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Abstract— Recent protocols and metrics for training and
evaluating autonomous robot navigation through crowds are
inconsistent due to diversified definitions of “social behavior”.
This makes it difficult, if not impossible, to effectively compare
published navigation algorithms. Furthermore, with the lack
of a good evaluation protocol, resulting algorithms may fail to
generalize, due to lack of diversity in training. To address these
gaps, this paper facilitates a more comprehensive evaluation and
objective comparison of crowd navigation algorithms by propos-
ing a consistent set of metrics that accounts for both efficiency
and social conformity, and a systematic protocol comprising
multiple crowd navigation scenarios of varying complexity for
evaluation. We tested four state-of-the-art algorithms under this
protocol. Results revealed that some state-of-the-art algorithms
have much challenge in generalizing, and using our protocol for
training, we were able to improve the algorithm’s performance.
We demonstrate that the set of proposed metrics provides more
insight and effectively differentiates the performance of these
algorithms with respect to efficiency and social conformity.

I. INTRODUCTION
Robot navigation in crowds is a growing research area

[1]–[3]. Design of algorithms allowing robots to navigate
safely and socially in populated environments an open chal-
lenge. Robots must be able to navigate cooperatively with
humans while reasoning about their own actions’ impact on
surrounding humans and have a good understanding of the
ongoing interactions between these humans. Furthermore,
robots must follow a range of social and cultural rules [3],
such as respecting personal spaces, and keeping to a specific
side preference when passing other humans. As social norms
are often contextual, they are difficult to define such that they
can be explicitly implemented into algorithmic rules.

Recently, advancements in computation hardware and ma-
chine learning have enabled a series of crowd navigation
algorithms based on deep reinforcement learning [4]–[13]. In
these approaches, social behavior is encoded in the reward
function, which provides a penalty or reward based on the
robot’s behavior. However, a survey of the latest papers on
crowd navigation algorithms reveals diversified definitions
and metrics for what constitutes “social behavior”. Although
all papers consistently report on task-related metrics such
as success rate or time to goal, few include quantitative
measures for social conformity of the robot’s behavior. While
efficiency is an important aspect for successful navigation in
crowds, social conformity is equally important [3]. Further-
more, when training and evaluating their algorithms, some of
these works only included a handful of navigation scenarios
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(as few as one) [6]–[8]. This risks the resulting algorithm
being unable to generalize to different scenarios, and its
performance deteriorating greatly with slight changes in the
environment.

Given the lack of consistency in social evaluation metrics
used for crowd navigation algorithms, it is not surprising to
find that some papers that aim to provide socially conforming
crowd navigation algorithms present evaluations that are
mainly focused on task efficiency, and fail to detail the social
conformity of the learned navigation policy. With differ-
ent papers evaluating algorithms using different navigation
scenarios, assessing how well the algorithms translate to
different navigation scenarios is challenging. The lack of
well-defined standardized metrics and evaluation protocols
inhibits the comparison of performance among published
algorithms. This paper addresses this gap by proposing a
set of metrics, focusing on social conformity, as well as
an evaluation protocol, incorporating a range of common
navigation scenarios, that can be used to objectively evaluate
and compare different crowd navigation algorithms. The pro-
posed metrics are grounded in evaluation criteria and aspects
of social conformity found in existing literature. We then
apply our proposed set of metrics on a collection of state-of-
the-art crowd navigation algorithms. In the process, we found
that the performance of these algorithms can deteriorate
greatly when evaluated in scenarios that are slightly different
from the one it was trained on. Hence, we also retrained these
algorithms using our proposed protocol, and demonstrate
improved performace across a range of scenarios.

The main contributions of this paper include: i) a set
of specifically designed metrics that focus on evaluating
both social conformity and efficiency of robot navigation
behaviors, ii) a systematic and comprehensive evaluation
protocol comprising multiple crowd navigation scenarios
of varying complexity, iii) a demonstration of improved
performances of state-of-the-art crowd navigation algorithm
through application of our proposed protocol for training,
and iv) application of our proposed metrics and evaluation
protocol on, as well as in-depth comparison of, a collection
of the most recent crowd navigation algorithms.

II. RELATED WORK

Existing works tend to focus on task-related metrics when
evaluating crowd navigation algorithms. For instance, Liu
et al. [11] and Everett et al. [6] use time to goal as their
evaluation metric. In [6] only circle crossing scenarios were
used to evaluate the algorithm, where as in [11], an additional
group scenario was used. Sathyamoorthy et al. [12], uses
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trajectory length rather than time to goal, a similar metric.
They additionally have a freezing robot percentage as their
criteria, which they argue offers a more fine-grained success
rate metric. These papers rely on using efficiency oriented
metric for evaluating their navigation methods, and do not
include any metrics for evaluating social conformity.

Among the recently emerging papers in which some notion
of social conformity is considered during evaluation, Patel
et al.’s paper presenting the DWA-RL (Dynamic Window
Approach Reinforcement Learning) algorithm [10] and Liang
et al.’s work presenting the CrowdSteer algorithm [13] pro-
pose the robot’s average velocity and the smoothness of the
robot’s velocity as measures of the naturalness of the robot’s
trajectory. They later use these metrics to evaluate the robot’s
ability to navigate at a socially comfortable speed.

In the papers presenting the OM-SARL (Socially Aware
Reinforcement Learning with Occupancy/Local Mapping) al-
gorithm [7], RGL (Relational Graph Learning) algorithm [8],
and SA-CADRL (Socially Aware Collision Avoidance with
Deep Reinforcement Learning) [5] algorithms, proximity to
other pedestrians was used as a component of their metric1.
This metric measures the robot’s ability to respect nearby
people’s personal space during navigation. Chen et al. [5]
also use metrics for specific social norms, including the
percentage of times that the robot passes, overtakes, and
crosses other pedestrians on the same preferred side (left or
right). Their proposed algorithm was trained with the metrics
related to these specific social norms built into the reward
function. The papers [7], [8] only evaluated their algorithm
in a circle crossing navigation scenario.

Jin et al.’s work [9] not only includes the number of times
a robot violates other people’s personal space, but also has
a metric for social zone violations. The authors define a
social zone to be a projected rectangular area, with a length
proportional to their speed, in front of the humans and the
robot. This metric measures how safe the robot’s motion
appears to other humans by summing the duration of time
when the robot’s social zone intersects with other humans’.

Recently, researchers have identified the need to improve
the evaluation of crowd navigation algorithms. For instance,
Tsoi et al. [14] introduce a simulation platform including
multiple real-life scenarios. However, the simulated pedes-
trians are not able to react to the robot’s actions. Thus,
they do not allow quantification of the robot’s actions’
impact on surrounding humans. Biswas et al. [15] proposed
a set of metrics for evaluating crowd navigation algorithms;
nonetheless, their metrics remain mostly focused on robot
efficiency rather than social conformity.

III. PROPOSED EVALUATION METRICS
We propose a set of metrics consisting of both basic

performance metrics and social conformity-focused metrics.
The basic performance metrics include success rate, collision
percentage, time-out percentage and the robot’s average navi-
gation time. For the social conformity-focused metrics, Kruse

1OM-SARL and RGL include the average reward obtained as a metric.
Since the reward function includes a proximity penalty, the metric indirectly
accounts for the robot’s proximity to pedestrians.

TABLE I: Summary of the proposed metrics
No. Name Description Category

I Personal
Space

Average duration of robot being inside the
min. comfortable personal space

Comfort

II Projected
Path

Average duration of when robot’s projected
path intersects with a human’s projected
path

Comfort

III Aggregated
Time

Aggregated goal reaching time for all coop-
erative agents

Comfort

IV Integrated
Jerk

Average squared jerk over the robot’s tra-
jectory (c.f. Min. Jerk Trajectory humans
employ)

Naturalness

V Walking
Speed

Average duration of when robot’s speed
exceeds human max. normal walking speed

Naturalness

VI Side
Preference

Side preference (left or right) percentage for
passing/overtaking/crossing behavior

Sociability

et al. [3] define three different aspects of social conformity
that should be considered when evaluating a robot navigation
behavior: comfort, naturalness and sociability. For each
aspect, we first provide a description. We then define the
proposed metric(s) belonging to that aspect, and provide
a detailed explanation of the rationale behind each metric.
Table I summarizes the proposed social conformity-focused
metrics.
A. Notation

In this paper, r denotes the robot, hn denotes the n− th
human, and H denotes the set of all humans. Superscript
denotes either belonging to robot r or human h, subscript
x and y denotes x and y-coordinates, subscript t denotes
time t. Let T be total amount of time taken in an episode.
We denote with pppaaa = [pa

x , pa
y ], ~vvvaaa = [va

x ,v
a
y ] ∈R2 the position

(x,y coordinate) and velocity (x,y speed) of an agent (robot
or human) a respectively. Additionally, Mi denotes the ith
metric, rad denotes radius, sss denotes starting position, and
ggg denotes goal position.
B. Comfort

Kruse et al. [3] define comfort as absence of annoyance
and stress for humans when interacting with robots. Specif-
ically, to increase comfort of surrounding humans, the robot
must allow surrounding humans to have a perceived sense
of safety from the robot. To provide this sense of safety,
the robot should avoid entering pedestrians’ personal space,
avoid the apparent intended path of pedestrians, and plan a
path that will impact pedestrians the least. Hence, we propose
the following metrics for measuring comfort:

MI Average duration a robot spends inside the minimum
comfortable personal space of pedestrians (radius ε).

MII Average duration that a robot’s immediate projected
path intersects with the projected paths of pedestrians.

MIII Aggregated goal reaching time for the robot and the
pedestrians.

The first metric, MI , is on the robot’s ability to respect
personal spaces. Generally, the robot needs to trade-off be-
tween efficiency and respecting pedestrians’ personal spaces.
We define this metric as the total duration of when the
distance between robot’s and pedestrian’s position is less than
ε , averaged over the total path time, with MI calculated as:

MI =
1
T

T

∑
t=0

{
1, minh∈H(|ppphhh

ttt − ppprrr
ttt |)< ε

0, otherwise.
(1)



Fig. 1: Social safety zone (also referred to as velocity rectangle) of
agent a, defined for MII

Based on Hall’s Proxemic model [16] where a distance of
1.2-3.6m between strangers is prescribed, we suggest setting
ε=1.2 m for general cases. However, the size of comfortable
personal space can depend on and be adjusted based on
context such as location and culture.

The second metric, MII , relates to the robot’s motion
intention. Humans reason about future trajectories of other
pedestrians and mobile agents and make adjustments to
avoid collisions. Thus, if a robot’s trajectory appears to be
intersecting with a human’s path, and the time to collision
is short enough such that it compels the human to change
their own course, the human is likely to feel uncomfortable.
To address this, [9] suggested a social safety zone, where
a rectangular section is projected in the direction of the
agent’s velocity, with length proportional to speed, and width
the same as the agent’s width. This area for an agent a,
denoted by vra (Fig. 1), is called the velocity rectangle. We
measure the discomfort caused by the robot’s current heading
as the aggregated duration during which the robot’s velocity
rectangle intersects with other humans’, averaged over total
path time. Formally, MII is defined as:

MII =
1
T

T

∑
t=0

{
1, ∃h∈H intersect(vrr

t ,vrh
t )

0, otherwise.
(2)

The last metric in this category, MIII , corresponds to the
aggregated navigation time for all pedestrians and the robot.
To allow nearby pedestrians to navigate comfortably the
robot should exhibit cooperative path planning. Cooperative
path planning aims to have all agents reach their goal with the
shortest aggregated amount of time, rather than prioritizing
a single agent’s time to goal. Hence, MIII measures the total
amount of time spent for all agents in the environment to
reach their goal:

MIII = ∑
a∈[r,H]

navTime(a). (3)

C. Naturalness
Naturalness metrics relate to the similarity between robots

and humans in low-level behavior patterns, such as speed. To
evaluate the naturalness of robots, Kruse et. al.’s work [3]
considers the smoothness of the robot’s trajectory. Further-
more, the robot should navigate at normal human walking
speed when they operate in a crowd with other humans
present. These two metrics are summarized as follows.
MIV Average squared jerk over the robot’s trajectory
MV Average duration over the path that the robot’s speed

exceeds human maximum normal walking speed
Based on the assumption that humans tend to follow

a trajectory with near minimum jerk [3], i.e., a smooth
trajectory, the fourth metric, MIV , considers the similarity

between the robot’s and humans’ trajectories in terms of
smoothness. The integrated jerk over a trajectory is used to
quantitatively measure robot path smoothness. MIV for a path
x(t) is calculated as:

MIV =
1
T

T

∑
t=0

...x (t)2, (4)

where
...x (t) =

d3x(t)
dt3 (5)

is computed in discrete time.
The fifth metric, MV , accounts for the robot’s navigation

speed. Specifically, we measure the average time when the
robot’s action exceeds the empirically observed maximum
walking speed of humans (i.e., 1.2-1.5 m/s [17]). We calcu-
late MV as:

MV =
1
T

T

∑
t=0

{
1, |~vvvttt |> 1.5
0, otherwise.

D. Sociability
This metric relates to an agent’s ability to follow social

rules or norms specific to particular societies or cultures.
This could include passing, crossing and overtaking others
on a specific side, and not cutting through a group of people.
One such norm is originally from the pedestrian behavior
model by Helbing [18], and adopted by SA-CADRL [5].
This model suggests the robot to adhere to a specific side
when passing, overtaking and crossing other people’s path.
Thus, we measure sociability as the side preference exhibited
by a given path planning method when tested on passing,
overtaking and crossing scenarios (see Fig. 2 (5)-(7)):
MV I Side preference (either left or right) for pass-

ing/overtaking/crossing behavior
Based on the description of side preference given in [5],

to compute this metric, in each scenario, the robot assumes
a fixed start and goal position. As the robot approaches the
person such that pr

y < ph
y + radh + radr, the case is labeled

as “left” if ph
x > pr

x and “right” if ph
x < pr

x. The percentage
of “left” and “right” cases are then recorded.
E. Other considerations

Another social norm that should be followed is to avoid
passing through a group of people [3]. This requires the
robot to have the ability to identify groups. However, this
aspect is, to certain extent, covered by the personal space
metric, as a group of people usually stays within the personal
distance to each other, leaving no gap for the robot to
navigate through the group without invading other people’s
personal space (accounted for by MI). Other additional social
norms during navigation may include crossing streets only
at pedestrian crossings, or letting people in an elevator come
out first before entering. Such aspects are highly context-
dependent, and hence are not included in the set of proposed
fundamental metrics in this paper.

IV. EVALUATION PROTOCOL
We propose a set of seven common scenarios for evaluat-

ing crowd navigation algorithms. The first four are designed
to expose the agent to different multi-pedestrian navigation



situations. The last three evaluate the consistency of the
robot’s side preference and thus include a single pedestrian.
Our set of scenarios are listed below and illustrated by Fig.
2, with all having fixed start and target positions for the
robot. The origin of the map is at the center. For the robot,
sssrrr = {0, sr

y}, gggrrr = {0, gr
y}, sr

y =−gr
y.

1) Plaza - Circular Crossing: Humans start at a random
location on a ring and try to reach the other side of the
ring. The ring has the same diameter as the distance
between robot’s start and goal. This is a scenario
commonly used in existing works [6]–[8], [11].

2) Random: Pedestrians start at random locations and
attempt to reach random target locations within a
predefined square area of width 50% larger than the
distance between robot’s start and goal locations. The
robot travels through this randomly moving crowd.

3) Parallel Traffic: A pedestrian crowd moves parallel to
the robot. There are two areas of possible pedestrian
start locations, at the robot’s start and goal side.
Pedestrians start randomly in one area and their goals
are placed randomly in the opposite area.

4) Perpendicular Traffic: A pedestrian crowd moves
perpendicular to the robot’s direction of motion, similar
to the parallel traffic scenario but the start and goal
areas are on the left and right side of the robot’s path.

5) Passing: A pedestrian starts opposite the robot, and
they move towards and pass each other. Specifically,
the start and goal positions for human and robot are
within sh

x ,g
h
x ∈ [sr

x− radr− radh, sr
x + radr + radh] and

sh
y = gr

y, gh
y = sr

y.
6) Overtaking: The robot starts behind a pedestrian (with

slower speed) travelling in the same direction and
overtakes the pedestrian. Specifically, the start and goal
positions sh

x and gh
x are within the same range as the

passing scenario, and sh
y > sr

y, gh
y > gr

y.
7) Crossing/Intersection: One human moves perpendicu-

larly to the robot’s direction, and they cross paths with
each other. Specifically sh

y ,g
h
y ∈ [−radr− radh, radr +

radh] and sh
x =−gh

x = sr
y.

V. EXPERIMENT SETUP
A. Tested Algorithms

To demonstrate the effectiveness of the proposed metrics,
we used them to evaluate four state-of-the-art crowd naviga-
tion algorithms that have made their code publicly available.
We provide a brief description of each of these algorithms
below. Interested readers are referred to the given references
for details of each algorithm.

CADRL [19]: One of the earliest algorithms that uses
deep reinforcement learning for crowd navigation. It only
considers one other human during planning. Multi-agent
navigation is achieved by computing the output value from
the model against each human, and selecting the action with
the highest cumulative reward.

GA3C-CADRL [6]: This algorithm incorporates an
LSTM (Long Short Term Memory) module to encode an
arbitrary number of humans’ state along with the robot’s

state as input to their A3C (Asynchronous Advantage Actor-
Critic) framework.

OM-SARL [7]: This algorithm models robot-human in-
teraction through the use of local maps. The aggregation of
all maps, through a pooling module, is provided as the input
to an RL framework.

RGL [8]: This algorithm learns the weights of a Relational
Graph Neural Network by passing in a similarity matrix and
a latent matrix containing the states of the robot and all
humans. The relational graph can be used to infer the human
trajectories taking into account the interactions between robot
and humans, and among humans.

We first began evaluating the selected algorithms as orig-
inally published, using the opensourced code provided in
each paper. However, we found that some of the algorithms
perform much poorer than originally reported in the respec-
tive papers, even for standard metrics such as success rate.
We suspected that this was due to the published algorithms
having trained only in a limited number of scenarios. Hence,
we decided to retrain all selected algorithms using our
proposed protocol, and perform another evaluation.
B. Training Environment

We trained each algorithm in identical conditions, i.e.,
same training parameters and scenarios, using the first four
scenarios in our proposed evaluation protocol. We used the
CrowdSim simulator environment [8], and ORCA (Optimal
Reciprocal Collision Avoidance) [20] pedestrian model for
training. The network parameters are taken from the original
papers, and training parameters from [8]. Both training and
evaluation scenarios had five pedestrians in total. The models
initially go through the same imitation learning phase using
ORCA to speed up initial training. Each model is trained for
10000 episodes. The training curves were manually inspected
by plotting the reward over the training episodes, and all
four models were confirmed to have converged. The reward
function was adopted directly from the selected papers, and
all models share the same reward function.

VI. RESULT AND DISCUSSION
Table II shows a comparison of the evaluation results

using our protocol for an example algorithm as published
(i.e., trained only in the Random scenario) [19], and after
retraining using our protocol. Test results after retraining
for all algorithms are documented in Tables III and IV.
Table II and III present mean and standard deviation from
successful test cases out of 2000 cases. Table IV similarly
presents results from successful cases for the three single-
human scenarios out of 600 cases. Success rates are not
reported in a separate table as the only failed cases from
Table IV are from GA3C-CADRL in the overtaking scenarios
(84% success). OM-SARL is not included in Table IV, as the

TABLE II: comparison of an example algorithm showing evaluation
results of the original algorithm vs results after retraining using our
protocol.

CADRL Success % Collision % Timeout % Nav. time (s)
Original [19] 86.10 8.35 5.55 6.82
Retrained (ours) 93.5 5.05 1.45 6.65



Fig. 2: The set of proposed scenarios. Red areas represent human spawn areas, Red arrows represent humans’ travel direction, Yellow
arrows represent robot’s travel direction, Blue dot represents robot’s starting point, Black star represents robot’s destination

TABLE III: Test results of chosen algorithms with respect to our metrics. Tested for 500 cases for each of the 4 training scenarios in
the invisible-robot environment. Bold fonts indicate best performance. Results are only taken from successful test cases. ε set to 0.2m to
match person radius used in the tested algorithms. Only MIII is evaluated in the visible-robot environment

Evaluation Metric
Algorithm Success % Collision % Timeout % Nav. time (s) MI MII MIII(s) MIV (m/s3)2 MV

CADRL [19] 93.5 5.05 1.45 6.65 0.40 ± 0.37 3.54 ± 1.50 154.39 ± 32.23 5.63 ± 3.098 3.78 ± 0.34
GA3C-CADRL [6] 95.25 2.10 2.65 7.63 0.15 ± 0.22 2.45 ± 1.02 151.86 ± 39.38 10.88 ± 6.77 3.62 ± 0.33

OM-SARL [7] 93.30 4.65 2.05 7.15 0.30 ± 0.32 3.00 ± 1.33 142.95 ± 33.00 9.77 ± 5.59 3.67 ± 0.31
RGL [8] 94.30 3.85 1.85 6.61 0.53 ± 0.49 2.99 ± 1.26 138.40 ± 27.51 9.22 ± 5.32 3.86 ± 0.21

TABLE IV: Test results of selected algorithms for the metric MV I
“Side Preference”. A higher preference to one side is favored.

Algorithm Passing Overtaking Crossing
Left% Right% Left% Right% Left% Right%

CADRL [19] 5 95 62 38 40 60
GA3C-CADRL [6] 3 97 36 64 94 6

RGL [8] 39 61 70 30 15 85

trained model does not support single-human environments.

Table II reveals that, since the original algorithm was
trained and evaluated using a limited number of scenarios, it
perform more poorly when encountering new scenarios. This
affirms the need for and importance of a set of common
evaluation protocol. Although some may think that it is
”unfair” to evaluate an algorithm in a scenario that is
different from the one that it was trained in, our finding
brings attention to a commonly neglected but important
point when training crowd navigation algorithms. All these
crowd navigation algorithms aim to enable robots to navigate
in not just one specific scenario, but more general in the
presence of humans. As such, it is important to consider
a wide variety of navigation scenarios during evaluation.
Considering this, our proposed evaluation protocol covers
a broad range of common navigation scenarios. Results in
Table II demonstrates that using our proposed protocol for
training can improve performance across broader range of
scenarios.

It is interesting to note that the original CADRL pre-
sented in [19] was trained in the random scenario, and the

random scenario should theoretically cover all scenarios in
the proposed protocol. However, surprisingly, the resulting
performance can still deteriorate when evaluated explicitly in
our proposed scenarios. The cause for this might be that more
orderly scenarios (parallel and perpendicular traffic) rarely
occurs in the random generated scenario. Hence, training
only in random scenario does not allow the algorithm to
learn about more orderly scenarios. However, such scenarios
are common in real life (at pedestrian crossing, sidewalks),
and hence, important to account for.

Focusing on results after retraining as presented in Table
III, we observe that all algorithms were trained successfully
on the scenarios of interest, as the success rates achieved
are similar to those reported in the original papers [7],
[8]. CADRL has the lowest success rate due to its limited
capability in handling multiple humans. Among the selected
algorithms, RGL achieves lowest average navigation time,
supporting results reported in [8]. Our results also confirm
that RGL achieves the best efficiency. CADRL achieves
second-best navigation time, yet this result is overshadowed
by a lower success rate.

Further analyzing results from our metrics, we see that
although each algorithm excels at a specific aspect of social
navigation, none achieves full social conformity as defined
by the proposed set of metrics. For instance, GA3C-CADRL
performs best with respect to the “Personal Space” and
“Projected Path” criteria. However, among all algorithms, it



has the worst “Aggregated Time”. This might be explained
by GA3C-CADRL’s ability to anticipate human trajectories
during planning. Thus, while the resulting robot motions
respect the personal space of surrounding humans, they are
also overly cautious and require longer navigation times.

Similarly, our results show that RGL produces the most
aggressive navigation behavior, which is why it achieves low-
est navigation time. RGL also surpasses all other algorithms
and achieves the lowest “Aggregated Time”. This might be
due to the incorporation of a relational graph model that
allows the robot to reason about its interactions with other
humans and/or between humans during planning. In terms
of naturalness, CADRL achieves the smoothest trajectories
among all algorithms at the cost of the highest number of
social zones’ violations and the lowest success rate.

Finally, with regards to the sociability of the robot’s
trajectories, the results in Table IV indicate that only the
algorithms, i.e., CADRL and GA3C-CADRL, that explicitly
include a reward function that targets left-hand or right-
hand social norms achieved a consistent side preference. The
remaining two algorithms show poor preference consistency
when subjected to small human position deviations.

Our results demonstrates the utility of our proposed set
of metrics in providing a more comprehensive evaluation
of crowd navigation methods, and better identifying their
strengths and weaknesses. In terms of practical application,
based on the results, if a more considerate robot was desired,
such as for elder care applications, one may opt to choose
GA3C-CADRL, but if a more efficient (but more aggressive)
robot was desired (and acceptable), perhaps for package
delivery applications, one may opt to choose RGL instead.
Limitations: We have evaluated the algorithms using sim-
ulation, like many existing works have done [5], [6], [8],
such that we can evaluate on a much large number of
trials. In general to crowd navigation evaluation, it would
be important to also evaluate in a real world setting, as
there are sim-to-real gaps (especially between simulated and
real human behaviors). However, this is more of a challenge
to crowd navigation in general, and independent to our
proposed metrics and protocol, as they can equally be used
for evaluation in real world settings. In this paper, we have
assumed that the robot is traveling by itself. Hence, we
do not expect to have a human(s) that might be travelling
closely along side the robot. If we are considering target
applications where the robot is expected to travel closely
beside a human(s) (e.g., a companion robot), the scenarios
in the proposed protocol and the metrics would need to be
modified to account for this. For instance, MI should not
penalize having the companion human(s) close to the robot.

VII. CONCLUSION

In this paper, we have proposed a set of metrics and eval-
uation protocol that aims to facilitate more comprehensive
evaluation of crowd navigation algorithms with respect to
social conformity. The reason for the choice behind each
metric is explained, and a demonstrated use of the metrics on
several state-of-the-art algorithms is provided. We have also

demonstrated that existing algorithm may fail to generalize to
different scenarios, due to highly limited training/evaluating
scenarios used, and that using our proposed protocol for
training can improve performance across broader range of
scenarios. The evaluation results highlight the ability of our
presented metrics to further differentiate algorithms that have
a clear ranking with respect to their efficiency, and can serve
as a guideline for more socially oriented implementations and
comprehensive evaluations of future algorithms. While we
have proposed a set of metrics that accounts for both robot
performance and social conformity, this is not an exhaustive
list. Additional metrics can potentially be used in conjunction
depending on the application of interest.
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