to describe

their distributed program as a sequence of high level opera-

tions on RDDs without being concerned with scheduling,

load-balancing and fault tolerance. The core of Spark is

written in Scala, runs on the Java virtual machine (JVM) and

offers a functional programming API to Scala, Python, Java

and R. The Python API is called pySpark and exposes the

Spark programming model to Python. Specifically, the local

driver consists of a Python program in which a Spark context

is created. The Spark context communicates with the Java

virtual machine (over py4J) which in turn is responsible for

initiating and communicating with Python processes.

B. MPI

Message Passing Interface (MPI) [6] is a language-

independent communication protocol for parallel computing

that has been developed for high-performance computing

(HPC) platforms. It offers a scalable and effective way of

programming distributed systems consisting of up to tens of

thousands of nodes. MPI allows application programmers to

take advantage of problem-specific load-balancing, commu-

nication optimization techniques and various different ways

of enabling fault-tolerance for distributed applications. How-

ever, this typically requires a significant amount of manual

work and advanced understanding of the algorithms, MPI’s

library functions, and the underlying network architecture.

IV. IMPLEMENTATION DETAILS

To understand the characteristics of the aforementioned

programming frameworks and their implications on the

performance of distributed learning, we have chosen the

COCOA algorithm [4] as a representative example and im-

plemented it from scratch on Spark, pySpark and MPI. In our

implementations these programming frameworks are used

to handle the communication of updates between workers

during the training of COCOA. Mathematically, all of the

following implementations are equivalent but small differ-

ences in the learned model can occur due to randomization

and slight variations in data partitioning, which needs to

be implemented by the developer in the case of MPI. As

an application we have chosen ridge regression because

the least squares loss term, as well as the Euclidian norm

regularizer, are separable functions, which allows us to apply

and later compare all of the three algorithms mentioned in

Section II-A.

A. Implementations

(A) Spark: We use the open source implementation of

Smith et al. [7] as a reference implementation of COCOA.

This implementation is based on Spark and entirely written

in Scala. The Breeze library [8] is used to accelerate sparse

linear algebra computations. As Spark does not allow for

persistent local variables on the workers, the parameter

vector α needs to be communicated to the master and back

to the worker in every round, in addition to the shared

vector v – the same applies to the following three Spark

implementations.

(B) Spark+C: We replace the local solver of implemen-

tation (A) by a Java native interface (JNI) call to a compiled

and optimized C++ module. Furthermore, the RDD data

structure is modified so that each partition consists of a

flattened representation of the local data. In that manner,



one can pass the local data into the native function call as

pointers to contiguous memory regions rather than having

to pass an iterator over a more complex data structure. The

C++ code is able to directly operate on the RDD data (with

no copy) by making use of the GetPrimitiveArrayCritical

functions provided by the JNI.

(C) pySpark: This implementation is equivalent to that

of (A) except it is written entirely in Python/pySpark. The

local solver makes use of the NumPy package [9] for fast

linear algebra.

(D) pySpark+C: We replace the local solver of imp-

lementation (C) with a function call to a compiled and

optimized C++ module, using the Python-C API. Unlike

implementation (B) we did not flatten the RDD data struc-

ture since this was found to lead to worse performance in

this case. Instead, we iterate over the RDD within the local

solver in order to extract from each record a list of NumPy

arrays. The list of NumPy arrays is then passed into the C++

module. The Python-C API allows NumPy arrays to expose

a pointer to their raw data and thus the need to copy data

into any additional C++ data structures is eliminated.

(E) MPI: The MPI implementation is entirely written

in C++ using the same code for the local solver used

in (B) and (D). To initially partition the data we have

developed a custom load-balancing algorithm to distribute

the computational load evenly across workers, such that
∑

i∈Pk
‖ci‖0 is roughly equal for each partition. This was

found to perform comparable to the Spark partitioning.

B. Infrastructure

All our experiments are run on a cluster of 4 physical

nodes interconnected in a LAN topology through a 10Gbit-

per-port switched inter-connection. Each node is equipped

with 64GB DDR4 memory, an 8-core Intel Xeon∗ E5

x86 64 CPU and solid-state disks. The software configu-

ration of the cluster is based on Linux∗ kernel v3.19, MPI

v3.2, and Apache Spark v2.2. We use the Open MPI branch

of MPI. Spark is configured to use 8 Spark executors with

24 GB of memory each, 2 on each machine. Furthermore,

Spark does not use the HDFS filesystem; instead SMB

sharing directly over ext4 filesystem I/O is employed. While

this decision may occasionally lead to reduced performance

in Spark, it eliminates I/O measurement delay-variation

artifacts which enables a fairer comparison with MPI since

all overheads measured are strictly related to Spark.

V. ANALYSIS AND OPTIMIZATION OF SPARK

In the first part of this section we analyze the performance

of the different implementations of the COCOA algorithm

discussed in Section IV-A by training the ridge regression

model on the publicly available webspam dataset [10].

A. Spark overheads

We start by extracting the computational time from the

total run time for the individual implementations. Therefore

we fixed the number of rounds, as well as H , and measured,

for each implementation, the total execution time (Ttot), as

well as the time spent computing on each worker (Tworker)

and the time spent computing on the master (Tmaster). We

denote Toverhead := Ttot − Tworker − Tmaster which measures

overheads related to communications including data transfer

as well as serialization/deserialization overheads. The results

are displayed in Figure 2.

We observe that the performance of the Spark (A) and

pySpark (C) implementations is vastly dominated by the

time spent in the local solver. While the code written

in Scala performs significantly better than the equivalent

Python implementation, both can be accelerated significantly

by replacing the local solver with C++ modules. Thereby, the

local execution time of the Spark implementation is reduced

by a factor of 6 and the execution time of the pySpark

implementation by more than 2 orders of magnitude. The

local execution time of the C++ code is roughly the same

for implementation (B), (D) and (E) up to some internal

overheads of the JNI. Leaving the language-dependent dif-

ferences in execution time aside, focusing on the overheads

and subtracting the actual communication cost, as measured

in the MPI implementation (3% of the total execution time),

we can accurately quantify the framework-related overheads

of Spark (and pySpark). We can see that the overheads of the

pySpark implementation (C) are 2× larger than those of the

reference Spark implementation (A) written in Scala. This

performance loss of pySpark was also observed in earlier

work [11] and can be attributed to the Python API which

introduces additional serialization steps and overheads asso-

ciated with initializing Python processes and copying data

between the JVM and the Python interpreter. Furthermore,

we see that calling the C++ modules from Python adds some

additional overhead on top of the pySpark overhead, which

can be attributed to the large number of Python-C API calls

that are required. However, despite the slight increase, these

additional overheads are negligible compared to the gain in

execution time achieved by offloading the local solver into

C++. For Scala we do not see the same increase in overheads

and, in fact, observe the opposite behavior. We believe that

0 100 200 300 400 500 600 700
. . .

12000

(E)

(D)

(C)

(B)

(A)

time [s]

Tmaster Toverhead Tworker

Figure 2: Total run time for 100 iterations with H = nk split

into compute time and overheads for the Spark implemen-

tations (A) and (B), the pySpark implementations (C) and

(D) and the MPI implementation (E).



this improvement can be attributed to the flattened RDD

data format that was implemented when adding the C++

modules in Scala. This structure was explicitly designed to

minimize the number of JNI calls. We can see that this

flattened data format brings a large benefit: overheads are

reduced by a factor of 3. We have also implemented the

flattened format in Python but we were not able to achieve

a similar improvement.

B. Reducing Spark Overheads

Before we further analyze the implications of the over-

heads of the Spark framework on the achievable performance

of COCOA we will propose two techniques for extending

the functionality of Spark so that these overheads can be

somewhat alleviated for distributed learning algorithms.

Persistent Local Memory: Spark does not allow for

local variables on the workers that can persist across stage

boundaries, that is, the algorithm rounds. Thus the COCOA

algorithm, as well as mini-batch SCD, require additional

communication when implemented in Spark since it is not

possible for workers to store their dedicated coordinates

of α locally. As a consequence, in addition to the shared

vector, the α vectors need to be communicated to the master

and back in every stage of the algorithm, thus increasing

the overhead associated with communication. However, it

is relatively straightforward to provide such functionality

from within the C++ extension modules. Globally-scoped

arrays can be allocated upon first execution of the local

solver that store the local α vectors. The state of these

arrays persists into the next stage of execution in Spark, and

thus the additional communication is no longer necessary.

It should be noted that this extension comes at the expense

of a violation of the Spark programming model in terms of

consistency of external memory with the lineage graph.

Meta-RDDs: For the Python implementations in par-

ticular, there is a significant overhead related to the RDD

data structure. It is possible to overcome this overhead by

following an approach similar to that in [12] and working

with RDDs that consist purely of meta-data (e.g. feature

indices) and handling all loading and storage of the training

data from within underlying native functions. While some

additional effort is required to ensure data resiliency, Spark is

still being used to schedule execution of the local workers,

to collect and aggregate the local updates and broadcast the

updated vectors back to the workers.

We have implemented these two features for both the

Scala and the Python-based implementations of COCOA. In

Figure 3 we compare the execution time and the overheads

of these optimized implementations (B)∗ and (D)∗ with the

corresponding implementations that only make use of native

functions. We observe that our two modifications reduce

overheads of the Scala implementation (B) by 3× and those

of the Python implementation (D) by 10×. For the Scala

implementation, the overall improvement due to using the

0 50 100 150 200 250

(E)

(D)⋆
(D)

(B)⋆
(B)

time [s]

Tmaster Toverhead Tworker

Figure 3: The performance of the optimized implementations

(B)⋆ and (D)⋆: by introducing persistent local variables and

meta-RDDs we are able to significantly reduce the overheads

of Spark relative to MPI.

meta-RDDs is small and most of the gain comes from

introducing local memory and thus reducing the amount

of data that needs to be communicated. However, for the

Python implementation the effect of using meta-RDDs is far

more significant. This is most likely due to the vast reduction

in inter-process communication that has been achieved. It is

worth pointing that the concept of meta-RDDs has additional

applications and implications since similar techniques have

been used to overcome some of the limitations of Spark,

such as using GPUs inside Spark [13].

VI. TRADING OFF COMMUNICATION VS. COMPUTATION

We have seen in Figure 2 that the implementations (A)-

(E) suffer from different computational efficiency and over-

heads associated with communication and data management.

These are reflected by t2 resp. t1 in our model objective

(2). Hence, to optimize performance, i.e., minimize Tǫ, for

the different implementations, it is essential to optimize

the hyper-parameter H separately for each implementation

to account for these different costs of communication and

computation. In this section we will study how the parameter

H can be used to control this trade-off for distributed

implementations of machine learning and demonstrate the

range of improvement an algorithm developer can expect

when taking this approach.

In Figure 4a we show the time measured to achieve

a suboptimality of 10−3 as a function of H for the five

different implementations of COCOA (A)-(E). We see that

there is indeed an optimal trade-off for every implementation

and the optimal value of H varies significantly among the

different implementations of the same algorithm on the

same hardware. Hence, in order to get the best performance

out of every implementation, it is crucial that H be tuned

carefully. Failure to do so may degrade performance dramat-

ically. Indeed, we can see that the best performance of the

pySpark implementation is achieved for H = 0.2nk, i.e.,

every worker performs 0.2nk coordinate updates in every

round. However, for the accelerated pySpark implementation

(D) the optimal value of H is more than 25× larger.

This is because, in implementation (D), the computational

cost is significantly reduced relative to the vanilla pySpark
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implementation (see Figure 2) and we can afford to do more

updates between two consecutive rounds of communication,

thus obtaining a more accurate solution to the local sub-

problems. Hence, if the algorithm was not adapted when

replacing the local solver by C++ modules, the gain observed

would be only 15× instead of 75×. Also, comparing imple-

mentation (D) to the MPI implementation (E) for which the

computation cost is the same but communication is much

cheaper, we see a similar difference. While the overheads

are less significant, the same reasoning applies to the Scala

implementations. These results demonstrate that introducing

a tunable hyper-parameter to trade-off communication and

computation when designing a distributed learning algorithm

is crucial for its applicability in practical environments.

A. Theoretical Analysis

To better understand this trade-off illustrated in Figure 4a

we recall the performance model introduced in Section II-B.

For the algorithm and dataset under discussion, Nǫ(H) can

accurately be modelled by:

Nǫ(H) =
a

H
+ b, (3)

where a, b ∈ R are constants. Combining (2) with (3) and

optimizing for H yields

Hopt = c
√

t1/t2

for some constant c ∈ R. Hence, for this algorithm and

dataset, the optimal value H is proportional to the square-

root of the ratio between communication and computation

cost, which could easily be measured as part of a pre-training

phase. In Figure 4b we show that this theoretical estimate

precisely agrees with the measurements from Figure 4a.

VII. PERFORMANCE EVALUATION

We start by comparing the performance of the five

implementations (A)-(E) presented in Section IV-A for

individually optimized values of H , see Figure 4c. We

observe that this optimization amplifies the performance

differences observed in Figure 2. The comparison between

implementation (B), (D) and (E) is of particular interest,

because in these implementations the computations on the

workers are unified in order to eliminate language dependent

differences in computational efficiency. Hence, the gap in

performance between (B) and (D) can solely be attributed to

the overheads of using the Python API to Spark. Similarly,

the performance difference between implementations (B),

(D) and the MPI implementation (E) can be attributed to

framework related overheads of Spark resp. pySpark over

MPI. It is worth mentioning that when comparing (E) to

(A) instead, more than half of the performance gap is due

to the local solver computation being more efficient in C++

than Scala.

By implementing the extensions suggested in Section

IV-A in addition to the C++ modules we managed to

further improve the Spark performance by 25% and the

pySpark performance by 63%. This is shown in Figure 5a.

We would like to emphasize that while reducing overheads

improves performance by reducing the absolute time spent

communicating, it provides the additional benefit that the

value of H can be reduced and thus communication fre-

quency is increased, resulting in faster convergence of the

algorithm. Without being offered the possibility of tuning H
we would only be able to achieve 50% of the performance

gain observed by implementing our extensions. Thus, by

combining our optimizations we can reduce the performance

gap between Spark, resp. pySpark, and MPI from 10×,

resp. 20× to an acceptable level of less than 2×. While we

acknowledge that this performance improvement has come at

the expense of implementation complexity, these extensions

could be integrated within a new or existing Spark library

and thus effectively hidden from the developer building a

larger machine learning pipeline.

The proposed techniques to improve the performance

of distributed machine learning executed on frameworks

such as Spark do not only apply to COCOA. In fact,

these techniques can be useful for any algorithm fitting the

synchronous pattern of communication described in Figure

1. To illustrate this, we have implemented mini-batch SGD

and mini-batch SCD using the proposed optimizations and,

in Figure 5b, compare the performance to a reference Spark
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Figure 5: Proposed Spark optimizations: Performance results

implementation of both algorithms as well as the COCOA

implementations (A), (B)⋆ and (E) that have been previously

examined. To implement mini-batch SCD, we modified

the local solver of the COCOA implementations so that a

mini-batch coordinate update is computed in each round.

For mini-batch SGD, we modified the data partitioning to

distribute the data by samples, and used as a reference the

implementation provided by Spark MLlib. Optimized Spark

and MPI implementations were also developed. The stepsize

has been carefully tuned for mini-batch SGD and mini-batch

SCD. We observe that COCOA performs better than the

two other algorithms, which is consistent with the results

in [4]. The gain from our proposed improvements to Spark

is significant for all three algorithms, but for COCOA we

get significantly closer to the performance of MPI than for

mini-batch SCD and mini-batch SGD. This is because the

two other algorithms have different convergence properties

(captured by Nǫ(H)) and require more frequent communica-

tion to achieve convergence. Hence, the overheads associated

with communication – which are larger for Spark than for

MPI – have a bigger effect on performance.

Finally, we evaluate the performance for the best of

the three algorithms (COCOA) across a range of different

datasets. In Table I we present the training time for the

Spark reference implementation (A), our optimized imple-

mentation (B)⋆ and the MPI implementation (E) for five

different datasets. We could not run the reference Spark

code for the kdda dataset on our cluster because it ran

out of memory due to the large number of features. We

observe that by using the proposed optimizations the average

performance loss of Spark relative to MPI has been reduced

from approximately 20× to around 2×.

VIII. RELATED WORK

There have been a number of previous efforts to study the

performance of Spark and its associated overheads. In [14]

a study was performed comparing the performance of large-

scale matrix factorization in Spark and MPI. It was found

that overheads associated with scheduling delay, stragglers,

serialization and deserialization dominate the runtime in

Spark, leading to significantly worse performance relative to

MPI. The performance of Spark was also studied in [15] for

a number of data analytics benchmarks and it was found that

time spent on the CPU was the bottleneck and the effect of

improved network performance was minimal. The difference

in performance between Spark and MPI/OpenMP was fur-

ther examined in [16] for the k-nearest neighbors algorithm

and support vector machines; the authors concluded that

MPI/OpenMP outperforms Spark by over an order of mag-

nitude. Our work differs from these previous studies [14],

[15], [16] in that they consider a fixed algorithm running on

different frameworks, whereas we optimize the algorithm to

achieve optimal performance for any specific framework and

implementation, which we have demonstrated to be crucial

for a fair analysis of machine learning workloads.

An approach to address Spark’s computational bottle-

necks, in a similar spirt to our extensions suggested in Sec-

tion V-B. was proposed in [17]. The authors suggest a high-

performance analytics system which they call Tupleware.

Tupleware focus on improving the computation bottleneck

of analytics tasks by automatically compiling user-defined

function (UDF) centric workflows. In this context, a detailed

comparison to Spark is provided in a single node setting,

demonstrating the inefficiencies introduced by high-level

abstractions like Java and iterators. While they suggest a

novel analytics platform, our extensions aim to improve the

performance of algorithms within a given framework.

The fundamental trade-off between communication and

computation of parallel/distributed algorithms has been

widely studied. It is well known that there is a fundamental

limit to the degree of parallelization, after which adding

nodes slows down performance. In the context of large-scale

machine learning this behavior has been modelled in [18]

aiming to predict a reasonable cluster size. While such a

model assumes increasing framework and communication

overheads with the number of nodes in a cluster, their

assumptions about algorithmic behavior are not reflective of

the properties of iterative distributed algorithms, where con-

vergence strongly depends on the communication frequency.



Table I: Spark optimizations of COCOA for different datasets

Dataset # samples # nonzero features time [s] to reach suboptimality 10−3 slow-down vs. MPI
Spark Spark optimized MPI Spark Spark optimized

news20-binary 19996 1355191 29.92 2.26 0.70 42.73 3.23
webspam 262938 680715 205.24 29.11 16.39 12.52 1.78

E2006-log1p 16087 4265669 610.444 83.04 66.06 9.24 1.26
url 2396130 3230442 1582.78 216.96 118.22 13.39 1.84

kdda 8407752 19306083 – 184.51 79.68 – 2.32

IX. CONCLUSIONS

In this work we have demonstrated that vanilla Spark

implementations of distributed machine learning can exhibit

a performance loss of more than an order of magnitude

relative to equivalent implementations in MPI. A large

fraction of this loss is due to language dependent overheads.

After eliminating these overheads by offloading critical com-

putations into C++, combining this with a set of practical

extensions to Spark and effective tuning of the algorithm,

we demonstrated a reduction in this discrepancy with MPI

to only 2×. We conclude that in order to develop high-

performance, distributed machine learning applications in

Spark as well as other distributed computing frameworks, it

is not enough to optimize the computational efficiency of the

implementation. One must also carefully adapt the algorithm

to account for the properties of the specific system on

which such an application will be deployed. For this reason,

algorithms that offer the user a tuning parameter to adapt

to changes in system-level conditions are of considerable

interest from a research perspective.
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