
Short Division of Long Integers

David Harvey
Courant Institute of Mathematical Sciences

New York University
New York, USA

dmharvey@cims.nyu.edu

Paul Zimmermann
Centre de recherche Inria Nancy - Grand Est

Équipe-projet CARAMEL - bâtiment A
615 rue du jardin botanique
F-54600 Villers-lès-Nancy
Paul.Zimmermann@inria.fr

Abstract—We consider the problem of short division —
i.e., approximate quotient — of multiple-precision integers.
We present ready-to-implement algorithms that yield an ap-
proximation of the quotient, with tight and rigorous error
bounds. We exhibit speedups of up to 30% with respect to
GMP division with remainder, and up to 10% with respect to
GMP short division, with room for further improvements. This
work enables one to implement fast correctly rounded division
routines in multiple-precision software tools.

Keywords-floating-point division, arbitrary precision, GNU
MP, GNU MPFR

I. INTRODUCTION

The motivation for this work is to speed up the divi-
sion routine in multiple-precision floating-point libraries like
GNU MPFR [2], for numbers of say 200 to 20000 deci-
mal digits. Floating-point division might reduce to integer
division as follows. Assume for simplicity that one wants
to divide a p-bit floating-point number a by another p-bit
floating-point number b, with a result c of p bits. We also
assume for simplicity that a, b > 0, and that the result c
is rounded towards zero. We can write a = ma · 2ea and
b = mb · 2eb with ma,mb positive integers, mb having
exactly p bits, ea, eb ∈ Z, such that

2p−1 ≤ ma/mb < 2p (1)

(then ma has 2p or 2p − 1 bits). We then call an integer
division routine — for example from the GNU MP library
[3] — which returns the quotient q ∈ N and remainder r ∈ N
such that ma = qmb + r, with 0 ≤ r < mb. It follows from
Eq. (1) that 2p−1 ≤ q < 2p, thus q has exactly p bits, and
the expected truncated quotient is c = q · 2ea−eb .

We assume that multiple-precision integers are written in
base β, where β ≥ 2 is an integer; in practice β = 264

on contemporary processors. We write such an integer as
a =

∑n−1
i=0 aiβ

i, with 0 ≤ ai < β. By the quotient of
two positive integers a and b we will mean their quotient
rounded towards zero, i.e., q = ba/bc, sometimes denoted
a div b. We denote by a mods b the unique integer
r ≡ a mod b such that −b/2 ≤ r < b/2. We will use upper-
case letters for integers consisting of several words in base
β, and lower-case letters for individual words (or digits).
We assume that we have available routines for the basic

operations on multiple-precision integers, namely addition,
subtraction, the full product Mul, and the division with
remainder DivRem(W,V), which returns Q and R such that
W = QV +R with 0 ≤ R < V . We also write Div(W,V)
for a routine returning only Q. From those basic routines we
will design several algorithms returning an approximation
to the quotient Q. We never assume that the divisor V is
invariant, thus we avoid precomputations involving it.

Several techniques are available to compute an approxi-
mate quotient. The most straightforward is Mulders’ short
division, which is itself based on Mulders’ short product
[8]. Mulders only considered the polynomial case; one con-
tribution of this article is a detailed algorithm in the integer
case with a tight and rigorous error analysis (§II-B). The
other technique is based on Barrett’s division [1], which first
computes an approximation of the divisor inverse, and then
multiplies it by the dividend. A folding technique enables
one to decrease the inversion cost; this method is described
in [5] in the context of modular reduction. We give a detailed
algorithm using this folding technique, together with a tight
and rigorous error analysis (§II-D). Finally we present some
experimental results comparing the two approaches, together
with plain division (§III).

II. OUR CONTRIBUTION

In this section we describe two algorithms computing
an approximate quotient: Algorithm ShortDiv implementing
Mulders’ short division (§II-B) and Algorithm FoldDiv im-
plementing Barrett division with the folding technique from
[5] (§II-D). Both algorithms use as a subroutine Mulders’
short product, which we describe in detail and analyze first
(§II-A).

A. Mulders’ Short Product

We describe here our implementation of an integer version
of Mulders’ short product [8], and analyze precisely its
error. We give two variants: ShortMulNaive is a quadratic-
time algorithm, and ShortMul is a subquadratic algorithm,
assuming that the full product routine Mul implements
subquadratic algorithms (such as Karatsuba, Toom-Cook,
FFT).

Algorithm II.1 ShortMulNaive

Input: U =
∑n−1

i=0 uiβ
i, V =

∑n−1
i=0 viβ

i, integer n ≥ 1
Output: an integer W with UV β−n − n < W ≤ UV β−n

1: W ← un−1v0
2: for i from 1 to n− 1 do
3: W ←W + (un−1β

i + · · ·+ un−1−i) · vi
4: W ← bWβ−1c

The error analysis of Algorithm ShortMulNaive is as
follows. For each 0 ≤ i < n − 1 we neglect the products
ujβ

jviβ
i for i+ j < n− 1, whose total contribution is less

than βn for each i. Thus the total error for all i is less than
(n− 1)βn with respect to the full product UV , and n with
respect to UV β−n, taking into account the truncation of
step 4. In addition, all the neglected terms are nonnegative,
which proves W ≤ UV β−n.

Note that the lower bound UV β−n − n is essentially
optimal, as shown by the following example for β = 1000
and n = 2: take U = 780996, V = 308999, we get
W = 241325, while UV β−n ≈ 241326.983.

Algorithm II.2 ShortMul (Mulders)

Input: U =
∑n−1

i=0 uiβ
i, V =

∑n−1
i=0 viβ

i, integer n ≥ 1
Output: an integer W with UV β−n − n < W ≤ UV β−n

1: if n < n0 then . We assume n0 ≥ 5
2: W ← ShortMulNaive(U, V, n)
3: else
4: choose an integer k, (n+3)/2 ≤ k < n, `← n− k
5: write U = U1β

` + U0, V = V1β
` + V0

6: write U = U ′1β
k + U ′0, V = V ′1β

k + V ′0
7: W11 ← Mul(U1, V1, k) . 2k words
8: W10 ← ShortMul(U ′1, V0, `) . ` upper words
9: W01 ← ShortMul(U0, V

′
1 , `) . ` upper words

10: W ← bW11β
2`−nc+W10 +W01

For large n, Algorithm ShortMul is faster than ShortMul-
Naive because ShortMulNaive always performs about n2/2
word products, whereas ShortMul benefits in step 7 from
a subquadratic implementation of the full product U1V1, as
provided for example by the GNU MP library.

Lemma 1: The output of Algorithm ShortMul satisfies

UV β−n − n < W ≤ UV β−n.

Proof: For n < n0, the error analysis is the same as
that of Algorithm ShortMulNaive. Assume n ≥ n0. The
parts neglected in the full product UV are the products U ′0V0
and U0V

′
0 (which overlap on U0V0) and the neglected parts

from the two recursive calls to ShortMul, which return ap-
proximations of U ′1V0β

−` and U0V
′
1β
−` respectively. Since

U ′0V0 < βkβ` = βn and similarly U0V
′
0 < βn, and since by

induction each recursive call yields an error of at most ` units

U1

V1

U0

V0

@
@

@
@

@
@

@
@

@
@

@

@
@

V ′1

V ′0

@
@

U ′1 U ′0

Figure 1. A graphical view of Algorithm ShortMul, with most significant
parts bottom left. The cut squares represent (recursive) short products.

in last place, the total error is less than 2`+2+1, where the
term 2 stands for the neglected terms U ′0V0 and U0V

′
0 , and

the term 1 stands for the truncation error in bW11β
2`−nc.

This is bounded by 2`+3 ≤ n, since ` = n−k ≤ (n−3)/2.
A “graphical” proof is as follows: we see on Fig. 1 that
the neglected products uivj are above the diagonal, thus
correspond to i + j < n − 1; as a consequence, the value
computed by ShortMul is greater or equal to that computed
by ShortMulNaive.
NOTE: Algorithm ShortMul takes two inputs less than βn.
We will use it in some cases with βn ≤ U < 2βn, with the
convention that

ShortMul(U, V, n) := V + ShortMul(U − βn, V, n).

Lemma 1 still applies since the V term is computed exactly.

B. Mulders’ Short Division

The following lemma gives a bound on the difference
between the true quotient Q = bW/V c and the approximate
quotient obtained by discarding the lower order words of
W and V . It is a generalization of a classical result, see for
example [7, Theorem 4.3.1.B].

Lemma 2: Let W,V be two positive integers, and Q =
bW/V c their quotient. Consider an integer B, 0 < B ≤ V ,
and define Q1 = b(W div B)/(V div B)c. Then

Q ≤ Q1.

If in addition Q < λ(V div B), with λ a positive integer,
then

Q1 ≤ Q+ λ.

Proof: Let W = W1B +W0 and V = V1B + V0 with
0 ≤W0, V0 < B. We have

Q ≤ W

V
< Q+ 1 (2)

and

Q1 ≤
W1

V1
< Q1 + 1.

Expanding the left inequality of (2) leads to (W1−QV1)B ≥
QV0 −W0 ≥ −W0. Since the left hand side is a multiple
of B and −W0 > −B, we conclude W1 − QV1 ≥ 0, thus
W1/V1 ≥ Q and Q1 ≥ Q.

Expanding the right inequality of (2) leads to W1B ≤
W1B+W0 < (Q+1)(V1B+V0) < (Q+1)V1B+(Q+1)B.
Dividing by B leads to W1 < (Q + 1)V1 + Q + 1, thus
W1 ≤ (Q + 1)V1 + Q < (Q + 1)V1 + λV1, and W1/V1 <
Q + λ + 1. By taking the floor on both sides, it follows
Q1 = bW1/V1c ≤ Q+ λ since λ is an integer.
In [7] this lemma is used with W a number consisting of
n + 1 words in base β, V consisting of n words with its
most significant word larger than β/2, and B = βn−1, thus
Q1 is the result of dividing the two most significant words
of W by the most significant word of V ; in that case, if we
know in advance that the quotient Q is less than β — for
example within a multiple-precision division — then λ = 2
applies, and the lemma yields Q ≤ Q1 ≤ Q+ 2.

To describe short division algorithms, we consider a
division of 2n words by n words. In the application to
floating-point arithmetic, we are mainly interested in division
of n words by n words. However, retaining a dividend of
2n words has several advantages:
• it makes it easier to call division with remainder in the

recursive calls (if any);
• it is interesting to have one more significant word of

the dividend, to get more accurate partial quotients. We
use this especially in Algorithm FoldDiv (§II-D);

• for floating-point arithmetic, to get correct rounding, in
some rare cases one needs to consider the remainder,
i.e., the low limbs of the initial dividend.

Algorithm II.3 ShortDiv (Mulders)

Input: W =
∑2n−1

i=0 wiβ
i, V =

∑n−1
i=0 viβ

i

Require: vn−1 ≥ β/2, n ≥ 1
Output: an integer approximation U of Q = bW/V c

1: if n < n1 then . We assume n1 ≥ 5
2: U ← Div(W,V) . Returns bW/V c
3: else
4: choose an integer k, (n+3)/2 ≤ k < n, `← n− k
5: write W =W1β

2` +W0, V = V1β
` + V0

6: write V = V ′1β
k + V ′0

7: (U1, R1)← DivRem(W1, V1)
8: write U1 = U ′1β

k−` + S with 0 ≤ S < βk−`

9: T ← ShortMul(U ′1, V0, `)
10: W01 ← R1β

` + (W0 div β`)− Tβk

11: while W01 < 0 do
12: (U1,W01)← (U1 − 1,W01 + V)
13: U0 ← ShortDiv(W01 div βk−`, V ′1 , `)
14: return U1β

` + U0

Theorem 1: Algorithm ShortDiv returns an approxima-
tion U of Q = bW/V c, with Q ≤ U ≤ Q+ 2n.

Proof: After step 7, we have W = (U1V1 +R1)β
2` +

W0, where U1 < 2βk, 0 ≤ R1 < V1 < βk, and 0 ≤ W0 <
β2`. Thus W = U1V β

`+R1β
2`−U1V0β

`+W0. After step 8,
we have W = U1V β

` + R1β
2` − U ′1V0βk − SV0β` +W0,

where U ′1 < 2β`. After step 9, we have U ′1V0 = Tβ` + T0,
where 0 ≤ T0 < `β` ≤ (n−3)/2 ·β` by Lemma 1 and T <
2β`, thus W = U1V β

`+R1β
2`−Tβn−T0βk−SV0β`+W0.

After step 10, we have

W = U1V β
` +W01β

` +W00, (3)

where W00 = −T0βk − SV0β` + (W0 mod β`). Thus

−n− 3

2
βn − (βk−` − 1)(β` − 1)β` < W00 < β`,

and so −n−1
2 βn < W00 < β`.

We have W01 ≥ −Tβk ≥ −U ′1V0βk−` ≥ −2βn, so the
adjustment in step 12 executes at most four times. Note that
Eq. (3) continues to hold after step 12, as U1V +W01 is left
unchanged. Furthermore after step 12 we have: (i) in case
W01 ≥ 0 in step 10, W01 ≤ R1β

` + (W0 div β`) ≤ (V1 −
1)β`+β`−1 < V < βn, (ii) otherwise W01 < V < βn, thus
in both cases W01 div βk−` < β2`, permitting the recursive
call to ShortDiv.

Eq. (3) yields⌊
W

V

⌋
≤
⌊
U1β

` +
W01β

`

V
+
W0 mod β`

V

⌋
= U1β

`+

⌊
W ′01
V

⌋
,

where W ′01 = W01β
` + (W0 mod β`). Applying Lemma 2

on W :=W ′01, V := V and B := βk yields:⌊
W

V

⌋
≤ U1β

` +

⌊
W ′01 div βk

V div βk

⌋
.

Since W ′01 div βk = W01 div βk−` and V div βk =
V ′1 , this proves by induction that the quotient returned by
Algorithm ShortDiv is always larger or equal to the true
quotient Q.

For the lower bound we have still from Eq. (3):

W

V
≥ U1β

` +

⌊
W01β

`

V

⌋
+
W00

V

≥ U1β
` +

⌊
W01 div βk−`

V ′1

⌋
− 2− (n− 1),

using again1 Lemma 2 and W00 > −n−1
2 βn. Thus Q =

bW/V c ≥ U1β
`+b(W01 div βk−`)/V ′1c−(n+1). Let ε(n)

be the maximal over-estimation of the quotient in Algorithm
ShortDiv, i.e., Q ≤ U ≤ Q + ε(n), then we have ε(n) ≤
ε(`) + n+ 1, thus since ` ≤ (n− 3)/2, ε(n) ≤ 2n.
REMARK: If β is even, the normalization condition vn−1 ≥
β/2 is equivalent to V ≥ βn/2. In general the former

1We use here Lemma 2 with W := W01β`, V := V and B := βk .
We have seen that W01 < V , thus with the notations of Lemma 2: Q =
bW01β`/V c ≤ b(V − 1)β`/V c ≤ β` − 1 < 2(V div B), thus λ = 2
applies.

condition is stronger; for example if β = 3, n = 2, V = 5,
then V ≥ βn/2 but v1 = 1 < β/2. The former condition is
more natural, since if V is normalized, then any truncation
V ÷ βk is normalized too, which is what we need in our
algorithms.
REMARK: The 2n error bound in Theorem 1 can be im-
proved slightly by more careful analysis of the recursion for
ε(n), taking into account that ε(n) = 0 for n < n1. On the
other hand, experiments suggest that the bound is asymptot-
ically sharp, in the sense that the ratio of the error to 2n can
be made arbitrarily close to 1 by taking n sufficiently large
and by choosing W and V carefully. We have not attempted
to prove this, but we give some examples. Let β = 28,
n1 = 5. We assume k = d(n + 3)/2e at each recursion
level, and that all ShortMul calls use ShortMulNaive. Then
for n = 61, if V is given in hexadecimal by

80f7bc6ffe0000007fffffffff0000007fffffffffff
ffffffffffffff0000007fffffffffffffffffffffff
ffffffffffffffffffffffffffffffffff

and W = β56W ′ where W ′ is given by
407bde37ff0000003fffffffff8000003fffffffffff
fffffffffffffeff0844107dde37fe8000004000ffff
fe7f0844107dde37fdff0843d60e74d271d0e35f6bd4,

then the error is 93 ≈ 1.52n. We also constructed an
example with n = 1021 where the error is 1965 ≈ 1.92n.
The method of construction is to find values of U ′1, V0,
W01 div βk−` and V ′1 that elicit large errors in the recursive
ShortMul and ShortDiv calls, and then reverse-engineer
inputs that generate these calls at the next recursion level.

The theoretical running time analysis of Algorithm Short-
Div is not easy, since as visible on Fig. 2, the optimal cutoff
value k depends heavily on n, and there is no simple formula
giving k from n.

C. The Integer Middle Product

Before describing our algorithm using Barrett division
with folding, we recall the definition of the integer middle
product from [4]. Given two multiple-precision integers
X =

∑m−1
i=0 xiβ

i and Y =
∑n−1

j=0 yjβ
j with m ≥ n, their

middle product is defined to be

MPm,n(X,Y) =
∑

0≤i<m, 0≤j<n
n−1≤i+j≤m−1

xiyjβ
i+j−n+1. (4)

The middle product MPm,n(X,Y) takes into account the
n(m − n + 1) word-products xiyj from weight βn−1

to weight βm−1. In the “balanced” case m = 2n − 1,
it corresponds to n2 word-products. Assuming n < β,
which holds for any reasonable value of n with β = 264,
MPm,n(X,Y) < βm−n+3 and thus fits into m − n + 3
words.

We will use the following lemma on the middle product:
Lemma 3: Let m ≥ n, and suppose that 0 ≤ X < βm

and 0 ≤ Y < βn. Then

|
(
XY − βn−1MPm,n(X,Y)

)
mod βm| < (n− 1)βn.

200

400

600

800

200 400 600 800 1000

0.5

0.6

0.7

0.8

0.9

200 400 600 800 1000

Figure 2. Up: optimal cutoff value k determined by tuning for ShortMul
(top, red) and ShortDiv (bottom, green) for word size n; down: ratio k/n
(experimental conditions described in §III).

Proof: From the definition (4) of MPm,n(X,Y), we
see that

βn−1MPm,n(X,Y) =
∑

0≤i<m, 0≤j<n
n−1≤i+j≤m−1

xiyjβ
i+j ,

i.e., βn−1MPm,n(X,Y) takes into account exactly the
word-products of weight n− 1 to m− 1 of the full product
XY . The word-products of weight m or more are zero
modulo βm, therefore(

XY − βn−1MPm,n(X,Y)
)
mod βm

=
∑

0≤i<m, 0≤j<n
i+j<n−1

xiyjβ
i+j =

n−2∑
j=0

∑
0≤i<m

i+j<n−1

xiyjβ
i+j .

For each j, 0 ≤ j ≤ n−2, the sum over i is bounded strictly
by βn, which proves the Lemma.

D. `-fold Barrett Division

Barrett division consists in first computing an approx-
imation of 1/V , then multiplying it by W to obtain an
approximation of the quotient Q [1]. However, since com-
puting n words of 1/V is expensive, a natural idea is to
approximate n/` upper words of 1/V for an integer ` ≥ 2,
and to use this high inverse ` times. This folding technique
is described in [5] in the context of modular reduction; for
` = 2, it reduces to Karp-Markstein division [6]. The best
known constant for power series division in the FFT domain,
due to van der Hoeven [9], depends on the same sort of
folding idea, with careful attention paid to FFT reuse. In
this section, we give a precise algorithm based on `-fold
Barrett division, and analyze its error. We consider an input-
independent algorithm which returns an approximation with
error O(n) ulps; a different approach would be to ask for
an error of at most one ulp, and increase if necessary the
precision inside the algorithm. (Since usually n < β, using
Algorithm FoldDiv with n + 1 words, we obtain an error
smaller than one ulp, moreover in most cases we can obtain
a correct rounding.)

Algorithm II.4 FoldDiv(`), ` ≥ 2

Input: W =
∑2n−1

i=0 wiβ
i, V =

∑n−1
i=0 viβ

i

Require: vn−1 ≥ β/2, W < βnV
Output: an integer approximation U of Q = bW/V c

1: if n < n2 then
2: return U ← Div(W,V)

3: k ← dn/`e
4: write V = V1β

n−(k+1) + V0 . V1 has k + 1 words
5: I ← b(β2(k+1) − 1)/V1c
6: r ← n, Wr ←W , Un ← 0
7: while r > k + 1 do . invariant: 0 ≤Wr < βrV
8: Qr ← ShortMul(Wr div βn+r−(k+1), I, k + 1)
9: Qr ← min(Qr, β

k+1 − 1)
10: Tr ← MPr+1,k+1(V div βn−r, Qr)
11: Wr−k ← (Wr − Trβn−1) mods βn+r−k

12: Ur−k ← Ur +Qrβ
r−(k+1)

13: if Wr−k < 0 then
14: Wr−k ←Wr−k + βr−kV
15: Ur−k ← Ur−k − βr−k

16: r ← r − k
17: Qr ← ShortMul(Wr div βn+r−(k+1), I, k + 1)
18: U ← Ur + (Qr div βk+1−r)

The idea of Algorithm FoldDiv is the following: at
each step we have W ≈ UrV + Wr, we guess a par-
tial quotient Qr of Wr by V βr−(k+1), and update Wr−k
and Ur accordingly. The crucial point is to check that
Wr−k ≈ Wr − QrV β

r−(k+1), up to low order terms. The
final steps are special since we don’t have to estimate the
new remainder.

Theorem 2: Assuming n + 9 < β/2 and ` ≤
√
n/2,

Algorithm FoldDiv(`) returns an approximation U of Q =
bW/V c, with error less than 2n.

Proof: We will first prove that |I − βn+k+1/V | ≤ 5.
Let ε = β−(k+1). We have V1 = V β−n+(k+1)(1− δ1) with
0 ≤ δ1 = V0/V < 2ε. Now since β2(k+1) − 1 = IV1 + R1

with 0 ≤ R1 < V1, this yields β2(k+1) = IV1 + R′1 with
0 ≤ R′1 ≤ V1, thus β2(k+1)/V1 = I + R′1/V1 with 0 ≤
R′1/V1 ≤ 1. Since V1 < βk+1, I ≥ βk+1, thus we can write
β2(k+1)/V1 = I(1 + δ2) with 0 ≤ δ2 ≤ ε. We thus have
I = β2(k+1)/(V1(1 + δ2)) = βn+k+1/(V (1− δ1)(1 + δ2)).
Note that the errors due to δ1 and δ2 are of opposite signs,
thus we can bound by the larger absolute error, which is due
to δ1. It can be shown that |I − βn+k+1/V | ≤ 5 as long as
β ≥ 4, which follows from our assumption.

We will prove the following by induction: 0 ≤Wr < βrV
at line 7, and |W − (UrV +Wr)| ≤ (k+ 1)(n− r)/k · βn.

This holds for r = n, since Wn = W < βnV by
hypothesis, and Un = 0, thus |W − (UnV +Wn)| = 0.

Now assume the induction hypothesis holds for some r >
k+1; we will prove it still holds for r− k. We will do this
in three steps:

1) we first show that Qr is close to Wrβ
(k+1)−r/V ;

2) we deduce that Ŵr−k :=Wr−QrV β
r−(k+1) is small;

3) finally we show that the value Wr−k computed at
step 11 is close to Ŵr−k.

The difference |(Wr div βn+r−(k+1))I −
Wrβ

2(k+1)−r/V | is bounded by

|(Wr div βn+r−(k+1))I −Wrβ
−n−r+(k+1)I|

+ |Wrβ
−n−r+(k+1)I −Wrβ

2(k+1)−r/V |
≤ I +Wrβ

−n−r+(k+1)|I − βn+k+1/V |
≤ 2βk+1 + 5βk+1 ≤ 7βk+1.

The short product at line 8 induces an error of at most k+1
ulps, thus

|Qr −Wrβ
(k+1)−r/V | ≤ k + 8. (5)

(This holds for the value of Qr in line 8, and is still
correct after line 9, because if Qr ≥ βk+1 on line 8, since
Wr < βrV , we have Wrβ

(k+1)−r/V < βk+1, and thus the
new value Qr = βk+1 − 1 is closer to Wrβ

(k+1)−r/V .) It
follows:

|Ŵr−k| ≤ (k + 8)V βr−(k+1) ≤ (k + 8)βn+r−(k+1). (6)

Let Vr = V div βn−r, considered as having r + 1
words (with zero most significant word). At line 10, Tr is
an approximation of QrV β

r−n−k, thus Trβn−1 at step 11
approximates QrV β

r−(k+1), with the following possible
differences:
• a multiple of βn+r−k from the symmetric modulo at

step 11;
• the truncation of V in step 10;

• the high-order error on Tr from the middle product at
step 10, which is a multiple of βr−k+1 from Lemma 3,
and thus a multiple of βn+r−k for βn−1Tr at step 11;

• the low-order error from the middle product at step 10.
More precisely:

|Tr−QrV β
r−n−k| mod βr−k+1 < Qrβ

−k+kβ ≤ (k+1)β,

where Qrβ
−k takes into account the truncation of V

into Vr, and kβ comes from Lemma 3. Thus |βn−1Tr −
QrV β

r−(k+1)| mod βn+r−k < (k + 1)βn. It follows that
Wr−k = Ŵr−k+αβ

n+r−k+ε, where |ε| < (k+1)βn, and
α is an integer. Since we know that Ŵr−k is small from
Eq. (6), it follows: Wr−k = αβn+r−k + ε′ where

|ε′| < (k + 1)βn + (k + 8)βn+r−(k+1) <
1

2
βn+r−k,

since (k + 1)βn ≤ (n + 1)βn+r−(k+2) < βn+r−(k+1), and
(k + 9)βn+r−(k+1) ≤ (n + 9)βn+r−(k+1) < 1

2β
n+r−k.

Since the symmetric modulus at step 11 guarantees that
|Wr−k| ≤ 1

2β
n+r−k, necessarily α = 0, which proves that

before step 13:

Wr−k = Ŵr−k + ε,

with |ε| < (k + 1)βn.
We are now ready to prove the induction hypothesis. If

Wr−k ≥ 0 after step 11, then Wr−k <
1
2β

n+r−k ≤ βr−kV ,
which proves the first part of the induction hypothesis. If
Wr−k < 0 after step 11, then − 1

2β
n+r−k ≤ Wr−k < 0,

and after step 14, 0 ≤ Wr−k < βr−kV , which also proves
the first part of the induction hypothesis.

For the second part, we know by induction that |W −
(UrV +Wr)| ≤ (k + 1)(n − r)/k · βn. For Ur−k = Ur +
Qrβ

r−(k+1), and the new value of Wr−k, we have:

|W − [Ur−kV +Wr−k]| ≤ |W − (UrV +Wr)|
+ |(UrV +Wr)− [(Ur +Qrβ

r−(k+1))V +Wr−k]|
≤ (k + 1)(n− r)/k · βn + |Ŵr−k −Wr−k|
≤ (k + 1)(n− r)/k · βn + (k + 1)βn

≤ (k + 1)(n− (r − k))/k · βn,

which proves the second part of the induction hypothesis.

For the last steps, the analysis leading to Eq. (5) still
holds, thus if Ur denotes the previous approximate quotient,
and U = Ur + (Qr div βk+1−r) is the final result:

|W − UV |
≤ |W − (UrV +Wr)|+ |(UrV +Wr)− UV |

≤ (k + 1)
n− r
k

βn + |Wr − (Qr div βk+1−r)V |

≤ (k + 1)
n− r
k

βn + |Wr −Qrβ
r−(k+1)V |

+ |Qrβ
r−(k+1) − (Qr div βk+1−r)|V.

Dividing by V and using V ≥ βn/2 we get:

|W/V − U |

≤ 2(k + 1)
n− r
k

+ |Wr/V −Qrβ
r−(k+1)|+ 1

≤ 2(k + 1)
n− r
k

+ (k + 8)βr−(k+1) + 1.

Since k = dn/`e, we can write n = k`−s with 0 ≤ s < `.
We assumed that ` ≤

√
n/2, then k ≥ n/` ≥

√
2n ≥ 2`.

Thus 0 ≤ s < k/2. Since r equals n initially and decreases
by k at each step, we have r ≡ n mod k at the end, with
2 ≤ r ≤ k + 1. On the other hand we have k/2 < k − s ≤
k, which proves that r = k − s at the end (` ≤

√
n/2

implies n ≥ 8, which in turn implies k ≥ 4). Thus the case
r = k + 1 at the end is not possible. Therefore the term
(k + 8)βr−(k+1) is bounded by (k + 8)β−1 ≤ 1. We thus
get since s ≤ (k − 1)/2:

|W/V − U | ≤ 2(k + 1)(n− k + s)/k + 2

= 2(n− k + s) + 2(n− k + s)/k + 2

≤ 2n− 2k + k − 1 + 2n/k − 2 + 2s/k + 2

≤ 2n− k + 2`+ 2s/k − 1

< 2n− k + k + 1− 1 = 2n.

REMARK 1: In Algorithm FoldDiv, the variables Wr with
r = n, n − k, n − 2k, . . . might of course overwrite each
other, similarly for Tr and Ur. We used indices to make the
proof simpler.

REMARK 2: Algorithm FoldDiv also works with ` = 1, with
the convention that line 4 yields V1 = βV and V0 = 0; in
that case k = n+1, we compute an approximate inverse on
n+1 words on line 5, we skip the while-loop, and perform
a short product between the n + 1 most significant words
of Wr and I at line 17, which is finally truncated by one
word at line 18. This is exactly Barrett’s algorithm, with a
working precision of n+ 1 words.

1) Theoretical running time analysis of FoldDiv: Neglect-
ing operations with linear cost, the cost of FoldDiv(`) is
mainly that of the initial inversion of size n′ = n/`, followed
by `− 1 loops, each one performing a short product of size
n′ and a middle product, and a final short product of size
n′. In the ith iteration, 1 ≤ i ≤ ` − 1, the middle product
can be computed with `− i balanced middle products with
parameters 2n′ − 1 and n′. The total cost is thus

I(n/`) +
`(`− 1)

2
MP(n/`) + `M∗(n/`),

where MP(n) denotes the cost of a balanced middle product
(2n− 1)× n, and M∗ denotes the cost of a short product.
For ` = 2 we get I(n/2)+MP(n/2)+ 2M∗(n/2), and for
` = 3 we get I(n/3) + 3MP(n/3) + 3M∗(n/3). It is not
possible to find the optimal value of ` theoretically, since it
depends on the relative values of I(n), MP(n) and M∗(n)
and their growth with n (see §III).

III. EXPERIMENTAL RESULTS

We now describe experiments done on
gcc16.fsffrance.org, a 2.2Ghz AMD Opteron 8354
from the GCC Compile Farm. For those experiments, we
used the changeset 131005cc271b from the 5.0 branch of
the GMP repository, which is the one corresponding most
closely with the GMP 5.0.1 release, and the corresponding
mulmid patch from the first author, which implements the
integer middle product (the threshold between quadratic
and subquadratic middle product was 36 words). We also
used the svn revision 7229 from MPFR.

In Figure 3, mpn_mul_n is the full n×n product routine
from GMP, ShortMul is Mulders’ short product from GNU
MPFR (svn revision 7191), mpn_invert is GMP’s internal
inversion routine, mpn_mulmid_n is Harvey’s (2n−1)×n
middle product routine, mpn_tdiv_qr is GMP’s (2n)/n
division routine with remainder, mpn_div_q is GMP’s
internal division routine without remainder (with exact quo-
tient), ShortDiv is Algorithm ShortDiv (available in GNU
MPFR, svn revision 7191), FoldDiv(2) is Algorithm
FoldDiv(2), and so on.

words n 100 200 500 1000
mpn_mul_n 7.52 22.4 80.8 225
ShortMul 0.76 0.81 0.89 0.85

mpn_invert 1.21 1.32 1.59 1.57
mpn_mulmid_n 1.12 1.20 1.45 1.59
mpn_tdiv_qr 1.74 1.86 2.35 2.46
mpn_div_q 1.22 1.34 1.79 1.87
ShortDiv 1.34 1.32 1.62 1.75

FoldDiv(2) 1.37 1.36 1.62 1.74
FoldDiv(3) 1.34 1.35 1.61 1.73
FoldDiv(4) 1.35 1.32 1.63 1.76

Figure 3. Comparison of different routines: n is the number of words, the
second row gives the time for mpn_mul_n in microseconds, the other rows
give the ratio of the corresponding routine with respect to mpn_mul_n.

Several comments can be made on Fig. 3. As n increases,
the gain of the short product (ShortMul) over the full
product decreases. This is expected, since in the FFT range
it is not known how to compute a short product faster than
a full product, thus the asymptotic ratio is 1. The middle
product ratio also increases with n, whereas we might expect
in theory a ratio of 1, by analogy with the polynomial
case. There are two explanations for this. Firstly there is a
small linear overhead in the subquadratic middle product,
due to the computation of the error terms (see [4]). In
the context of FoldDiv, it may be possible to reduce this
overhead by skipping some of the error term computations
and absorbing the resulting errors into the error estimates
in the proof of Theorem 2. Secondly, for n ≥ 81 (on the
computer we used), GMP switches to the Toom-3 algorithm
for mpn_mul_n, which is asymptotically faster than the

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 100 200 300 400 500 600 700 800 900 1000

mpn_div_q
ShortDiv

FoldDiv2(2)
FoldDiv2(3)
FoldDiv2(4)

Figure 4. Graphical comparison of different short division routines up to
1000 words (timings in microseconds).

Karatsuba-like algorithm used by mpn_mulmid_n. Thus an
implementation of a Toom-3 variant of the middle product
may exhibit better timings for mpn_mulmid_n, and thus
for FoldDiv(`). Remark that one could also implement a
middle product using two short products: if X has 2n words
and Y has n words, their middle product can be obtained
from the (high) short product of X0 by Y and from the (low)
short product of X1 by Y , where X0 (resp. X1) denotes the
lower (resp. higher) n words from X . Finally mpn_invert
is still quite expensive, although it has been much improved
in GMP 5.0.1; in particular for n = 200 mpn_invert
is not faster than FoldDiv(4)! An approximate inverse
routine using the middle and short products, along the lines
of FoldDiv, should give better timings for FoldDiv(`).

Algorithm ShortMul is implemented in GNU MPFR since
version 2.2.0 from September 2005. It is trivial to extend it
to the squaring operation, however up to MPFR 3.0.x it was
not used in that case, this will be done in the future as a
consequence of this work. Another motivation for this work
was the new mpn_div_q routine in GMP 5.0.x, which is
used in GMP’s floating-point division mpf_div, and as a
consequence mpf_div was faster than mpfr_div. Algo-
rithm ShortDiv is available in GNU MPFR since revision
7191.

IV. CONCLUDING REMARKS

In this article, we describe in detail two short division
algorithms for multiple-precision integers, namely Short-
Div and FoldDiv. Those algorithms are based on known
techniques for polynomials, our contribution being to adapt
those techniques to the integer case (dealing with carries),

and to provide a rigorous error analysis. As mentioned in
the introduction, short division algorithms with rigorous
error bounds are very useful as building blocks for floating-
point division with correct rounding. The ShortDiv algorithm
is easy to implement, since it only depends on a short
product routine, and already gives very good timings, in
particular it beats GMP 5.0.1 mpn_div_q routine up from
200 words. For n = 500, FoldDiv(3) gives a 31%
speedup with respect to mpn_tdiv_qr, and a 10% speedup
with respect to mpn_div_q. The FoldDiv(`) algorithms are
more difficult to implement since they rely on the integer
middle product, which is not yet available as a basic routine
in multiple-precision libraries like GMP, and their error
analysis is more involved. However they are slightly faster
than ShortDiv, and using ` = 3 seems to be near to optimal.
Moreover the efficiency of FoldDiv can still be improved in
two ways: on the one hand with a faster middle product
routine in the Toom-3 range, on the other hand with an
approximate inversion routine using itself short and middle
products.
Acknowledgements. The authors thank Torbjörn Granlund
for several discussions about the k-fold Barrett division, and
Laurent Guerby for maintaining the GCC Compile Farm
Project. They also thank the four anonymous reviewers for
their careful reading, in particular a reviewer found and
corrected an error in Algorithm ShortMulNaive.

REFERENCES

[1] BARRETT, P. Implementing the Rivest Shamir and Adle-
man public key encryption algorithm on a standard digital
signal processor. In Advances in Cryptology, Proceedings of
Crypto’86 (1987), A. M. Odlyzko, Ed., vol. 263 of Lecture
Notes in Computer Science, Springer-Verlag, pp. 311–323.

[2] FOUSSE, L., HANROT, G., LEFÈVRE, V., PÉLISSIER, P.,
AND ZIMMERMANN, P. MPFR: A multiple-precision binary
floating-point library with correct rounding. ACM Transactions
on Mathematical Software 33, 2 (2007), 13:1–13:15.

[3] GNU MP: The GNU Multiple Precision Arithmetic Library,
5.0.1 ed., 2010. http://gmplib.org/.

[4] HARVEY, D. The Karatsuba middle product for integers. http:
//www.cims.nyu.edu/∼harvey/papers/mulmid/, 2009. Preprint,
15 pages.

[5] HASENPLAUGH, W., GAUBATZ, G., AND GOPAL, V. Fast
modular reduction. In Proceedings of the 18th IEEE Sym-
posium on Computer Arithmetic (ARITH-18) (Montpellier,
France, 2007), IEEE Computer Society Press, pp. 225–229.

[6] KARP, A. H., AND MARKSTEIN, P. High-precision division
and square root. ACM Trans. on Mathematical Software 23, 4
(1997), 561–589.

[7] KNUTH, D. E. The Art of Computer Programming, third ed.,
vol. 2 : Seminumerical Algorithms. Addison-Wesley, 1998.
http://www-cs-staff.stanford.edu/∼knuth/taocp.html.

[8] MULDERS, T. On short multiplications and divisions. Appli-
cable Algebra in Engineering, Communication and Computing
11, 1 (2000), 69–88.

[9] VAN DER HOEVEN, J. Newton’s method and FFT trading.
Journal of Symbolic Computation 45, 8 (2010), 857–878.

