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ABSTRACT

An important factor in developing control models for human-robot collaboration is how acceptable they
are to their human partners. One such method for creating acceptable control models is to attempt to
mimic human-like behaviour in robots so that their actions appear more intuitive to humans. To investigate
how task complexity affects human perception and acceptance of their robot partner, we propose a novel
human-based robot control model for obstacle avoidance that can account for the leader-follower dynamics
that normally occur in human collaboration. The performance and acceptance of the proposed control
method were evaluated using an obstacle avoidance scenario in which we compared task performance
between individual tasks and collaborative tasks with different leader-follower dynamics roles for the
robotic partner. The evaluation results showed that the robot control method is able to replicate human
behaviour to improve the overall task performance of the subject in collaboration. However, regarding
the acceptance of the robotic partner, the participants’ opinions were mixed. Compared to the results of
a study with a similar control method developed for a less complex task, the new results show a lower
acceptance of the proposed control model, even though the control method was adapted to the more
complex task from a dynamic standpoint. This suggests that the complexity of the collaborative task at
hand increases the need not only for a more complex control model but also a more socially competent
control model.

Keywords: Human-Robot Collaboration, Obstacle Avoidance, Robot Acceptance, Leader-Follower
Dynamics, Role Allocation

1 INTRODUCTION
As robots working in direct contact with people is becoming a more common practice, the question of
effective human-robot collaboration (HRC) becomes more imperative each day. Due to this, a great
amount of state-of-art research has been done on this subject over the past decade. One of the main issues
being ”How do we develop robots that will be accepted by their human partners?” Bröhl et al. (2019).

From an engineering standpoint, this manifests as HRC research mostly focusing on the development
of robot control systems that are capable of replicating human behaviour in robots, as studies such as
Noohi et al. (2016) showed that human-like behaviour in robots has a positive effect on human perception
of their robot partner, as well as on the task performance. Here, they found that when collaborating with a
robot, people find human-like behaviour more intuitive. Furthermore, a study by Ivanova et al. Ivanova
et al. (2020) found that humans can even prefer a robot partner with human-like behaviour to an actual
human partner, which was further confirmed in our previous study Kropivšek Leskovar and Petrič (2021).

In this regard, many human-based control models had already been developed, such as Leica et al.
(2016); Petrič et al. (2017); Khoramshahi and Billard (2018); Li et al. (2020). However, the proposed robot
control models in these studies only focus on imitating human behaviour in a robot partner, disregarding
the behaviour and dynamics between the partners, which innately occur during human collaboration.
These social interactions are a key component in any human collaboration experience and should be
considered in HRC development as well. An example of social behaviour that naturally occurs in human
collaboration is the leader-follower dynamics, where one of the partners takes on the role of a leader,
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while other people in the group follow, which allows the group to perform the task successfully. The
importance of role distributions in HRC has been addressed in Jarrassé et al. (2014).

In our previous study Kropivšek Leskovar et al. (2021), we tackled the question of leader-follower
role allocation by first studying the dynamics in human dyads during a collaborative reaching task. We
examined how the leader-follower dynamics occur during human collaboration and whether such roles are
predetermined or not. The results provided in the study implied that the subjects who performed higher in
the individual experiment would naturally assume the role of a leader when in physical collaboration with
another person. From this, we developed a robot control method, described in Kropivšek Leskovar and
Petrič (2021), that takes into account the leader-follower dynamic as they occur in human collaboration
and allows the robot partner to assume both the role of a leader and that of a follower. However, the
proposed control model was created only for the performance of a simple 2D reaching task. Here, the
question of ”what happens with the effectiveness and acceptance of such a robot control model when the
collaborative task is more complex?” remains.

In this study, we propose to extend upon our previous robot control method described in Kropivšek Lesko-
var and Petrič (2021) by creating a novel robot control system through which a robot is capable of reaching
a specific target on screen while avoiding obstacles just as a human would - by themselves or in collabora-
tion with a human. This is done by first conducting a study on the performance of obstacle avoidance
in human dyads, based on which a virtual Obstacle Avoidance Model is defined. Based on this virtual
model, the robot control system is then developed, which is capable of creating human-like behaviour
during obstacle avoidance, specifically curated to suit the human partner’s natural behaviour. Furthermore,
as in our previous paper, the leader-follower dynamics are implemented so that the robot can assume
whichever role is preferable. The proposed system is then evaluated in a preliminary study by observing
how human subjects respond to collaborating with a robot using the developed control system. This is
done by evaluating both objective task performance as well as subjective task performance, using the
Nasa Task Load Index assessment. Here, we hypothesise that our proposed control system will enable
subjects to achieve better task performance during collaborative sessions compared to their individual
performance. Furthermore, we hypothesise that the subject’s subjective assessment of the collaborative
task will be positive, as was the case in our previous study on HRC Kropivšek Leskovar and Petrič (2021).

2 HUMAN COLLABORATION STUDY

2.1 Subjects
The study on human collaboration during obstacle avoidance included twelve male and four female
participants, with all subjects having no prior experience with the experimental setup. Before the start of
the experiment, the subjects were informed about the experimental procedure, potential risks, the aim
of the study and gave their written informed consent in accordance with the code for ethical conduct
in research at Jožef Stefan Institute (JSI). This study was approved by the National Medical Ethics
Committee (No.: 0120-228/2020-3).

2.2 Experimental Protocol
Experiments on human collaboration were conducted on a dual-arm Kuka LWR robot, seen in Fig. 1. The
robots were used as a haptic interface between the subjects and the virtual environment, where they were
moving a virtual point in the 2D environment shown and described in Fig. 1. Here, the robot arms were
used as two separate haptic interfaces for individual tasks or as one combined haptic interface, where
the robot arms and their users were coupled together and controlled the same virtual point. This was
achieved using a virtual dynamic model for the robot arms developed in Kropivšek Leskovar et al. (2020).
To match the 2D environment of the graphic user interface, the movement of the robot arms was limited
to a 2D plane. This was done by constraining the z-axis of the robot’s end-effector to a static position so
that the angle between the subject’s arm and forearm was 90deg in the starting position.

The experiment consisted of two sets. In the first one, the subjects performed the required task
individually with no obstacles present, while in the second set the subjects were coupled together to
perform the task in collaboration. Moreover, in the second experimental set virtual obstacles were included
in the task.

Throughout the experiment, the subjects were not told which task type they were performing. However,
when they were coupled together, the two subjects could feel an external force produced by their partner.
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Figure 1. Picture of the experimental setup with two of the participants. The sketch above the right
participant shows the graphic user interface that the subjects saw on the screen. It consisted of a starting
point (black dot), target point (red dot), the obstacle (black line) and the controlled point (white dot)
which the subjects moved either individually or together, when in collaboration.

This established an open channel for haptic communication between the two subjects, which allowed
them to sense when they were performing the task together or alone and their partner’s action.

Each experimental set began with the subjects moving the controlled point on the screen to its starting
position. When the controlled point was in its starting position a random target appeared on the screen.
The subjects were instructed to reach this target and stay inside until the target disappeared. This was
to prevent the subjects from simply running over the target without aiming for it. When the target
disappeared, the subjects had to return to the starting position. The reaching task was repeated 90 times
in each set in which 9 different targets with varying distances (5cm, 15cm and 25cm) and size (small,
medium and large) were used in random order.

The collaborative experimental set was conducted in the same manner as the individual experimental
set with the addition of obstacle avoidance. The obstacle appeared on the screen at the same time as the
target and was always positioned midway between the starting position and the target. For instance, when
the target distance was 5 cm, the obstacle appeared on the screen at a 2.5 cm distance from the starting
position. If the subjects were unsuccessful in avoiding it, they failed the task and had to return to the
starting position without reaching the target.

2.3 Obstacle Avoidance Model
Based on the gathered data from the human experiments an obstacle avoidance model was created. Here,
our goal was to create a virtual model that is capable of generating the same movement as an individual
that is performing the same task.

In the analysis of the data gathered during human collaboration, we have found that subjects performed
two separate tasks during the experiment. The first one being the task of reaching the target and the
second one being the task of avoiding the obstacle. We gathered this by observing the force trajectories of
both subjects during the reaching task where obstacles were present. Here, we could see that subjects
who saw the obstacle were primarily focused on avoiding it by exerting all of their force in the direction
away from the obstacle. After successfully avoiding it, however, the subjects moved all their force and
focus towards reaching the target in a straight line.

Due to this, we constructed the virtual obstacle avoidance model as such - by combining the description
of the movement towards the target using Dynamic Movement Primitives (DMPs) with a potential force
field around the obstacle.

This was done by first describing the movement of the virtual point similar as a linear Dynamic
Movement Primitive (DMP), which is given by:

τ v̇ = K(g− x)−Dv, (1)
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τ ẋ = v, (2)

where x and v are position and velocity of the system, and g the position of the target or goal. K
corresponds to the spring constant and D to the damping constant of the system, which were adapted
based on the person’s natural movement.

Here, we found that both K and D are not constant per se, but rather change based on the type of target
displayed on the screen. More specifically, the constants K and D depend on the Index of Difficulty (ID)
of the target, described in Fitts (1954). As such, the constants are defined as:

K = k1ID+ k2 (3)

D = k3ID, (4)

where parameters K1 to k3 are determined based on the measured movement of a person performing the
same task.

In order for the model to successfully avoid obstacles, a potential field was added to the linear DMP
defined in Eq. 1. The combination of the linear DMP and a potential field is based on the work of Park et
al. in Park et al. (2008) and is described as:

τ v̇ = K(g− x)−Dv+ϕ(x,v), (5)

where ϕ(x,v) is the repellent acceleration force used and is defined as a negative gradient of the dynamic
potential field around the obstacle.

This is described in the work of Park et al. Park et al. (2008) as:

ϕ(x,v) = λ (−cosθ)β−1 ‖v‖
p

(
β∇xcosθ − cosθ

p
∇x p

)
, (6)

where p is the distance between the current position and the obstacle and θ the angle between the current
velocity direction and the direction towards the obstacle. λ is a constant that modifies the strength of the
entire field and β is an additional constant for correction, presumably.

Using the gathered data from human experiments we tried to learn how the constants β and λ change
based on the task. We have found that the values of both β and λ change according to the distance
between the starting point and the obstacle. These were best described as:

λ = k1/o+ k2 (7)

β = k3o2 + k4o+ k5, (8)

where o is the distance between the starting point and the obstacle and k1 through k5 are parameters
which are specific to each individual subject. These parameters were determined using the optimisation
procedures.

3 HUMAN-ROBOT COLLABORATION STUDY
Based on the obstacle avoidance model found through the human collaboration study, a robot control model
was developed to investigate whether such a model can be successfully implemented into human-robot
collaboration as well.
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Figure 2. Sketch of average movement of the virtual point during human collaboration experiments and
the generated robot trajectory based on the Obstacle Avoidance Model. The sketch showcases the
movement of a typical pair for all target distances used in the experiment.

3.1 Control method
The robot control system used in this study was based on the virtual dynamic model which is the same
in the human collaboration study for haptic communication. This ensured that the differences between
human collaboration and HRC were kept to a minimum.

As described in our previous paper Kropivšek Leskovar et al. (2020), the virtual dynamic model
used in our study controls the movement of the virtual point based on the amount of force applied to
the end-effector of the robot. Therefore, our goal was to create a virtual control model that was able to
generate a force trajectory that would allow a robot to perform the same task of obstacle avoidance as
seen in the human experiment individually.

Here the virtual dynamic model is used to control a virtual point individually or in collaboration, by
coupling the two human subjects together. To enable the virtual model for human-robot collaboration the
force equation, described in Kropivšek Leskovar et al. (2020) has been redefined as:

F = Fr +Fh, (9)

where Fr becomes the force applied by a virtual robot partner and Fh becomes the force applied by the
human to the end-effector. Note that the virtual robot partner is able to perform the task alone, just as a
human partner could.

In the proposed control system the force of the robot Fr is based on the Obstacle Avoidance model
described in the previous section 2.3 and is described as:

Fr = Kl · (Kp · (p− pt)+Kd · (v− vt),), (10)

where Kp and Kd are the spring and dampening coefficients of the robot control system, p is the current
position of the controlled point while pt is the desired position of the controlled point, based on the
desired movement generated by the Obstacle Avoidance Model, and lastly v is the current velocity of the
controlled point, while vt is the desired velocity, which was also based on the desired movement generated
by the Obstacle Avoidance Model.

The desired movement and velocity of the controlled point depended on the human partners natural
performance of the same task. This was determined based on the measurements taken during an individual
performance of the same obstacle avoidance task.

Kl in Eq. 10 presents the coefficient that defines the leader-follower dynamics in HRC, which was
previously studied in Kropivšek Leskovar et al. (2021) and is defined as:

∆Kl


< 1 ; robot follows the human
= 1 ; robot is equal to human
> 1 ; robot leads the human

(11)

In the current preliminary study, the leader coefficient was the same for all subjects and was prede-
termined as Kl = 0.75 for cases where the robot followed the human, Kl = 1 for cases where robot and
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human were equal partners, and Kl = 1.25 for cases where robot immitated the role of a leader within the
collaborative dyad.

Furthermore, as the parameters of the Obstacle Avoidance Model change based on the position and
size of the target as well as the position of the obstacle, the robot partner needed to be capable of discerning
what the goal of each trial was in real time. This was done by implementing real-time tracking of the
target’s position and size into the robot control system, upon which the system was able to adjust its force
trajectory accordingly.

3.2 Evaluation of the robot control system
In order to test the proposed control model, a preliminary study was performed, with 4 subjects participat-
ing. Here, two of the subjects were female and two were male.

The proposed robot control system was evaluated using the same setup, seen in Fig. 1, and the same
reaching task, described in Section 2. Here the experiment consisted of four different sets, where subjects
performed the reaching task individually or in collaboration with a robot partner that leads, a robot partner
that follows and a robot partner who is their equal. Note that in HRC the robot partner was a virtual
partner rather than a physical one, meaning the forces applied by the robot partner manifested in physical
form as an autonomous movement of the robot arm the subject was holding.

Each experiment set consisted of 45 trials, accumulating to 180 trials altogether. To mitigate the
influence of learning on subjects’ performance in different experiment sets, the order in which experiment
sets were performed was different for each subject, with the individual set always being the first one as
the data from this trial was used to generate the robot partner’s behaviour.

After each experiment set the subjects had a 5-minute break during which they were asked to fill out
the Nasa-TLX form, which was used to assess the subject’s subjective workload during the experiment.

The evaluation of the proposed robot control method further included an objective analysis of task
performance during each experiment set. The task performance was defined using Fitts’ law’s index of
performance (IP) Fitts (1954), which is described as:

IP =
ID
MT

, (12)

where MT is the measured movement time and ID is the index of difficulty, which has several formats in
literature as seen in Fitts (1954),Zhai et al. (2004). In this study the Shannon formulation MacKenzie
(1992) was used, which is defined as:

ID = log2(
D
W

+1). (13)

3.3 Results
Looking at Fitts Law’s Index of Performance in Fig. 3, we see that all robot collaboration improved
objective performance compared to the individual performance of a person. This result correlates with
our previous study on human-robot collaboration Kropivšek Leskovar et al. (2021), where both human
and robot partners improved the overall task performance.

Table 1. Number of collisions for each subject in each experiment. The number of collisions represent
the total amount of collision throughout the experiment set, for all targets.

experiment sets subject 1 subject 2 subject 3 subject 4
individual task 0/45 0/45 0/45 0/45
robot follower collaboration 1/45 5/45 1/45 2/45
robot equal collaboration 4/45 4/45 2/45 2/45
robot leader collaboration 5/45 4/45 2/45 4/45

However in Table 1, we can see that the number of collisions increase when subjects are in collabora-
tion with a robot. Furthermore, it should be noted that most of the collisions occurred in cases where the
obstacle was closest to the starting position.

Moving our focus to subjective performance evaluation, based on results from the NASA-TLX
questionnaire, we can see two distinct reactions to the human-robot collaboration tasks. In Fig. 4 we can
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see that for 2 of the 4 subjects the overall task load increases with the presence of the robot, while for the
other 2 subjects the workload seems to decrease with the increased influence of the robot.

4 DISCUSSION
Results of the Fitts’ Law’s Index of Performance shown in Fig. 3 indicate that overall performance did
increase in all cases where subjects were collaborating with a robot. This confirms the findings from our
previous paper Kropivšek Leskovar and Petrič (2021), upon which the current control system is based
on. The results from this study state that task performance increases when subjects collaborate with
either another human or a robot, as the additional forces increase the speed at which the task can be
accomplished.

However, unlike in our previous study, the collaborating dyad had an additional task of avoiding an
obstacle in order to reach a target or face failure. This means that only the successful trials were able to
be taken into account when calculating Fitts’ Law metrics. Due to this, the number of failed trials, i.e.
the number of collisions occurring in each experimental set, should be looked at as well to determine
how successful the proposed model is at collaborative obstacle avoidance. Here, we can see from Table 1
that collisions increase when subjects were collaborating from 0 collisions, up to 5 collisions out of 45

individual  
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Figure 3. Average Fitts’ law’s Index of Performance (IP) for each experiment set, calculated as
described in Fitts (1954). The higher the IP of an experimental set, the better the performance of a task
was.

 

N
as

a-
T

LX
 g

ra
de

s

MD PD TD PE EF FR total
workload

high

low

individual
collaboration w. robot follower

collaboration w. robot equal
collaboration w. robot leader

subject 1
subject 2

subject 3
subject 4
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stands for mental demand, PD for physical demand, TD for temporal demand, PE for performance, EF for
effort and FR for frustration. The graph also shows the total Nasa-TLX score for each experimental set.
Here the weights for each factor based on individual subject’s preference were taking into account when
calculating the total workload.
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trials, meaning that in regards to the robot helping the human avoid an obstacle, our proposed model did
not perform well. A reason for this could be a lack of communication between the robot and the human
partner that would allow them to actively coordinate their movement to avoid the obstacle.

As stated in Cohen and Levesque (1991), communication is an integral part of successfully performing
any collaborative task. For instance, when looking at the human collaboration the same problem seemed
to occur, with one of the human partners hindering the other’s ability to avoid the perceived obstacle
by pushing them in a different direction. We can presume that this is due to the two partners’ plans of
action differing from each other and there being no effective way for them to coordinate with each other
in real-time. Although they felt each other’s force through the haptic channel of communication, this
seemed not to be enough when neither of the individuals wanted to conform to their partner’s behaviour.
Or in some cases, they might not have been able to course-correct fast enough, which can be confirmed
through the fact that both in human collaboration and in HRC the highest rate of collisions occurred in
cases where the obstacle was the closest to the starting point.

Unlike in the human collaborative experiment, however, the lack of communication about their
individual plan of action between the robot and the human partner could be easily fixed by displaying the
planned movement of the robot on screen. This would allow for the human subject to understand the robot
partner’s actions better, which might further improve their sense of frustration during the collaborative
task, observed in Fig. 4 for the current experiment. However, such adaptations can only be implemented
from the perspective of the person collaborating with a robot, while the robot still has no understanding
of their human partner’s plan of action. This in turn decreases the amount of autonomy and adaptability
of the robot, which in turn changes the leader-follower dynamics within the human-robot dyad. As
the human is the only partner capable of making a fully informed decision, the robot partner is then
automatically pushed into the follower role, while their human partner assumes the role of a leader.

The lack of clear communication and its detriments can be seen in the subjective assessment of the
proposed robot control model as well. Looking at Fig. 4, we can see an obvious rift between the opinions
of the participants, where half of the participants felt an increase in the workload with the addition of a
robot partner and half of the participants felt a noticeable decrease in the overall workload. Here, it is
interesting to note that the subjects who felt an increased workload during HRC also rated higher workload
in the individual tasks compared to the subjects who sensed a decrease in the overall task workload when
in collaboration. This suggests that there may be a dissonance between the subjects’ perception of the
task as a whole, pointing to some psychological aspects coming into play such as a person’s individuality,
their task execution preference, need for control etc. However, before making any further claims, another
evaluation needs to be done with a larger and broader pool of participants in order to gain a clearer picture
of how the proposed robot control method is perceived.

5 CONCLUSION
In this study, we describe a proposed robot control model that is capable of avoiding obstacles au-
tonomously as humans do. In addition, it is able to perform the same task in cooperation with a human
partner, where it can take into account the leader-follower dynamics observed in human cooperation by
performing the role of leader, follower, or equal. Furthermore, the aim of the study was to create a robot
control system that can be personalised based on the needs of the individual collaborating with the robot,
thus not hindering a person’s performance of the task.

The results of the HRC using the proposed control method show that it improves overall task perfor-
mance compared to individual human performance. However, the proposed robot control method did
increase the number of collisions during collaborative task execution and was not positively accepted by
all participants.

Although the results from the preliminary study showcase lower acceptance of the proposed robot
control model than hypothesised, the study highlights important factors which need to be considered in
future development of HRC control models. As stated in the introduction, collaboration between people
is much more than just a physical activity, it is also a social activity. Therefore, when trying to develop an
acceptable robot control model for HRC the same, or even additional, social dynamics need to be taken
into account.

The results provided in this study suggest that as the complexity of the collaborative task at hand
increases, so does the complexity of human perception, communication patterns, and overall social
interactions, which will need to be addressed accordingly if we want to develop acceptable control models

8/10



for HRC in the future. Thus, we must strive to develop robots that are more socially competent, even if
the task itself does not appear to be social but rather physical, such as transporting objects.
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Kropivšek Leskovar, R., Čamernik, J., and Petrič, T. (2021). Leader–follower role allocation for physical
collaboration in human dyads. Applied Sciences, 11(19).

Leica, P., Roberti, F., Monllor, M., Toibero, J., and Carelli, R. (2016). Control of bidirectional physical
human–robot interaction based on the human intention. Intelligent Service Robotics, 10:1–10.

Li, Y., Eden, J., Carboni, G., and Burdet, E. (2020). Improving tracking through human-robot sensory
augmentation. IEEE Robotics and Automation Letters, 5(3):4399–4406.

MacKenzie, I. S. (1992). Fitts’ law as a research and design tool in human-computer interaction.
Human–Computer Interaction, 7(1):91–139.

9/10
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