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Abstract

This article presents a new method aiming at automati-
cally learning a visual similarity between two images from
a class model. This kind of problem is present in many re-
search domains such as object tracking, image classifica-
tion, signing identification, etc. We propose a new method
for facial recognition with a system based on non-linear
projection and metric learning. To achieve this objective,
we feed a ”Bag of Features” representation of the face ima-
ges into a specific neural network that learns a mapping
to a more compact and discriminant representation. This
learning process aims at non-linearly projecting the facial
features into a reduced space where two images belonging
to the same category (i.e. a person) are ”close” according
to a given similarity metric and ”distant” otherwise. The
proposed method gives very promising results for face iden-
tification in adverse conditions like expression, illumination
and facial pose variations. Experimental results give 97%
correct recognition rate on the CMU PIE database contai-
ning 68 individuals, under vary variable pose and illumina-
tion conditions.

1. Introduction

Due to a large number of possible applications like bio-
metrics, video-surveillance or advanced human-computer
interaction, face recognition systems received an increasing
interest during the last decade. Lots of approaches have
been proposed in the literature [27], but identifying human
faces remains a challenging problem. The main difficulties
are due to unconstraint illumination conditions, variable fa-
cial expressions and face poses. We can discern three ca-
tegories of face recognition method: holistic matching me-
thods using the whole face information, facial region-based
methods (e.g. eyes, nose and mouth recognition) and ”Bag
of Facial Features” representation [16]. In this article, we
focus on methods from the last category by assuming that

the local biometric description is salient whatever view is
considered to cluster the individual faces. For each salient
description, we compute the local signal singularities. Clas-
sically, a clustering method is then applied before perfor-
ming a dimension reduction of the feature vectors using a
Self Organizing Map (SOM [14]). A facial feature simila-
rity is then learned with a customized Siamese neural net-
work that performs a non-linear projection of the facial fea-
tures.
This paper is organized as follows. A brief state-of-the-art
about face recognition is proposed in section 2. In sec-
tion 3, we describe our face recognition strategy. Section
4 presents the experimental results with a comparison with
standard state-of-the-art face recognition algorithms. Fi-
nally, conclusions and perspectives are drawn.

2. State-of-the-art

Facial similarity is a pattern recognition problem that has
to be solved in a high-dimensional non-linear space. Classi-
cal approaches propose a dimensional reduction technique
to solve the recognition problem in a lower dimensional
feature space. In particular, Principal Component Analysis
(PCA) and Linear Discriminant Analysis (LDA) have been
deeply studied for face recognition over the last decade.
The features encoded by Eigenfaces (using PCA [25]) and
Fisherfaces (using LDA [5]) are based on the second order
dependencies and these methods are linear projection me-
thods.

In [25], the authors compute after a linearization step the
mean vector, among all images, and subtracted it from all
the vectors, corresponding to the original faces. The covari-
ance matrix is then computed, in order to extract a limited
number of its eigenvectors, corresponding to the greatest
eigenvalues. These eigenvectors, referenced as Eigenfaces,
describe a low-dimensionality space base. Face images are
then projected in this EigenSpace and classically compared
using Euclidian or L1 distances. The LDA approach [5] of-
fers an alternative taking into account the individual classes.

1



PCA is still a preliminary step reducing the input space, and
then LDA is applied in order to maximize the between-class
covariances, minimizing the within-class ones.

Other techniques relying on LBPH (Local binary Pattern
Histograms [1]) or SIFT (Scale Invariant Feature Transform
[20]) use a local texture-based classification. The facial
image is divided into local regions and descriptors are ex-
tracted from each region independently. The global clas-
sification is then performed by a combination of local and
global similarity.

The main disadvantage of these projection techniques is
their linearity. Bartlett et al. show in [3] that first- and
second order statistics capture information only the ampli-
tude spectrum of an image, discarding the phase-spectrum.
And yet the human capability seems driven by the phase-
spectrum to recognize faces. A further nonlinear solution
to the face recognition problem is provided by neural net-
work based approaches. Independent Component Analysis
(ICA [3]) is derived from the principle of optimal informa-
tion transfer through sigmoidal neurons. The main idea is
to build a neural network with a neuron for every pixel in
the image that captures discriminant features not necessa-
rily orthogonal, exploiting the covariance matrix and con-
sidering the high-order statistics. The advantage of neural
classifiers over linear ones is that they can reduce misclas-
sifications among the neighborhood classes. For example,
Self Organizing Map (SOM) is invariant to minor changes,
while Convolutional Neural Networks (CovNets) provide a
partial rotation, translation and scaling invariance.

Hereafter, our proposal combines the advantages of local
description clustering and neural network to build a very
efficient system.

3. Our Face Recognition System
3.1. Facial Identification

Our face recognition system is mainly divided into three
steps: facial feature extraction, facial pattern clustering, and
facial feature vector classification. The first step detects per-
ceptually relevant points in the face image. The second step
computes local feature vectors and clusters each vector into
a neural activity histogram built from Self-Organizing Map
winning neurons, as described by Lefebvre et al. in [16].
For the third step, we propose a non-linear mapping strategy
based on Siamese network [6, 7] to classify facial feature
vectors. These methods are described in the next sections.

3.2. Feature Extraction, Description and Clustering

In the literature, feature extraction, image description
and data clustering may be performed with numerous
methods. Classically, point detectors aim at extracting
local image features (e.g. corner detection [11], blob
detection[17], edge and ridge detection [18], etc.) while

local image descriptors computes invariant features to geo-
metric transforms [19, 15, 4, 23]. As described in Lefebvre
et al. [16], our system focuses on wavelet analysis to detect
salient point and compute singularity descriptors. Using
wavelets is justified by the consideration of the human vi-
sual system for which multi-resolution, orientation and fre-
quency analysis are of prime importance according to Hoff-
man et al. [12]. For clustering all facial feature vectors
from all individuals, a global Self Organized Map (SOM) is
learned. Even many clustering approaches exists (e.g. cen-
troid models [21], connectivity models [8], fuzzy clustering
[22], etc.), SOMs allow a relevant selection and learning
process in order to capture facial information. The Kohonen
model [14] constructs a neuron lattice in which the topology
of the input space is preserved and each neuron is speciali-
zed in a stimuli set (i.e. a neighborhood function limits the
neurons to respond to a given stimulus).

Let M be the input space and X = x(t), t ∈
{1, 2, . . . , T} be a facial feature vector set with x(t) ∈
M ⊂ <d, where t is the time index. Lets assume that
M = mi(t), i ∈ {1, 2, . . . , N} is represented by the set
of the reference SOM vectors with mi(t) ∈ <d, randomly
initialized. For each input vector, the best matching unit
(BMU) is defined mc(t) where:

c = argmin
i
‖x(t)−mi(t)‖ ,∀i = 1, . . . , N (1)

The topologic neuron map is then updated with the fol-
lowing equation:

mi(t+ 1) = mi(t) + λ(t)φ(i)c (t) (x(t)−mi(t)) (2)

where λ(t) is the learning rate and φ(i)c (t) a neighborhood
function.

Figure 1. SOM activation histogram.

When the SOM is learned, a ”Bag of Features” is com-
posed of the best representative vectors from the learning
database. Each identity vector is then described by the sti-
mulation of the SOM winning neurons with the individual



facial feature vectors. This SOM activation histogram H is
defined by Equation 3 and illustrated in Figure 1.

H[c] =

T∑
t=1

‖mc(t)− x(t)‖ ,∀c = 1, . . . , N (3)

3.3. Siamese Neural Networks

In order to overcome the issues of classification in high
dimensional spaces (i.e. curse of dimensionality: e.g. the
facial feature vector dimension is here the SOM size), a
large number of dimensionality reduction techniques have
appeared over the last decade. As previously mentioned,
one can cite the classical PCA and LDA methods. The
first method performs a linear projection in a space of re-
duced dimensions, where the variances of the original data
are maximized. The second method performs also a li-
near projection and aims at maximizing inter-class vari-
ances while minimizing intra-class variances. In order
to enhance the robustness of such linear approaches ver-
sus non-linear variations of the data, kernel versions of
these algorithms have been investigated (i.e. KPCA, KLDA
[26]). Other non-linear manifold learning methods have
recently appeared, like Locally Linear Embedding (LLE)
[24], Isomap [10], and Laplacian Eigenmaps [13]. These
non-linear dimensionality reduction techniques aim at op-
timally preserving the local geometry around each data as
well as the global structure of the data but we need here to
define and learn a visual similarity metric from the data.

Siamese Neural Networks have first been presented by
Bromley et al. [6] using Time Delay Neural Networks
(TDNN) and applied to the problem of signature verifica-
tion. Siamese neural networks learn a non-linear similarity
metric by repeatedly presenting pairs of positive and nega-
tive examples, i.e. pairs of examples belonging to the same
class or not. The principal idea is to train the neural network
to non-linearly map the input vectors into a subspace such
that a specific metric in this subspace approximates, not the
local geometry like in the methods cited above, but the ”se-
mantic” distance in the input space. Two examples of the
same category are supposed to yield a small distance in this
subspace and two examples of different categories a large
distance.

Let us call this mapping GW (X) and its parameters
W (i.e. neural weights). Thus, the goal is to learn the pa-
rameters W of the function GW (X) such that the similarity
metric (see Equation 4) is small if X1 and X2 belong to the
same class and large otherwise.

EW (X1, X2) = ‖GW (X1)−GW (X2)‖2 (4)

The choice of GW (X) is arbitrary and, in our approach,
is given by a Multilayer Perceptron (MLP). Note that the
parameters W are shared by the neural networks( hence the

name ”Siamese” neural network) and therefore the distance
metric is generally symmetric. Figure 2 illustrates the func-
tional scheme of this learning machine.

Figure 2. A Siamese Neural Network.

3.4. Similarity Distance

This idea was then adopted by Chopra et al. [7] who
used Siamese ConvNets in the context of face verification.
More precisely, the system receives two face images and
has to decide if they belong to the same person or not. The
ConvNet allows learning to extract features using a cascade
of convolution and subsampling filters. They use the simi-
larity (Euclidean distance)EW that they try to minimize for
genuine pairs of facial features and maximize for impostor
pairs. One of the problems of this energy function is that,
if minimizing EW to zero for genuine pairs is tractable by
error backpropagation, on the other hand, one cannot decide
which distance should be the target for impostor pairs. The
problem could be overcome by minimizing another energy
function designed for impostor pairs, L(EW ) where L is
a monotonically decreasing function, which is difficult to
choose.

In our proposal, instead of extracting features with Conv-
Nets, we represent the facial feature vector H extracted
from SOM activations (cf. Equation 3). Then, we apply
a Siamese one-hidden-layer MLP which projects the in-
put feature vectors H into a vector of smaller dimension
GW (H). More formally, given a triplet (H,H+, H−) such
that X is a facial feature vector, H+ belongs to the same
class as H and H− belongs to another class, we would
like the scalar product of the similar ones to be higher
than that of the dissimilar ones: GW (H).GW (H+) >
GW (H).GW (H−). We therefore define the following ob-
jective functions to minimize in order to be able to apply
supervised learning via classical backpropagation:



EW (H) = (1− cos(GW (H), GW (H+)))
2

+(0− cos(GW (H), GW (H−)))
2

(5)

Minimizing EW can be interpreted as searching for a
projection GW (estimating W in the neural network) such
that facial feature vectorsH andH+ are collinear and facial
feature vectorH andH− are orthogonal. This choice is also
motivated by the better performance of the cosine distance
in PCA and LDA space compared to Euclidean distance.

4. Experimental Results
We evaluated the proposed method on the CMU Pose,

Illumination, and Expression (PIE) face database [2]. It
contains 41,368 images of 68 people, each person being
pictured under 13 different poses, 43 different illumination
conditions, and with 4 different expressions (c.f. Figure 3).
All faces are automatically extracted using the face detector
proposed in [9] and resized to 200× 200 pixels. In order to
assess the system performances, we use a 3-fold cross vali-
dation method in the following experiments. For each fold,
the database is divided into three datasets: one third of the
images for learning, one third for validation and one third
for test. Among the different datasets, we respect the pro-
portion per individual of illumination, expression and pose
images.

Figure 3. Some face samples from the CMU PIE database with
different poses, illumination conditions and expressions.

For each face image of size 200 × 200 pixels, the fa-
cial feature vectors are extracted from 1000 local signa-
tures, clustered in a squared SOM composed of Ns x Ns

neural units. Each facial feature H is therefore the activa-
tion results of the SOM and is of size Ns x Ns. The best
configuration, i.e. the choice of Ns, is determined by a 3
cross-validation on the training and validation databases, as
shown in Figure 4. As shown by this figure, the best re-
sult of 89.85% is obtained with Ns = 30, but a good com-
promise between correct recognition rate and feature vector

size is for Ns = 20 giving a SOM size of 20x20 = 400 with
88.12% and a standard deviation of 0.47.

Figure 4. Mean face recognition rates and standard deviations
(bars) for different SOM size configurations.

Concerning the non-linear projection with Siamese MLP,
experiments have been performed to choose a correct con-
figuration with the facial feature vectors H of size 400. We
consider a two-layer MLP architecture with a varying num-
ber of neurons in each layer (Nh sigmoid neurons in the
hidden layer and No linear neurons in the output layer). For
each configuration, the classical backpropagation algorithm
is applied on the training set, and stopped when the mean
square error between the actual output and the target out-
puts starts to grow on the validation set (with early stopping
strategy), so that overlearning is avoided.

Figure 5 reports the recognition rates obtained for dif-
ferent configurations which have been chosen to per-
form a non-linear projection into a smaller target space:
(Nh,No)=(300,200), (200,100), (100, 50), (50,25). One
can notice that the best recognition result is obtained for
(Nh,No)=(100,50), with corresponds to a MLP Siamese
Network with one hidden layer of 100 sigmoid neurons and
an output layer of 50 linear neurons. Therefore, in the final
scheme, each facial feature vector of size 400 is projected
into a 50-dimensional space, where the similarity metric
(i.e. the cosine distance) is applied.

For each of the three folds, the trained system is then
evaluated on the test dataset. Table 1 presents our results
for each fold with a k nearest neighbor classification (here
k = 1) directly from the SOM activation histograms H
(i.e. SOM-1NN) and after non-linear projection with the
Siamese MLP and the application of the cosine similarity
metrics (i.e. SOM-SIAM).

For comparison, we have also implemented three stan-
dard face recognition methods: Eigenfaces [25], Fisher-
faces [5] and Local Binary Pattern Histograms (LBPH) [1]
(see section 2).

These results show first that SOM-1NN is efficient gi-



Methods Fold 1 Fold 2 Fold 3 Mean Standard Deviation
Eigenfaces 54.65% 55.97% 59.22% 57.60% (2.30)
Fisherfaces 87.26% 81.19% 83.63% 84.03% (3.05)

LBPH 89.30% 89.97% 89.97% 89.75% (0.39)
SOM-1NN 90.35% 89.03% 90.17% 89.85% (0.72)

SOM-SIAM 97.27% 96.32% 97.07% 96.89% (0.50)

Table 1. Recognition rates, means and Standard Deviations (SD) on the CMU PIE database.

Figure 5. Face recognition rates with different Siamese MLP con-
figurations.

ving a correct recognition rate of around 90%. This first
result overcomes the classical Eigenfaces, Fisherfaces and
LBPH methods. This observation proves that the database
is composed of many variations in illumination, expression
and viewpoints that linear projection methods can not deal
with. The LBPH method also outperforms the Eigenfaces
and Fisherfaces approaches. This texture classification is
built from predefined facial regions, consequently different
viewpoints are difficult to handle. Within the SOM feature
extraction, point detection allows us to cluster salient facial
information among all views. Moreover, the application of
the Siamese MLP in our method SOM-SIAM that learns
how to project the facial feature vectors in order to maxi-
mize the similarity cosine distance gives a gain of around
7% to reach around 97% of correct recognition rate. These
results show that the proposed method is able to handle
strong variations in pose, illumination and expression. Ne-
vertheless, the Figure 6 shows some misclassified examples
from the CMU PIE database using SOM-SIAM.

5. Conclusion and Perspectives

In this paper, we have proposed a novel face recognition
method using a neural non-linear projection scheme. Based
on the two main properties of SOM, which are dimension
reduction and topology preservation, this architecture fea-
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Figure 6. Some misclassified face samples from the CMU PIE
database using the method SOM-SIAM.

tures all facial identities by neural activity counts. In order
to quantify the visual similarity between two face images,
a non-linear metric is directly learned, via a Siamese neural
network that searches for an optimal projection that clus-
ters facial feature according to ”semantic” order instead of
geometric distances. The proposed solution gives very pro-
mising results on a difficult face dataset. As an extension of
this work, we plan to develop a strategy to optimally learn
the hyperparameters of the proposed system related to the
architectures of the SOM and the Siamese MLP.
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