
An Algebra for Semantic Interoperability of Information Sources

Prasenjit Mitra, and Gio Wiederhold
Infolab, Stanford University
Stanford, CA, USA 94305

fmitra, giog@db.stanford.edu�

Abstract

Resolving heterogeneity among the various biological
information systems is a crucial problem if we wish to gain
value from the many distributed resources available to us.
For example, information from multiple protein databases
(e.g., Swiss-Prot and PDB) might need to be composed to
answer queries posed by end-users. Problems of hetero-
geneity in hardware, operating systems, interfaces and data
structures have been widely addressed, but issues of diverse
semantics have been handled mainly in an ad-hoc fash-
ion. This paper highlights the ONION (ONtology compo-
sitION) system that enables semantic interoperation among
various information sources by articulating the ontologies
associated with them. An articulation focuses on the seman-
tically relevant intersection of information resources. Al-
though the generation of articulations (semantic correspon-
dences between the ontologies) cannot be fully automated,
we take a semi-automatic approach. ONION uses heuristic
algorithms for the automatic generation of suggested articu-
lations. This paper outlines an algebra for ontology compo-
sition based on their articulations. We show the properties
of the algebraic operators and how they depend upon the
articulation functions that generate the articulations. Query
optimization is enabled based on the properties of the alge-
braic operators.

1. Introduction

A large number of diverse bio-information sources are
available today. The future of the biological sciences
promises the generation of more and more data. No individ-
ual source will provide us with answers to the queries that
we will need to ask. Instead, knowledge has to be composed
from multiple sources in order to answer most queries. Even
though multiple databases may cover the same data, their
focus might be different. For example, even though SWISS-
PROT, PDB are both protein databases, we might want to

get informatioin about the sequence as well as the structure
of a particular protein. In order to answer the query we will
need to get data about the protein from both the sources and
combine them in a consistent fashion.

On a larger scale, semantic interoperation needs to be
enabled among communities, e.g. neuroinformatics and
genomics data needs to be linked [1]. The Human Brain
Project Home page [2] at the National Institute of Mental
Health starts with the statement:

Understanding brain function requires the inte-
gration of information from the level of the gene
to the level of behavior. At each of these many
and diverse levels there has been an explosion of
information, with a concomitant specialization of
scientists. The price of this progress and special-
ization is that it is becoming virtually impossi-
ble for any individual researcher to maintain an
integrated view of the brain and to relate his or
her narrow findings to this whole cloth. Although
the amount of information to be integrated far ex-
ceeds human limitations, solutions to this prob-
lem are available from the advanced technologies
of computer and information sciences.

Enabling interoperation among bio-information sources is,
thus, a critical problem for sustainable and fast progress in
the biological sciences.

Researchers in bioinformatics have long identified the
need of interoperation among large databases, knowledge-
bases and other available information sources, especially,
on the World-Wide Web. Despite advances, even today, in-
teroperation among information sources on the web in the
biological sciences is enabled by hypertext links between
related sources. The onus is on the end-user to navigate
the links meaningfully to collect the necessary information.
With the proliferation of high-quality information sources,
it will soon not be possible for sources to link meaning-
fully to all other related sources - especially since the data
and the structure of web-sources change rapidly. Not only

1

is the process of collating information manually extremely
tedious and time-consuming, but also, often, the end-user
does not have any idea of the semantics used by the builder
of the information source.

Therefore, we need efficient tools that enable interop-
eration among biological information sources with mini-
mal amount of human intervention. Karp [3] has identified
the several approaches that have been proposed and imple-
mented by bioinformatics researchers and proposes a strat-
egy for database interoperation. We extend Karp’s approach
to apply to not only databases, but also to knowledge bases
and other information sources.

In this paper, we present a brief overview of the ONION
(ONtology compositION) system, which takes a principled
approach to enable semi-automatic interoperation among
heterogeneous information sources. As in [4], [5], and
[3], we assume that information sources are independently
created and maintained. In Karp’s system, each database
comes with a schema which is saved in a Knowledge Base
of Databases(KoD). Correspondingly, we assume that asso-
ciated with each information source is an ontology. How-
ever, we do not require all ontologies to be saved in a central
repository like the KoD.

In the recent years, several ontologies have been devel-
oped in the biological sciences e.g., [6] (for a comprehen-
sive list see [7]). The ontologies associated with informa-
tion sources are based on some existing, known vocabu-
laries and conceptual models. Native drivers and wrappers
provide access to the ontologies and help us restructure the
information if needed.

We establish application-specificarticulation rules -
rules that establish correspondence between concepts in
different ontologies - semi-automatically. ONION suggests
articulation rules that are generated by an automaticartic-
ulation generator. The articulation rules are then verified
by an expert and stored for use while answering queries or
composing information from the sources. The system logs
the expert’s response, and adapts the algorithms based upon
the feedback so as to produce better suggestions for articu-
lations for similar applications.

The contributions of this work are as follows:

� ONION saves only the articulations, which are much
smaller than the source ontologies or schemas (since
they are application-specific), in a central repository.

� ONION uses several heuristic algorithms that suggest
articulations (between ontologies), which are then rat-
ified by an expert using a GUI tool.

� Query optimization is enabled based on an ontology-
articulation algebra. We outline the properties of the
algebraic operations that determine whether operands
can be rearranged in order to boost performance.

The ONION approach to interoperation has several ad-
vantages. First, only as much information as is absolutely
necessary is maintained in the central repository. This dis-
tributed philosophy results in a more scalable, available, and
updatable system. Second, the automated articulation gen-
erator takes away a lot of manual effort for the generation
of simple rules. The domain expert can then provide the
more complex rules and use a simple GUI to ratify the gen-
erated ones. The system learns from the expert and gener-
ates better and better articulations. Third, the establishment
of an algebraic framework enables us to get a better insight
on 1) how information can be composed systematically, 2)
how the articulation generator determines this composition,
and 3) how queries can be optimized based on the proper-
ties of the articulation generator. To the best of our knowl-
edge, such an algebraic framework has not been considered
in prior works on interoperation.

The rest of the paper is organized as follows. In Section
2, we describe the common conceptual model that ONION
uses for its internal representation of ontologies. In Section
3 we discuss the semi-automatic articulation of ontologies.
In Section 4 we outline an Ontology Algebra that we use
to compose information from diverse sources. Section 5
concludes the paper.

2. TheONION Conceptual Model

We need to resolve the heterogeneity among informa-
tion sources to enable meaningful information exchange or
interoperation among them. The two major sources of het-
erogeneity among the sources are as follows: First, diffe-
rent sources use different conceptual models and modeling
languages to represent their data and meta-data. Second,
sources using the same conceptual model differ in their se-
mantics. The ONION system uses a common ontology for-
mat, which we have described below. It first converts all ex-
ternal ontologies to this common format and then resolves
the semantic heterogeneity among the objects in the ontolo-
gies that we seek to articulate.

Melnik, et al., [8] have shown how to convert ontolo-
gies and different classes of conceptual models into those
using one common format. For example, say one informa-
tion source uses UML [9] and another uses DAML+OIL
[10]. ONION will convert the ontologies associated with
both information sources to the ONIONconceptual model
described below. Since the number of classes of such con-
ceptual models that are in use and that we want to support
is small, we will provide wrappers, which will convert from
these models to the ONION format.

Information sources were, are, and will be modeled us-
ing different conceptual models. We do not foresee the cre-
ation of ade factostandard conceptual model that will be
used by all information sources. On the other hand, we need

2

a common ontology format for our internal representation.
We use the ONION format to represent the source ontolo-
gies and manipulate them to create the articulation ontol-
ogy. The design choices for the conceptual model that we
will transform the various source ontologies to range from
the least common denominator of the different conceptual
models used by the various sources to the greatest common
multiple of them. Instead of choosing a model that has var-
ious complex features that capture the intricacies of all the
conceptual models, we strive to keep our model simple.

2.1. A Graph-Oriented Conceptual Model

Our common conceptual model for the internal represen-
tation of ontologies is based on the work done by Gyssens,
et al.,[11]. In its core, we represent an ontology as a graph.
Formally, an ontologyO = (G;R) is represented as a di-
rected labeled graphG and a set of rulesR. The graph
G = (V;E) comprises a finite set of nodesV and a finite
set of edgesE. The label of a node is given by a a non-
null string. In the context of ontologies, the label is often a
noun-phrase that represents a concept. The label of an edge
is the name of a semantic relationship among the concepts
and can be null if the relationship is not known. A more
detailed description of the conceptual model can be found
in [12].

The graph in the ONION conceptual model can be ex-
pressed using RDF [13]. Each edge in our graph is coded
as an RDF sentence, with the two nodes being the subject
and the predicate and the relationship being the property.
However, in order to keep our model simple, we have not
included the containers that provide collection semantics in
RDF. If the children of a node need to be ordered we use a
special relationship, as explained below. By choosing RDF,
we can use the various tools that are available and do not
have to write parsers and other tools for our model.

The set of logical rulesR, associated with an ontology,
are rules expressed in a logic-based language. Although,
theoretically, it might make sense to use first-order logic
as the rule language due to its greater expressive power, to
limit the computational complexity we will use a simpler
language like Horn Clauses.

2.2. Semantic Relationships and Articulation in
ONION

Certain conceptual models allow only strictly-typed rela-
tionships with pre-defined semantics. For instance, relation-
ships like SubClassOf, AttributeOf, etc., have very clearly
defined semantics in most object-relational databases.
Other models allow any user-defined relationships without
any restriction. For instance, relationships likeOwnerOf
tend to be interpreted according to the semantics associated
to it by the local application.

If the ONION articulation generator understands the se-
mantics of the relationships used in the two ontologies it
is articulating, the articulation generated by it is more pre-
cise. User-defined relationships are not be type-checked or
interpreted by the system, since it does not know of their
application-specific semantics. However, the user while
defining relationships, may provide a set of rules that spec-
ify the semantics of those relationships. For example, if the
source ontology uses a relationshipIsA and has a rule that
says thatIsA” is transitive, the articulation generator can,
then, use the information to generate better matches.

The articulation generator generates matches among
nodes in the two source ontologies that is supplied
to it and does not attempt to match relationships
among ontologies. The articulation rules that the ar-
ticulation generator generates uses only the relation-
ships whose semantics are predefined to establish cor-
respondences among nodes in the source ontologies.
The set of relationships with pre-defined semantics is
fSubClassOf; PartOf;AttributeOf; InstanceOf;
V alueOfg. The ONION conceptual modeling encourages
the use of a set of strictly-typed relationships with precisely
defined semantics, while allowing user defined relationships
whose semantics are not interpreted by the system.

In ONION, we assign the conventional semantics to
each of these relationships. Some of these relationships im-
pose type-restrictions on the two nodes they relate. Some
of the relationships (likeSubClassOf , InstanceOf) are
somewhat similar to those in RDF-Schema but the set of
relationships that have defined semantics in our conceptual
model is small so as to maintain the simplicity of the sys-
tem.

The following is a description of the semantics of he set
of pre-defined relationships available in our common con-
ceptual model:

SubClassOf: The relationship is used to indicate that
one concept is a subclass of another. The two con-
cepts that it relates must be of type Class. For example,
(Aminopeptidase SubClassOf Enzyme). That is any
instance of the classAminopeptidase is also an instance of
the classEnzyme. All the attributes of the classEnzyme

are also attributes of the classAminopeptidase. The sys-
tem interprets the relationshipSubClassOf as transitive.

AttributeOf: This relationship indicates that a con-
cept is an attribute of another concept, e.g., an
(ConceptA AttributeOf ConceptB) ConceptB has to
be of type Class or of type Object andConceptA needs
to be of type Class. This relationship, also referred to as
PropertyOf in some information models, has typically the
same semantics as attributes in (object-)relational databases
.

PartOf: This relationship indicates that a con-
cept is a part of another concept, e.g., an edge

3

(Mitochondrion PartOf Cell) indicates that
Mitochondrion is part of aCell. The first concept
is of type Class while the second concept can be of type
Class or Object. In relational databases, such relation-
ships are often coded as attributes, but we believe that
this relationship is sufficiently different semantically
from the relationshipAttributeOf to warrant separate
consideration.

InstanceOf: This relationship indicates that an ob-
ject is an instance of a class. Therefore, the first
concept in the relationship is of type object and
the second of type Class. For example, an edge
(LeucineAminopeptidase InstanceOf Aminopeptidase)
indicates thatLeucineAminopeptidase is an instance of
the ClassAminopeptidase.

ValueOf: This relationship is used to indi-
cate the value of an attribute of an object, e.g.,
("49096" V alueOf MolecularWeight). Thus, the
first concept is of type literal and the second of type Class.
Typically, the second concept (in our example, the class
MolecularWeight), in turn has an edge (in our example,
(MolecularWeight AttributeOf Protein)) from the
object it describes.

Sequences

By itself, the graphical ONION model, described above,
does not impose order among the children of a node. In a
number of biological applications, say involving DNA se-
quences, the ability to express order is paramount. In or-
der to express order, we introduce a special relationship,
namelySequence (we refer to a more general notion of se-
quences including but not only limited to DNA sequences),
which is very similar to the containerSequence in RDF.
For example, a list ranking can be described using the edges
(MyProtein Sequence MyProteinSequenceList);
(MyProteinSequenceList : 1 Seq1),
(MyProteinSequenceList : 2 Seq2). The intermediate
node MyProteinSequenceList represents the list object and
its elements form an ordered sequence. In an edge of the
form (ConceptA Sequence ConceptB) the first concept
can be a class or an object and the second concept is an ob-
ject representing the list. The individual elements of the list
can be objects or classes and are related to the list-object
via the relationships: 1; : 2; : : : ; : N where the list hasN
elements.

The common conceptual model is used to bring ontolo-
gies to a common format - so that the articulation generator
needs to understand only one format. So if a feature cannot
be translated into our common conceptual model, it will not
be matched with similar features carrying similar semantic
messages in other ontologies. However, such information

will still be accessible from the individual ontology and the
engine associated with the individual sources.

We resolve the heterogeneity with respect to ontology
models and modeling languages by building wrappers that
convert ontologies using various conceptual models to an
ontology in our common conceptual model. However, the
second problem of semantic heterogeneity among the con-
cepts used in the source models still remains. In the next
section, we will summarize various methods that we use to
automatically suggest ontology articulations.

3. Resolving Semantic Heterogeneity

An important requirement for the application scenarios
that our system will be used for is high precision. At this
point we believe that resolving semantic heterogeneity en-
tirely automatically is not feasible. We, therefore, advocate
a semi-automatic approach wherein an automaticarticula-
tion generatorsuggests matches between concepts in the
two ontologies it is articulating. A human expert, knowl-
edgeable about the semantics of concepts in both ontolo-
gies, validates the generated suggested matches using a GUI
tool. An expert can delete a suggested match or say that the
match is irrelevant for the application at hand. The expert
can also indicate new matches that the articulation generator
might have missed. The process of constructing an articu-
lation is an iterative process and after the expert is satisfied
with the rules generated, they are stored and used when in-
formation needs to be composed from the two ontologies.
Figure 1 shows the structure of the ONION system and the
interaction between its various components.

In order to keep the cost of computation and especially
maintenance (which often dominates other costs in estab-
lished business environments) low, we strive to make the
articulations minimal. Currently, the onus is on the expert
to keep the articulation minimal. In future, we hope to make
the automated heuristics aware of the needs of the applica-
tion and minimize the articulations.

The matching algorithms that we use can be classified
into two types - iterative and non-iterative.

Non-iterative Algorithms

Non-iterative algorithms are ones that generate the con-
cepts that match in the two ontologies in one pass. These
algorithms do not generate any new matches based on exist-
ing matches. The non-iterative algorithms that we employ
involve matching the nodes based on their content.

The articulation generator looks at the words that appear
in the label of the two nodes (or associated with the two
nodes, e.g., if the nodes are documents or if more elaborate
descriptions of the concepts that are represented using the
nodes are available) that it seeks to match and generates a

4

Ontology1 Ontology2 Ontology3

Source1 Source2 Source3

Articulation Generator

Art12

Art123

Query Engine

Thesaurus Expert
End-

User

GUI Tool

Figure 1. The components of the ONION sys-
tem

measure of the similarity of the nodes depending upon the
similarity of the words used in their descriptions or labels.

The non-iterative methods that we currently use primar-
ily refer to dictionaries and thesauri and also use several
semantic indexing techniques based on the context of oc-
currence of words in a corpus. Since the vocabulary used in
most bioinformatics applications is highly specialized, the
thesauri need to pertain to the specific domain. Similarly,
the corpus used in the semantic indexing techniques need to
be specific to the application. The quality of the articulation
greatly depends upon the quality of the different thesauri
and corpora used. The articulation generator is modular in
nature, it should be easy to add any other heuristic that al-
lows us to generate semantic similarity measures between
terms.

Iterative Algorithms

Iterative algorithms require multiple iterations over the
two source ontologies in order to generate semantic matches
between them. These algorithms look for structural isomor-
phism between subgraphs of the ontologies, or use the rules
available with the ontologies and any seed rules provided
by an expert to generate matches between the ontologies.

For example, one heuristic we use is to look at the at-
tributes of each node and see if the attributes of the two

nodes have matched. If a reasonably large number of at-
tributes are the same, the two nodes are related. If all the
attributes of one node are also attributes of another node,
the articulation generator indicates that the second node is a
subclass of the first node. Another heuristic matches nodes
based on the matches between their parent (or child) nodes.
The expert has the final decision whether to accept this ed-
ucated guess generated by the articulation generator.

Due to space limitations, we will not describe in detail
all the heuristic algorithms that we use to match ontologies,
but refer the interested reader to [14].

In the next section, we will briefly define an Ontology
Algebra, which allows us to systematically compose infor-
mation from diverse information sources. Since we focus
on small, well-maintained ontologies order to achieve high-
precision, but we still want to serve substantial applications,
we will often have to combine results of prior articulations.
The ontology algebra provides the compositional capability,
and thus enhances the scalability of our approach.

4. Ontology Algebra

The key to the scalability of ONION is the systematic
and effective composition of information. In this section,
we present an algebra that allows us multiple levels of com-
position of information. By retaining a log of the composi-
tion process, we can also, with minimal adaptations, replay
the composition whenever any of the sources change [15].

The algebra has one unary operator:Select, and three
binary operations:Intersection,Union, andDifference.

The Select operator allows us to highlight and select
portions of an ontology that are relevant to the task at hand.
Given an ontology and a node, the select operator selects
the subtree rooted at the node. Given an ontology and a set
of nodes, the select operator selects only those edges in the
ontology that connect the nodes in the given set.

4.1. Binary Operators

Each binary operator takes as operands two ontologies
that we want to articulate, and generates an ontology as a
result, using the articulation rules. The articulation rules
are generated by an articulation generation function briefly
discussed above.

4.1.1. Intersection

Intersection is the most important and interesting binary op-
eration. LetO1 = (N1; E1; R1), andO2 = (N2; E2; R2)
be two ontologies. The intersection of two ontologies with
respect to AR, a set of articulation rules, generated by an
articulation generating functionfar is:
OI1;2 = O1 \AR O2 = (NI;EI;RI), where,

5

NI = Nodes(AR(O1; O2)),
EI = Edges(E1; NI \ N1) + Edges(E2; NI \ N2) +
Edges(Arules(O1; O2)),
andRI = Rules(O1; NI\N1)+Rules(O2; NI\N2)+
AR(O1; O2)�Edges(AR(O1; O2)).

The nodes in the intersection ontology are those nodes
that appear in the articulation rules. The edges in the in-
tersection ontology are the edges among the nodes in the
intersection ontology that were either present in the source
ontologies or have been established as an articulation rule.
The rules in the intersection ontology are the articulation
rules that have not already been modeled as edges and those
rules present in the source ontology that use only concepts
that occur in the intersection ontology.

Articulation rules are of two types - ones that are sim-
ple statements expressing binary relationships and the more
complex rules expressed in Horn Clauses that are mostly
supplied by the expert. An example of rules of the former
type is:(O1:Aminopeptidase SubclassOf O2:Enzyme)
and one of the more complex logic-based ones is conjunc-
tive rules of the form:
(O1:X InstanceOf O1:Endopeptidase),
(O1:CatalyticMechanism AttributeOf O1:X),
("Unknown" V alueOf O1:CatalyticMechanism)
) (O1:X InstanceOf EC 3:4:99).
The later establishes the fact that endopeptidases whose cat-
alytic mechanism is not known are classified as EC 3.4.99.
The former set of rules are modeled as edges in the artic-
ulation ontology and the second set of rules, which require
some form of reasoning to derive statements from, are left
as rules in the articulation ontology. These rules will be
processed during the query evaluation process as necessary.

For all articulation generator functions, we require that
O1 \ARules O1 = O1, that is the articulation generator
function should generate such articulation rules that up-
holds the above-mentioned property as a sanity-check. Ar-
ticulation generator functions that do not satisfy the above
equality areunsoundand for the purposes of our compo-
sitions, we do not use any unsound articualtion generator
function.

Note that since we consider each node as an object in-
stead of the subtree rooted at the node, we will get only the
node in the intersection by virtue of its appearing in an ar-
ticulation rule and not automatically include its attributes
or subclasses. If the application’s query processor requires
the attributes of an object in the intersection, it has to get
that information from the original source. The label of each
node in the intersection maintains the identifier of the source
ontology in which the node appears. By not including the
entire subtree of a node in the intersection, we reduces its
size and thereby its maintenance costs.

As can be seen from the definition of the intersection
operator, it is heavily influenced by the articulation rules

generated by the articulation generation function.

Theorem 1 Given two ontologies and the articulation rules
ARules, the intersection of the two ontologies is unique
and can be completely determined.

Due to space limitations, We will not give the proofs of
the lemmas and theorems outlined in the paper but refer the
interested reader to [16].

4.1.2. Union

The unionOU = O1 [ARules O2 between two ontologies
O1 = (V 1; E1; R1) andO2 = (V 2; E2; R2) is expressed
asOU = (V U;EU;RU), where,V U = V 1[V 2[V I1;2,
EU = E1 [E2 [EI1;2,
andRU = R1 [R2 [RU1;2,
and where OI1;2 = O1 \ARules O2 =
(V I1;2; EI1;2; RI1;2) is the intersection of the two
ontologies.

The union operation combines two source ontologies re-
taining only one copy of the concepts in the intersection.
Though queries are often posed over the union of several
information sources, the union of two source ontologies is
seldom materialized, since our objective is not to integrate
source ontologies but to create minimal articulations and in-
teroperate based on them.

4.1.3. Difference

The difference between two ontologiesO1 andO2, written
asO1� O2, includes portions of the first ontology that are
not common to the second ontology. The difference can
hence be rewritten asO1 � (O1 \ARules O2). The nodes,
edges and rules that are not in the intersection ontology but
are present in the first ontology comprise the difference.

One of the objectives of computing the difference is to
optimize the maintenance of articulation rules. An artic-
ulation might need to be updated when one of the source
ontologies that it articulates is changed.

A change in the source ontology is to be forwarded to
the articulation engine. The articulation engine then checks
if the changes are confined to the difference between the
ontology and the other ontologies that it has been articulated
with. If the change happens to be in the difference, then
it does not occur in the intersection and is not related to
any of the articulation rules that establish semantic bridges
between ontologies. Therefore, the articulation rules do not
need to be changed. If the changes to a source ontology,
instead, is not in the difference, the articulation in which
it occurs needs to be updated to reflect the change in the
source ontology.

6

4.2. Properties of the Operators

Optimization of queries often depend upon the ability to
rearrange operands, which depends upon the properties of
the operators. The properties of the articulation generating
function, in turn, determines the properties of the operators.

4.2.1. Commutativity

If an operator is commutative the query optimizer can re-
verse the order of the operands.

Intersection

Theorem 2 The intersection is commutative iff the articu-
lation generation function is commutative.

(Sketch) If an articulation generation function is commuta-
tive, the articulation rules generated by it are the same irre-
spective of the order of the operands. Now from the lemma
above, the intersection of two ontologies are entirely deter-
mined by the source ontologies and the articulation rules
and is unique. Therefore, for the same set of ontologies and
articulation rules, the intersection is same. That is, the in-
tersection is commutative, if the corresponding articulation
generation function is commutative. The proof of the other
direction is proved in [16].

Now, consider the example where we have nodes
O1:Aminopeptidase and O2:Enzyme. An ar-
ticulation generator, sayAR1, can generate two
rules based on the order of the operands. For
example, AR1(O1; O2) might generate the rule
(O1:Aminopeptidase SubClassOf O2:Enzyme,
while AR1(O2; O1) might generate the rule
(O2:Enzyme SuperClassOf O1:Aminopeptidase).
From the definition of the vocabulary, let us as-
sume that the relationshipsSubClassOf and
SuperClassOf are inverse of one another i.e.,
(X SubClassOf Y) , (Y SuperClassOf X) for
anyX ,Y . However, from our strict definitions, the inter-
section operator withAR1 as the articulation generator, is
not commutative since the articulation rules - even though
are equivalent - are not the same.

This leads us to define the concept ofsemantically com-
mutative.

Definition 1 An articulation generation function,
AR, is semantically commutativeiff AR(O1; O2) ,
AR(O2; O1)8O1; O2, whereO1, andO2 are ontologies.

Definition 2 An intersection operator is semantically com-
mutative iff the articulation generation function that it uses
to derive the articulation rules is semantically commutative.

To determine the semantic commutativity of articulation
generation functions, we need to prove that for any pairs of
ontologies, the articulation rules produced by the articula-
tion generation function, even if they are dependent upon
the order of the ontologies and are not exactly the same,
are in fact equivalent. Automatically proving an articula-
tion generator commutative or semantically commutative is
a very computationally intensive job. ONION requires the
programmer of the articulation generation function and/or
the expert to indicate whether optimization can be enabled
by reversing the order of the operands.

For example, articulation generation functions that look
up a thesaurus to find synonyms for proteins would gen-
erate the same articulation rules (indicating some protein-
names refer to the same protein) irrespective of the ontology
the protein-name occurs in. Such an articulation generation
function would be obviously commutative, making the op-
erator using the function commutative.

Even though the articulation generation function is not
strictly commutative, but instead only semantically commu-
tative, the ONION system will take the liberty of reversing
the order of the operands to the intersection operator in case
such a change gives us performance benefits.

Intuitively, the intersection is entirely determined by the
two ontologies and the articulation rules generated by the
articulation generation function. If the articulation rules
generated are equivalent, then the resulting intersection will
also be semantically equivalent and we allow such an opti-
mization in our system.

Union

For the union operator to be commutative the following
must hold:O1 [O2 = O2 [O1.

That is, we requireV 1[V 2[V I1;2 = V 2[V 1[V I2;1,
whereV 1,V 2, andV Is are the vertices in the source on-
tologies and the intersection ontologies respectively. The
above equality holds only ifV I1;2 = V I2;1. Now the set
of nodes in the intersection of two ontologies,V I is ob-
tained from the articulation rules generated from the ar-
ticulation generator function.V I1;2 = V I2;1 holds iff
Nodes(ARules(O1; O2)) = Nodes(ARules(O2; O1)).
Similar equalities can be derived from the equations ob-
tained using the edges and rules. We conclude, that as in
the case of intersection:

Theorem 3 The Union operator is (semantically) commu-
tative iff the articulation generator function is (semanti-
cally) commutative

Thus, the conditions for reordering the operands to the
union operator are exactly the same as those for the inter-
section operator.

7

Difference

Clearly the difference operator is neither commutative nor
semantically commutative.

4.2.2. Associativity

If the operators are associative, then the order of their execu-
tion can be changed and in order to optimize the execution
of the query. The associativity of the relational join operator
allows database system designers to rearrange operands and
design various optimized join algorithms that improve the
performance of queries tremendously. Similarly, the per-
formance of the intersection and union operations can be
greatly improved if the operators are associative.

However, before we can state the necessary conditions
that makes the intersection operation associative, we need
the following definition.

Definition 3 An articulation generator is said to betransi-
tively connectiveiff for any three ontologiesO1, O2, O3,
if it generates an articulation ruler12 involvingO1:A and
O2:B while matchingO1 andO2, and another articula-
tion ruler23 involvingO2:B andO3:C while matchingO2
andO3, then it must generate an articulation rule involving
O1:A and some node inO3 and also an articulation rule
involvingO3:C and some node inO1 while matchingO1
andO3.

In other words, if it discovers thatO1:A is related to
O2:B andO2:B is related toO3:C, then it must relate
O1:A to some node inO3 andO3:C to some node inO1.

In the rest of the paper, we use the notationRule(n1; n2)
to refer to a rule using the termsn1 andn2.

Definition 4 An articulation generator functionf is said
to be consistent iff 8n1�O1; n2�O2; n1�O3; n2�O4 :
Rule(n1; n2)�f(O1; O2) , Rule(n1; n2)�f(O3; O4)
whereO1, O2 are the source ontologies andO3,O4 are ei-
ther source ontologies or intermediate ontologies generated
while computing the operations that usef to articulate.

Loosely speaking, an articulation generation function is
consistent if it either always generates or never generates
a rule involving two nodes irrespective of the presence or
absence of other nodes and edges in its ”neighbourhood”.

Theorem 4 The intersection operator using an articulation
generation functionf that is consistent is associative ifff
is transitively connective.

Note that transitive connectivity is a sufficient condition
for the intersection to be associative but is not necessary.

In a lot of situations in practice, the person wishing to
compose the two ontologies does not necessarily have a

preference in the order in which the ontologies are com-
posed. In such a scenario, the composer might instruct the
system to assume associativity (and thus enable rearrang-
ing of the operands), even though the articulation generation
function is not provably strictly transitively connective (and
thus the intersections are not entirely independent upon the
order of the operands).

Theorem 5 The Union operation is associative if the asso-
ciated articulation generation functionf is consistent.

A consistent articulation generation functionf is a suf-
ficient condition forUnion with respect tof to be associa-
tive. However, it is not necessary forf to be consistent in
order forUnion to be associative.

Difference is not associative under any conditions.

5. Conclusion

In this paper we present a brief overview of the ONION
system that can be used to interoperate among the various
information sources available to biologists. ONION uses a
simple conceptual model to which different bio-ontologies
are mapped using wrappers. The articulation generator is
then applied to ontologies expressed using the ONION con-
ceptual model to generate semantic correspondences lead-
ing to articulation rules among concepts in the source on-
tologies. An expert then validates the generated rules or
supplies new rules. These rules form the basis of inter-
operation among the autonomously maintained information
sources. Finally, we presented an ontology algebra that pro-
vides the formal basis for composition of information and
the maintenance of the articulations. The ONION approach
supports precise composition of information from multi-
ple diverse sources requiring human-validated articulation
rules among such sources. This approach allows the reliable
exploitation of information sources that are autonomously
maintained without any imposition on the sources them-
selves. The algebra based on the articulation rules allows
systematic composition, which unlike integration is much
more scalable. We presented the properties of the algebraic
operations, which forms the basis for query optimization
while composing information from multiple sources.

References

[1] C. Goble. Carole’s position statement.
http://www.cs.man.ac.uk/mig/people/carole/carole.html,
2000.

[2] Neuroinformatics home page.
http://www.nimh.nih.gov/neuroinformatics/index.cfm,
2001.

8

[3] P. D. Karp. A strategy for database interopera-
tion. Journal of Computational Biology, 2(4):573–
583, 1996.

[4] M. D. Siegel C. H. Goh, S. E. Madnick. Seman-
tic interoperability through context interchange:
Representing and reasoning about data con-
flicts in heterogeneous and autonomous systems
http://citeseer.nj.nec.com/191060.html.

[5] C. H. Goh, S. Bressan, S. Madnick, and M. Siegel.
Context interchange: new features and formalisms for
the intelligent integration of information.ACM Trans-
actions on Information Systems, 17(3):270–270, 1999.

[6] The Gene Ontology Consortium. Gene ontology: tool
for the unification of biology.Nature Genetics, 25:25–
29, 2000.

[7] R. Stevens. Bio-ontology reference collec-
tion. http://img.cs.man.ac.uk/stevens/onto-
publications.html, 2001.

[8] S. Melnik. Declarative mediation in distributed sys-
tems. InProceedings of the International Conference
on Conceptual Modeling (ER’00), 2000.

[9] Unified modeling language:
http://www.omg.org/technology/uml/index.htm.
2000.

[10] Daml+oil http://www.daml.org/2001/03/daml+oil-
index. 2001.

[11] M. Gyssens, J. Paredaens, and D. Van Gucht. A graph-
oriented object database model. InProc. PODS, pages
417–424, 1990.

[12] P. Mitra, M. Kersten, and G. Wiederhold. A graph-
oriented model for articulation of ontology interde-
pendencies. InAdvances in Database Technology-
EDBT 2000, Lecture Notes in Computer Science,
1777, pages 86–100. Springer-Verlag, 2000.

[13] Resource description framework(rdf) model
and syntax specification, w3c recommendation
http://www.w3.org/tr/rec-rdf-syntax. 1999.

[14] P. Mitra, G. Wiederhold, and J. Jannink. Semi-
automatic integration of knowledge sources. InProc.
of the 2nd Int. Conf. On Information FUSION’99,
1999.

[15] J. Jannink. A Word Nexus for Systematic Interoper-
ation of Semantically Heterogeneous Data Sources.
PhD thesis, Stanford University, 2000.

[16] P. Mitra. An algebra for semantic interop-
eration of information sources, http://www-
db.stanford.edu/ prasen9/alg.txt. Technical report,
Infolab, Stanford University, July 2001.

9

