
Analyzing Code Comments to Boost Program
Comprehension

1st Yusuke Shinyama
Department of Computer Science

Tokyo Institute of Technology
Tokyo, Japan

euske@sde.cs.titech.ac.jp

2nd Yoshitaka Arahori
Department of Computer Science

Tokyo Institute of Technology
Tokyo, Japan

arahori@cs.titech.ac.jp

3rd Katsuhiko Gondow
Department of Computer Science

Tokyo Institute of Technology
Tokyo, Japan

gondow@cs.titech.ac.jp

Abstract—We are trying to find source code comments that
help programmers understand a nontrivial part of source code.
One of such examples would be explaining to assign a zero
as a way to “clear” a buffer. Such comments are invaluable
to programmers and identifying them correctly would be of
great help. Toward this goal, we developed a method to discover
explanatory code comments in a source code. We first propose
eleven distinct categories of code comments. We then developed
a decision-tree based classifier that can identify explanatory
comments with 60% precision and 80% recall. We analyzed 2,000
GitHub projects that are written in two languages: Java and
Python. This task is novel in that it focuses on a microscopic
comment (“local comment”) within a method or function, in
contrast to the prior efforts that focused on API- or method-
level comments. We also investigated how different category of
comments is used in different projects. Our key finding is that
there are two dominant types of comments: preconditional and
postconditional. Our findings also suggest that many English
code comments have a certain grammatical structure that are
consistent across different projects.

I. BACKGROUNDS

Source code comments are considered to be an indispens-
able part of computer programs. Code comments are often
used to make up for the lack of proper software documentation.
However, comments are also considered as an elusive part of a
computer program. Unlike the actual code that is written in a
programming language, code comments are mostly written in
natural language, which has a lot more freedom in expressions
and hence defies any sort of formal analysis or objective
testing.

We are particularly interested in source code comments that
are inside a function or method and explains how the code
works at a microscopic level. In this paper, we call them
“local comments”. Local comments tend to describe things
like “the kind of data that is stored in a certain variable” or
“the assumption that is hold at a certain point” and so on. They
normally describe a small part (often just a few lines) of code
and largely invisible from the official documents, because they
are too technical or obscure to most users. Such comments,
however, are often crucial for understanding a tricky part of
the code, as they give us a rare glimpse of its developer’s
mind. Programmers often need this kind of information for
diagnosing the software issues or extending its functions.

Note that this paper is a part of our bigger attempt that is to
obtain the semantic relationship between a source code and a
program function. We plan to use the techniques presented in
this paper to analyze the function of an unknown program
given its source code. However, this future stage is not
presented in this paper.

Our original goal was to leverage local comments for
static analysis of a program. Soon we discovered that finding
good local comments itself is a nontrivial task. One of such
comments would be the following:

b.start = b.end = 0; // clear the ring buffer.

In this example, the actual operation of the code is just to
assign zeroes to two variables, b.start and b.end. But
the comment gives it a much richer meaning than just two
assignments; namely, they are clearing the ring buffer. In order
to discover this kind of examples, we need to know a couple
of things. First, we have to recognize that the above comment
actually explains the code to its left. Then we also have to
recognize that the comment explains the function of the code.
To illustrate how this is not a trivial problem, let us consider
another example:

// error occurred.
b.start = b.end = 0;

In this case, the role of the comment is entirely different. While
this comment might be still as important and relevant, it is no
more explaining what the code does. Rather, it is stating the
reason why this code needs to be executed. Obviously, there
are several different roles for code comments, but it was not
clear how they are different and what we can do to recognize
them automatically.

There have been a few seminal attempts to categorize source
code comments. Padioleau et al. studied code comments in
operating system kernels and classified them by detailed topics
[1]. Steidl et al. proposed seven categories of comments [2].
They focused on macroscopic comments, such as a module
header or method description. Pascarella and Bacchelli further
developed this idea and proposed a hierarchical categories [3].
The key difference between our work and these previous works
is that we primarily focus on a finer relationship between a

ar
X

iv
:1

90
5.

02
05

0v
2

 [
cs

.S
E

]
 1

7
M

ar
 2

02
2

code and its local comment, with the aim of collecting the
code/comment pairs for future use.

Today, several industry guidelines [5], [6] exist for writing
macroscopic, or non-local comments. However, the manner
and style of local comments are still pretty much up to a
programmer’s own discretion. In The Practice of Programming
[4], Kernighan and Pike mentioned a couple of principles for
writing code comments such as “Don’t belabor the obvious”
or “Clarify, don’t confuse”, but they did not go further. As a
result, analyzing local comments is still believed to be hard
and there have not been many attempts in this area.

We initially set out collecting comments from popular
GitHub projects (repositories) and manually reviewing them.
Throughout the process, we recognized that there are some
general unspoken rules for local comments. Our own experi-
ences as a programmer agree with this too; each programmer
develops their own “grammar” for comments, even when
there is no explicit instruction. While the style of each local
comment still varies from project to project, we observed that
there is a certain tendency among them, which brings hope that
we can analyze them somewhat mechanically. This paper is
our attempt to propose a framework that allows a rigid analysis
of local comments and lay the groundwork for further research
in this field.

A. Contribution of Paper

There are three contributions of this paper. Firstly, we pro-
pose common structural elements of local comments written
in natural language. To our knowledge, this is the first attempt
to automatically analyze source code comments in this level
of detail. Secondly, we develop a machine learning algorithm
that can identify each element of a local comment with a
reasonable accuracy. Thirdly, we show those structures are
roughly preserved across different projects and, to some extent,
in different languages.

More specifically, we try to answer the following Research
Questions:

RQ1. What are the common (syntactic or semantic) el-
ements among source code comments written in
natural language (English)?

RQ2. Can those elements be identified by a certain ma-
chine learning algorithm?

RQ3. How common those elements can be seen across
different projects or programming languages?

The rest of this paper goes as follows: First, we present
our model of local comments that explain how a code works.
Then we describe our attempt to automatically identify them
using a machine learning algorithm (decision tree). And then
we proceed to apply this method to real projects and see if
our model is relevant. We then discuss our findings. Finally,
we briefly discuss the related work and state the conclusion.

II. STRUCTURE OF COMMENTS

In this section, we present our model of source code
comments in attempting to answer our first Research Question.

Extent Target

Category

post-
condition

// Do the
// thing.

doit();

Fig. 1. Comment as Relationship

In most cases, there is a relationship between a comment and
the code it describes. Each relationship can be viewed as an
arc that has three elements (Fig. 1). The arc has its source
(comment itself), the destination (the target code), and a type
of relationship (comment category). In the rest of this section,
we describe each element one by one.

A. Comment Extent

The extent of a comment is a part of source code that
can be recognized as one “chunk” of explanatory text. This
is less obvious than it sounds because in many cases, a
single explanatory text is not necessarily expressed by a single
comment tag. This is illustrated by the following example:

// This is still
// one sentence.

In many modern languages such as Java, C++ or Python,
inline comments are commonly used. Inline comments, or end-
of-line comments, are a type of comments that start with a
comment tag (such as // or #) and continues until the end of
the line. It is very common that a single sentence is split into
multiple inline comments because programmers want to limit
the length of each line to maintain its readability.

In the rest of this paper, we define the extent of a comment
as a sequence of consecutive comment tags that can be taken
as a single continuous text. One could say a comment extent
is a “whole” comment rather than individual comment tags.
In theory, however, there could be a disjoint comment set that
forms one explanation. We have not found such an example
from the source codes we reviewed.

B. Comment Target

Comments are by nature aiming at a certain subject, as we
often say we comment on something. The same can be said for
source code comments. However, there has not been a lot of
discussion about what are the actual targets of code comments
or how they can be specified in terms of a programming
language syntax.

In modern languages, a program source code is first trans-
formed into a parse tree. A typical parse tree consists of a
number of syntax elements that cover certain parts of the
source code (Fig. 2). In many popular languages, however,
comments are treated as special tokens and not a part of a
syntax tree. Java Development Tools (JDT), a popular Java
parser implementation, treats source code comments as a

String Literal

ExpressionName

Method Call

Expression

Statement

Block

main() { System.out.println("Hello, world"); }

Fig. 2. Parse Tree Example (Java)

Left
Right

Parent

while (true) {

String line = reader.readLine();

// Comment

if (line == null) {

...

Fig. 3. Comment Target

special syntax element that belongs to the entire file [7]. In
Python Abstract Syntax Tree (AST) module, comments are
discarded at the tokenization stage and completely ignored by
the subsequent parser. However, when a programmer writes a
comment, they often try to align it with the existing language
syntax. Therefore it is natural to assume that there is some
way to express the target of a comment using some form of
formal syntax.

From manually reviewing 1,000 Java code comments, we
have discovered that most comment targets can be specified
relative to its surrounding syntax elements (Fig. 3). Every
syntax element within a parse tree has its start and end point,
and comments are sitting between two syntax elements. We
found that comment targets can be specified as one of the four
types:
• Left : Comment is targeting the syntax element that

ends immediately before the comment. When there are
overlapping elements which ends at the same point, the
element which has the longest span is chosen. Note that
this will change the size of a comment target depending
on its position. For example, comment

thread.join(); // Let the job finish.

targets the entire statement that precedes it, whereas

c.query(uri, DOWNLOAD, null /* selection */);

only targets the expression (null).
• Right : Comment is targeting the syntax element that

starts immediately after the comment. When there are
overlapping elements which starts at the same point, the
longest element is chosen. A typical example would look
like this:

// Copy the array.
for (int i = 0; i < a.length; i++) {
b[i] = a[i];

}
where the comment targets the entire for block to its
right.

• Parent : Comment is targeting its parent element, i.e. the
syntax element that contains the comment. This type of

target is commonly seen in an if statement:
if (obj == null) { // error

return;
}

where the comment targets the entire then-block.
• In-Place : Comment does not describe any code. The

target is considered as the comment itself. Examples
include metadata such as authors or copyright notices.

Note that not all comments have a target. A notable example
is a commented out code. Such a comment is considered to
have “In-Place” target. Out of 1,000 comments we have seen,
only 3 of did not fit in the above four criteria. In the rest of
this paper, we ignore these irregular targets.

C. Comment Category

A comment category represents the type of a relationship
between a comment and its target. While a comment extent
and comment target are mostly syntactic elements, a comment
category involved some sort of semantics. There are several
existing works about comment categories [2], [3], but we
independently made our list of categories that are suitable for
local comments. The procedure of making the category list
is the following: We reviewed each comment and checked if
this comment can be in one of existing categories. If not, we
regarded the comment as of a new category. After finishing
this process, eleven categories were formed. They are listed in
Tab. I. Note that certain categories such as “Guide” or “Meta
Information” are rarely used for local comments, but left for
the sake of completion.

1) Manual Annotation Experiment: In order to verify the
relevance of our definition of the comment categories, we have
conducted a manual annotation experiment. The three authors
of this paper participated this experiment. Each participant is
given a list of guidelines shown in Tab. I and instructed to
choose a category for 100 Java code snippets. The annotation
tool is implemented as a form of Web application where
a participant can choose the categories from a drop-down
menu (Fig. 4). The time taken for each choice is recorded.
The categories obtained here are later used as a test set for
measuring the performance of our classifiers.

The code snippets given in this experiment are randomly
chosen from popular 100 GitHub projects. All the participants
receive the same set of snippets. Each snippet contains a
comment and its neighboring lines (four lines before and
after the comment). Since some questions might require a
participant to study the source code in-depth, a link is provided
for each snippet, which leads to the original GitHub repository
where the participant can view a wider range of the source
code, or other project files if necessary.

There are three participants in this experiment. One of them
is a doctoral student and the other two are faculty members.
They are all male, and their age ranges from 37 to 51. The
total time spent for this experiment ranges from 30 minutes
to 2 hours per person. Their median time for each question
ranges from 10 seconds to 30 seconds.

TABLE I
COMMENT CATEGORIES

Postcondition
Conditions or effects that hold after the code is executed.
Typically used for explaining “what” the code does.

// create some test data
Map<String, String> data = createTestData(testSize);

// if we had a prior association,
// restore and throw an exception
if (previous != null) {

taskVertices.put(id, previous);
...

Precondition
Conditions that hold before the code is executed. This
includes statements that hold regardless of the code ex-
ecution. Typically used for explaining “why” the code is
needed.

// Unable to find the specidifed document.
return Status.ERROR;

if (myStatusBar != null) { //not welcome screen
myStatusBar.addProgress(this, myInfo);

}
Value Description

Phrase that can be equated with a variable, constant or
expression.

addSourceFolders(
SourceFolder.FACTORY,
getSourceFoldersToInputsIndex(),
false /* wantsPackagePrefix */,
context);

Instruction
Instruction for code maintainers. Often referred to as “TODO”
comments.

// TODO Auto-generated catch block
e.printStackTrace();
Assert.fail("Failed");

Guide
Guide for code users. Not to be confused with Instructions.

// Example: renderText(100, 100, FONT, 12, "Hello");

Interface
Description of a function, type, class or interface.

// Comparison function
class MyComparator implements Comparator {

public int compare(Object o1, Object o2) {
...

Meta Information
Meta information such as author, date, or copyright.

// from org.apache.curator.framework.
// CuratorFrameworkFactory
this.maxCloseWait = 1000;

Comment Out
Commented out code. This type of comments does not have its
target.

while ((m = ch.receive()) != null) {
//System.out.println(Strand.currentStrand());
...

Directive
Compiler directive that isn’t directed to human readers.

//CHECKSTYLE:OFF
} catch (final Exception ex) {
//CHECKSTYLE:ON

Visual Cue
Text inserted just for the ease of reading.

//
// Initialization key storage
//

Uncategorized
All other comments that don’t fit the above categories.

Fig. 4. Screenshot of Annotation Tool

Measuring the Agreement Ratio: We used Fleiss’ Kappa as
the ratio of inter-rater agreement. Fleiss’ Kappa is commonly
used for measuring agreement between N people where N ≥
3. In case of N = 2, Cohen’s Kappa is typically used. Both
methods are based on the same principle as we illustrate in
the following paragraphs.

When there is no gold standard for answers, the only ratio
we can measure for agreement is how many times people
choose the same category. However, people choosing the same
category on some question does not guarantee that they always
agree on every question. The idea behind Cohen’s Kappa is to
prevent one type of answers from accidentally dominating the
entire agreement ratio. Technically, this is done by discounting
the agreement for categories that are frequently chosen.

Fleiss’ Kappa is an extention to Cohen’s Kappa for three
or more people. This is calculated as follows: Assume that
there is a complete graph that connects all the participants
(which is a triangle, in our case), and count the number of
edges where both participants on the edge agree on the answer.
Then discount the agreement on a frequent category in the
same manner of Cohen’s Kappa. We calculated the Fleiss’
Kappa for our expriment as K = 0.491. By a commonly used
guideline, this is considered as “moderate agreement”. The
confusion matrix is shown in Tab. II. The agreement ratio on
comment extents or comment targets were not measured.

We have found that there is a relatively high chance of
disagreement between “Precondition” and “Postcondition”
categories. We think there are three major reasons for this:
Firstly, both categories are inherently tricky because they
require a deep understanding of the code and comment.
Sometimes the participants had to view a much wider range of
the code to get the proper context for a snippet. Secondly, some
comments are long enough that can actually have multiple
purposes. Although the participants are asked to choose the
most dominant category, it is sometimes not clear which
category fits the best. And thirdly, the code quality and style
vary between different projects.

TABLE II
AGREEMENTS ON MANUAL ANNOTATIONS

Category Po Pr Co Vi Va In Di Gu Un
Postcondition 75
Precondition 37 37
Comment Out 0 0 12
Visual Cue 17 11 0 11
Value Descr. 10 7 0 1 15
Instruction 2 4 0 1 0 14
Directive 0 0 0 5 0 0 8
Guide 0 0 0 1 0 0 1 0
Uncategorized 6 5 0 10 0 1 1 0 9

III. BUILDING CLASSIFIERS

As the answer to our second Research Question, we now
describe our attempt to build machine learning classifiers
that identify the three elements described in the previous
section. We use C4.5 decision tree algorithm [9]. A decision
tree algorithm is efficient and easy to implement, but the
feature set we use is relatively complex, as explained later.
We particularly like its property that the obtained tree is to
some extent human readable, allowing us to investigate which
feature works the best.

We built three different classifiers for each element: Extent,
Target and Category. Fig. 5 shows the overall system architec-
ture. An input source code is first processed by a Java parser.
We use Java Development Tools (JDT) [7] here. Then the parse
tree is fed into the Extent Tagger. This is the first classifier that
identifies the beginning and end of a comment extent. Extent
Tagger needs to be applied prior to the other two classifiers
(Target and Category) because the later classifiers require an
entire comment extent rather than individual comments. After
this stage, inline comments are grouped into one chunk and
each comment extent has one continuous text. Then a natural
language parser is applied. We use an English parser with
an assumption that the majority of source code comments are
written in English1. Finally, the combined features are fed into
Target and Category classifiers respectively. In the following
subsections, we describe each classifier in the pipeline.

A. Recognizing Comment Extent

Extent Tagger is a decision tree-based classifier that marks
the beginning and end of each comment extent. In order to
perform this as a classification task, we use IOB notation [10]
2. Each comment tag is assigned with one of the three tags:
“I” (Middle of an extent), “O” (Outside of an extent) or “B”
(Beginning of an extent). A tagging example is shown in Fig.
6. Note that the comments at line 4. and 5. are regarded as
separate even though they are consecutive, hence giving a “B”
tag to both lines. Since we only deal with comment tags,
only “B” and “I” tags are considered in an actual process.

1Out of 1,000 comments we have reviewed, we found 38 of them were
actually written in Chinese. All other comments were in English.

2It is sometimes called “BIO notation”.

TABLE III
CLASSIFIER FEATURES (EXTENT)

Feature Description
DeltaRows Distance in lines from a previous comment.
DeltaCols Difference in columns from a previous comment.
DeltaLeft Difference in columns between a comment and syntax

element.
LeftSyntax Syntax element left to the comment.
RightSyntax Syntax element right to the comment.
ParentSyntax Parent syntax element of the comment.

IOB notation is a common technique to mark the boundary of
an object sequence, and it is used in many natural language
processing tasks.

The actual mechanism of Extent Tagger works as follows:
first, a preprocessing is applied to each comment tag and its
surrounding syntax elements are identified. They are listed
as a set of discrete features. Since comments are not well
integrated in a parse tree, we process them separately and
combine them based on its text location within the source
file. To our knowledge, this is the first attempt to use precise
relationship between a language parse tree with its comments
for categorizing comments. Then the distance between each
comment and its neighboring comments is calculated. They are
expressed as a number of lines (vertical distance) and a number
of columns (horizontal distance). Finally, these features are
fed into the classifier and the IOB tag is identified. The list of
features used is shown in Tab. III.

B. Identifying Comment Target and Category

After the Extent Tagger stage, comments are merged into
one continuous text. Then Part-of-speech (POS) tagging is
applied. The POS tagger assigns one of 36 POS tags to each
word, such as VBZ (verb, 3rd person) or NNS (plural noun)
[11]. We use CoreNLP natural language processing toolkit
[12]. At this point, all the words in a comment extent is
assigned with a POS tag and they can be used as features. We
add a few extra binary features (“HasSymbol”) using a regular
expression pattern to detect if the text includes a symbol that
is commonly used in a program code. These extra features are
manually crafted and expected to help the classifier to identify
characteristics of certain categories. Then we independently
apply two classifiers to this feature set and identify the target
and category of each comment extent. The list of used features
is shown in Tab. IV.

Our C4.5 implementation is fairly straightforward. The way
that the decision tree learner works is following: it scans all
the input examples and searches a feature that split the given
examples the best. In C4.5 algorithm, this means that a split
with the maximum information gain is chosen. The algorithm
starts with the most significant feature, and then repeatedly
splits the subtrees until it meets a certain predefined cutoff
criteria; an important feature tends to appear at the top of
the tree, and as it descends to its nodes a less significant
feature appears. In general, setting the cutoff threshold too

Java
Parser

Extent
Tagger Merging English

Parser

Category
Classifier

Target
Classifier

Source
Code

Comment Tag +
Features

Comment
Extent

Feature
Set

Fig. 5. System Pipeline

1: // Make sure we have enough space for
2: // the first packet.
3: if (i + p.length <= buf.length) {
4: arraycopy(p, 0, buf, i, p.length); // don't change i.
5: // The buf can be overwritten by the second one.
6: }
7: // When the second packet has doesn't have
8: // signature, it will simply discarded, and

...

B
I
O
B
B
O
B
I
...

Fig. 6. IOB Notation Example

TABLE IV
CLASSIFIER FEATURES (CATEGORY)

Feature Description
LeftSyntax Syntax element left to the comment.
RightSyntax Syntax element right to the comment.
ParentSyntax Parent syntax element of the comment.
HasSymbol Does the comment text include a symbol?
PosTagFirst POS tag of the first word of the comment.
PosTagAny Does the comment text include a certain POS tag?
WordFirst First word of the comment text.
WordAny Does the comment text include a certain word?

small causes a tree overfitting problem, while setting it too
large makes it underfitting. In our experiment, we found that
setting the minimum threshold to 10 examples produced the
best results. The more detailed mechanism is described in [9].
Fig. 7 shows a sample decision tree. Once the decision tree is
constructed, it is converted to simple if-then clauses, so that
the actual classification can be performed efficiently.

Categories

Yes No

Yes No Yes No

....

...

PosTag[0]
== 'NN'?

'VB' in
PosTag?

Syntax ==
'Expr'?

Fig. 7. Decision Tree Example

IV. EXPERIMENTS

In this section, we describe our experimental setup and
its results. We have measured the performance of the three
classifiers we described above. We first describe our data set
and then present the experimental result with Java source
codes. Then, to measure the generality of our model, we apply
the same classifier to another language, Python. Finally, we
apply our method to a wider range of projects and show its
findings.

A. Data Set

As a data set for the experiments, we selected the top 1,000
GitHub projects by popularity (the number of Stars)3. The
overall size of the data set is listed in Tab. V. We then parsed
all the Java files in each project and randomly chose 1,000
comments4 as a training set for the classifiers. These 1,000
comments were manually annotated for the three elements
described in Section II. The frequency of each comment target
and category in the training set is listed in Tab. VI. We then
chose another 100 comments independently and used them for
the manual tagging experiment described in Section II-C1. The
result of the tagging experiment was further narrowed as some
comment had no agreement in category (all the participants
chose different categories). In the end, the remaining 84 com-
ments were used as a test set. The distribution of categories
in the training set and test set is similar. The Kullback-Leibler
distance DKL between two distribution is 0.11. This was
calculated as ∑

Pi log
Pi

Qi

where Pi and Qi are the probability of each category in the
training set and test set, respectively.

B. Experimental Results

We now present the performance of our classifiers. The first
classifier, Extent Tagger, had 97.7% accuracy per comment
tag. The Target classifier had 70% accuracy per comment

3The data set was retrieved in July, 2017 (Java) and November, 2017
(Python) respectively.

4We enumerated all the comments of the above projects, shuffle them,
then pick the first 1,000 comments while limiting the maximum number of
comments per source file to three. This way, an unusually large source code
does not affect the overall distribution, while large projects with many source
code files can still be more representing than smaller projects.

TABLE V
SUMMARY OF EXPERIMENTAL DATA

Language Projects Files SLOC Comments
Java 1,000 480,600 63,224,880 4,049,628
Python 990 160,844 29,070,278 2,215,683

TABLE VI
TARGETS AND CATEGORIES IN TRAINING SET

Target Freq.
Right 706
Left 92
Parent 74
In-Place 125
Others 3
Total 1,000

Category Freq.
Postcondition 610
Precondition 148
Value Description 67
Comment Out 56
Instruction 42
Visual Cue 38
Directive 26
Metadata 5
Uncategorized 8
Total 1,000

extent. For the Category classifier, we measured its perfor-
mance for each category, which is listed in Tab. VII. Although
the accuracy of the classifier is varying depending on its
category, it has a reasonable performance (61% precision and
89% recall) for the “Postcondition” category, which was our
original purpose for this research. Since there was no comment
that was classified as the “Metadata” category, its column is
left out from both tables.

C. Adapting to Another Language

After experimenting with Java source codes, we applied
the obtained classifier to another language, Python. This is
done by applying a rather straightforward transformation to the
features. More specifically, we converted the name of Java syn-
tax elements in features like LeftSyntax, RightSyntax
and ParentSyntax into its Python counterparts by simply
replacing them (Tab. VIII). All other features in the decision

TABLE VII
CLASSIFIER PERFORMANCE (CATEGORY, JAVA)

Category Po Pr Co Vi Va In Di Cls.
Postcondition 31 3 1 0 0 0 0 35
Precondition 8 10 0 0 1 0 0 19
Comment Out 0 0 3 0 1 0 0 4
Visual Cue 3 0 0 6 0 0 0 9
Value Descr. 4 1 0 0 2 0 0 7
Instruction 3 1 1 1 0 0 0 6
Directive 2 0 0 1 0 0 1 4
Answer 51 15 5 8 4 1 0 84

Category Precision Recall F1
Postcondition 0.61 (31/51) 0.89 (31/35) 0.72
Precondition 0.67 (10/15) 0.53 (10/19) 0.59
Comment Out 0.60 (3/5) 0.75 (3/4) 0.67
Visual Cue 0.75 (6/8) 0.67 (6/9) 0.71
Value Descr. 0.50 (2/4) 0.29 (2/7) 0.36
Instruction 0.00 (0/0) 0.00 (0/6) 0.00
Directive 1.00 (1/1) 0.25 (1/4) 0.40

TABLE VIII
FEATURE TRANSFORMATION FROM JAVA TO PYTHON

Java Syntax Python Syntax
SimpleName Name
MethodDeclaration FunctionDef
ExpressionStatement Expr
IfStatement If
MethodInvocation Call
ForStatement For
StringLiteral Str
NumberLiteral Num
ArrayInitializer Tuple

TABLE IX
CLASSIFIER PERFORMANCE (CATEGORY, PYTHON)

Category Po Pr Co Vi Va In Di Cls.
Postcondition 35 10 5 1 0 0 2 53
Precondition 14 8 3 2 1 2 1 31
Comment Out 0 0 1 0 0 0 0 1
Visual Cue 3 0 0 0 0 0 0 3
Value Descr. 3 3 0 2 1 0 0 9
Instruction 1 0 1 0 0 1 0 3
Directive 0 0 0 0 0 0 0 0
Answer 56 21 10 5 2 2 4 100

Category Precision Recall F1
Postcondition 0.63 (35/56) 0.66 (35/53) 0.64
Precondition 0.38 (8/21) 0.26 (8/31) 0.20
Comment Out 0.10 (1/10) 1.00 (1/1) 0.18
Visual Cue 0.00 (0/5) 0.00 (0/3) 0.00
Value Descr. 0.50 (1/2) 0.11 (1/9) 0.11
Instruction 0.25 (1/4) 0.33 (1/3) 0.17
Directive 0.00 (0/2) 0.00 (0/0) 0.00

tree were kept intact. Note that this decision tree was originally
obtained for Java source codes, so we did not make any
training data for this experiment. We manually annotated 100
comments in Python for the test set in the same manner
described in Section IV-A. We use the Python Abstract Syntax
Tree (AST) module for the parser [8].

Tab. IX shows the results. Note that despite the overall
degradation of the performance in all categories, the accuracy
for “Postcondition” category stayed at a reasonable level.
This result suggests that this type of comments have the same
characteristic in both languages, and thus implies the existence
of the universal “grammar” for them.

D. Applying to Large Corpora

We applied our classifier to a number of GitHub repositories
to see the overall tendency of comment categories in various
projects, both in Java and in Python. Fig. 8 and 9 show the
categories of the top 10 projects by the number of comments
(shown in the parentheses). We can see most projects have
a comparable ratio of categories. This answers our third
Research Question.

A notable exception in this figure is neo4j project, which
has an unusually high ratio of “Visual Cue” categories. It
turned out that this project has a high volume of unit testing
codes (about the 30% out of the 900k lines of code). According

(48229)
2. hadoop

(46544)
3. camel

(32885)
4. robovm

(32195)

(31151)
6. hive

(28807)
7. hbase

(25513)
8. neo4j

(24603)
9. j2objc

(22788)
10. XobotOS

(22638)

Post. Pre. Cmt.Out
Visual Value Inst.

1. platform_frameworks_base

5. intellij-community

Fig. 8. Comment Categories (Java)

1. main
(39745)

2. appscale
(33416)

3. kbengine
(25105)

4. hue
(22956)

5. pyston
(17016)

(14525)
7. cpython

(12810)
8. sympy

(11537)
9. nova

(11211)
10. Theano

(9090)

Post. Pre. Cmt.Out
Visual Value Inst.

6. edx-platform

Fig. 9. Comment Categories (Python)

to the unit test convention in Java, each unit test should have
sections marked by comments such as Given, When, and
Then. These comments were eventually recognized as a visual
cue by our classifier.

In an attempt to further explore our results, we extracted
the most commonly used “verb + noun” pairs used in the
“Postcondition” comments. The results are shown in Tab. X
and XI. It turned out that the most common phrase in Java
comments across all the projects is “do nothing”. We also
tried to extract a few anecdotal code snippets which have
“clear” and “buffer” in its corresponding comments. The
obtained snippets are shown in Fig. 10. This demonstrates one
of ways to utilize the proposed method for our original goal;
by focusing on postconditional comments, we can discover a

TABLE X
TOP VERB+NOUN PAIRS (JAVA)

Verb + Noun Projects
do nothing 332
throw exception 170
set default 161
add list 154
do anything 146
set value 140
use default 122
have value 119
create file 119
create list 116

TABLE XI
TOP VERB+NOUN PAIRS (PYTHON)

Verb + Noun Projects
create object 149
get list 143
get data 134
do anything 133
do nothing 130
get name 129
keep track 128
raise exception 128
write file 123
create file 123

number of nontrivial ways where a buffer is “cleared”.

V. DISCUSSIONS

In this section, we briefly discuss our experimental results
in the previous section. First of all, the performance of our
Category classifiers is worse than expected. This is probably
due to the similar reasons why the agreement ratio of manual
annotations was bad; the distinction between “Precondition”
and “Postcondition” is inherently tricky, and the comments
were in varying qualities.

One of the ways to improve the performance is to use more
features. From an inspection of the obtained decision tree for
the classifier, we have discovered that POSTagFirst is the
most significant feature used for identifying a category, and
programming language syntax matters less. This is probably
why it worked for both Java and Python. This roughly corre-
sponds to our experience, as many “Postcondition” comments
start with an imperative verb, as in the form of “do this”.
Therefore, we can expect some performance gain by using
more natural language based features. For example, we could
use a full English parse tree as a feature, which would
allow the classifier to recognize a more complex phrase in
a consistent manner.

Throughout the experiments, we have observed that the ratio
of each comment category is mostly unchanged across differ-
ent projects and different languages (Java and Python). The
ratio of the “Postcondition” comments usually ranges from
60% to 70%, and the ratio of the “Precondition” comments
ranges from 10% to 20%. Although they are not precisely

OpenGrok/.../UtilTest.java
out.getBuffer().setLength(0); // clear buffer

atlas/.../BaseLayer.java
// Clear the off screen buffer. This is

// necessary for some phones.

canvas.drawRect(0, 0, canvas.getWidth(),

canvas.getHeight(), clearPaint);

druid/.../LimitedBufferGrouper.java
// clear the used bits of the first buffer

for (int i = 0; i < maxBuckets; i++) {
subHashTableBuffers[0].put(

i * bucketSizeWithHash, (byte)0);

}

hadoop/.../Shell.java
// clear the input stream buffer

String line = inReader.readLine();

while(line != null) {
line = inReader.readLine();

}

Fig. 10. “Clear Buffer” Examples (Java)

comparable, we think that our “Postcondition” and “Precondi-
tion” categories roughly correspond to the “Summary” and
“Expand” categories described by Pascarella and Bacchelli
[3], which reported a similar ratio (about 7:2) across six Java
projects. Assuming the ratio of each category is not signifi-
cantly different from projects to projects, our result means that
our classifier can consistently find the same categories in both
Java and Python projects, suggesting the existence of universal
“grammar” for source code comments.

VI. THREATS TO VALIDITY

There are a couple of threats to the validity of our conclu-
sion. As for the threats to the internal validity, we are aware
that our definition of comment targets or categories might still
be incomplete. The validity of our eleven comment categories
can be measured with the number of uncategorized comments
(21 out of 300 annotations) as well as the inter-rater agreement
ratio. One could argue that the number of reviewed examples
or the degree of agreement among the manual annotations
is weak. This is especially true for the distinction between
“Precondition” and “Postcondition” categories (as stated in
Section II-C1). The small number of annotators could also
be a problem. The annotators might be biased. However, the
observed Fleiss’ Kappa was K = 0.491 (moderate agreement),
which is not bad. As for the design of classifiers, we have
assumed that a comment target and comment category is
independent to each other (Section III); this might not be
the case. Also, we treated that each comment extent as
independent from other comments, i.e. the interpretation of
one comment extent is not affected by other comments in the
source code. Realistically, this is very unlikely. We often see

that a comment uses names, ideas, or terms introduced by
other comments in the same file or other external files. This
could potentially affect the classification results.

As for the threats to the external validity, one could argue
that the amount of test data is not enough. Indeed, the test set
for Java comment categories had only 84 cases (Section IV-A).
However, the distribution of categories from the training set
and test set was not very different, as shown in Section
IV-A. Another threat is that both training set and test set are
highly skewed in their categories. For now, our main focus is
to distinguish the two most major categories (“Precondition”
and “Postcondition”), so the predictions for smaller categories
should be treated carefully. We plan to address this issue
further in future. The test set for Python comments was
equally small. Also, one could argue that the application of our
classifier to a Python source code did not work well, citing its
lower score (Section IV-C). In fact, Python language supports
docstring, another mechanism for software documentation.
However docstring texts are usually only applied for a
class or method level description, but not for local comments.
So we do not think it affects the results.

Another threat to the external validity is the way we used
GitHub projects. They are all open sourced software, which
could bias the use of code comments. It is also known that
there is a high variation in its code quality in GitHub projects.
A carefully selected set of projects might give a different
outcome.

VII. RELATED WORK

Source code comments have been an active target of re-
search, but there is no prior work that explores the semantics
of local comments for the purpose of obtaining nontrivial
comments in an empirical manner. While there are a group
of people who advocate “self-documenting code” [13], code
comments are still considered as an irreplaceable way to
express programmers’ intention [14]. Padioleau et al. studied
source code comments from operating systems and concluded
that programmers use comments when they cannot express
their intention in any other way [1]. They also classified the
comments by detailed topics, such as “error code” or “lock
related”. Comment classification has been actively studied by
Pascarella and Bacchelli [3]. In terms of writing comments,
Kramer provided a case study of Java programmers who wrote
Javadoc comments for Java API at Sun Microsystems [6].

There are numerous attempts to mine source code comments
to get extra intelligence about a program. Jiang and Hassan
examined the effects of stale comments and bugs [15]. Tan
et al. presented a clever approach that automatically finds
lock-related bugs by obtaining special patterns from code
comments [16]. Ying et al. explored “TODO” comments, or
task comments, as a way of programmers’ communication to
their coworkers [17]. Storey et al. investigated the relationship
between “TODO” comments and software bugs [18]. Sridhara
described a way to detect up-to-date TODO comments [19].
Aman et al. studied the possibility of commented out codes
leading to software bugs [20], [21].

As for the relationship between code comments and its
readers, Salviulo and Scanniello suggested that novice pro-
grammers tend to rely on comments more than professionals
[22]. Hirata and Mizuno examined the relevance of code com-
ments using text filtering methods [23]. Some researchers are
exploring the idea of automatic comment generation. Sridhara
et al. presented a framework for automatically generating
a Java method description based on program analysis [24].
Wong et al. proposed a way to generate comments by using
programming question sites such as Stack Overflow [25].

To our knowledge, code comments are still largely treated
independently from a source code syntax tree. This can be
a problem when a code is automatically refactored by IDE.
Sommerlad et al. tried to address this problem [26].

VIII. CONCLUSION

In this paper, we presented our attempt to develop a
framework for collecting and analyzing source code comments
in detail. We proposed our model of comments, which has
three elements: extent, target and category. We described the
definition of each element, and conducted a manual annotation
experiment. We then presented our attempt to build classifiers
to identify the above three elements using a decision tree
algorithm (C4.5). The obtained classifiers could recognize
these elements with a reasonable accuracy. We tested our
classifiers with two programming languages (Java and Python).
We applied our classifiers to various GitHub projects to test
our hypothesis that there is a universal structure in source code
comments.

REFERENCES

[1] Yoann Padioleau, Lin Tan and Yuanyuan Zhou, “Listening to Pro-
grammers - Taxonomies and Characteristics of Comments in Operating
System Code”, Proceedings of the 31st International Conference on
Software Engineering (ICSE ’09), pp. 331-341.

[2] Daniela Steidl, Benjamin Hummel and Elmar Jurgens, “Quality Analysis
of Source Code Comments”, Proceedings of the 21st International
Conference on Program Comprehension (ICPC’ 13), pp. 83-92.

[3] Luca Pascarella and Alberto Bacchelli, “Classifying code comments in
Java open-source software systems”, Proceedings of the 14th Interna-
tional Conference on Mining Software Repositories (MSR ’17), pp. 227-
237, ISBN: 978-1-5386-1544-7, DOI: 10.1109/MSR.2017.63.

[4] Brian W. Kernighan and Rob Pike, “The Practice of Programming”,
Addison-Wesley Professional, 1999, ISBN 9780139376818.

[5] Oracle Corporation, “How to Write
Doc Comments for the Javadoc Tool”,
http://www.oracle.com/technetwork/java/javase/
documentation/index-137868.html, Retrieved on 2018-02-
01.

[6] Douglas Kramer, “API Documentation from Source Code Comments: A
Case Study of Javadoc”, Proceedings of the 17th Annual International
Conference on Computer Documentation (SIGDOC ’99), pp. 147-153.

[7] The Eclipse Foundation, “Eclipse Java development tools (JDT)”,
https://www.eclipse.org/jdt/, Retrieved on 2018-02-01.

[8] Python Software Foundation, “32.2. ast - Abstract Syntax Trees”,
https://docs.python.org/2/library/ast.html,
Retrieved on 2018-02-01.

[9] J. Ross Quinlan, “C4.5: Programs for Machine Learning”, Morgan
Kaufmann Publishers Inc., 1993, ISBN: 1558602402.

[10] Dan Jurafsky and James H. Martin, “Speech and Language Processing,
2nd Edition”, Prentice Hall, May 16, 2008, ISBN: 0131873210.

[11] Mitchell P. Marcus, Beatrice Santorini and Mary Ann Marcinkiewicz,
“Building a Large Annotated Corpus of English: The Penn Treebank”,
Computational Linguistics - Special Issue on Using Large Corpora: II
Archive Volume 19 Issue 2, June 1993, pp. 313-330.

[12] Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel,
Steven J. Bethard, and David McClosky, “The Stanford CoreNLP
Natural Language Processing Toolkit”, Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguistics: System
Demonstrations, pp. 55-60.

[13] C2 Wiki, “Self Documenting Code”,
http://wiki.c2.com/?SelfDocumentingCode, Retrieved on
2018-02-01.

[14] Jef Raskin, “Comments are More Important than Code”, ACM Queue -
Patching and Deployment, Vol. 3, Issue 2, Mar. 2005, pp. 64-65.

[15] Zhen Ming Jiang and Ahmed E. Hassan, “Examining the Evolution of
Code Comments in PostgreSQL”, Proceedings of the 2006 International
Workshop on Mining Software Repositories (MSR ’06), pp. 179-180.

[16] Lin Tan, Ding Yuan and Yuanyuan Zhou, “HotComments: How to Make
Program Comments More Useful?”, Proceedings of HotOS’07: 11th
Workshop on Hot Topics in Operating Systems, May 7-9, 2005, San
Diego, California, USA.

[17] Annie T. T. Ying, James L. Wright and Steven Abrams, “Source code
that talks: an exploration of Eclipse task comments and their implication
to repository mining”, Proceedings of the 2005 International Workshop
on Mining Software Repositories (MSR ’05), pp. 1-5.

[18] Margaret-Anne Storey, Jody Ryall, R. Ian Bull, Del Myers and Janice
Singer, “TODO or To Bug: Exploring How Task Annotations Play a
Role in the Work Pracitices of Software Developers”, Proceedings of
the 30th International Conference on Software Engineering (ICSE’ 08),
pp. 251-260.

[19] Giriprasad Sridhara, “Automatically Detecting the Up-To-Date Status
of ToDo Comments in Java Programs”, Proceedings of the 9th India
Software Engineering Conference (ISEC ’16), pp. 16-25.

[20] Hirohisa Aman, “Quantitative Analysis of Relationships among Com-
ment Description, Comment Out and Fault-proneness in Open Source
Software”, Journal of Information Processing (Japanese), Vol. 53, No.
2, pp. 612-621 (Feb. 2012).

[21] Hirohisa Aman, Takashi Sasaki, Sousuke Amasaki and Minoru Kawa-
hara, “Empirical analysis of comments and fault-proneness in meth-
ods: can comments point to faulty methods?” Proceedings of the 8th
ACM/IEEE International Symposium on Empirical Software Engineer-
ing and Measurement (ESEM ’14), Article No. 63, ISBN: 978-1-4503-
2774-9, DOI: 10.1145/2652524.2652592.

[22] Felice Salviulo and Giuseppe Scanniello, “Dealing with Identifiers and
Comments in Source Code Comprehension and Maintenance: Results
from an Ethnographically-informed Study with Students and Profession-
als”, Proceedings of the 18th International Conference on Evaluation and
Assessment in Software Engineering (EASE ’14), Article No. 48. ISBN:
978-1-4503-2476-2, DOI: 10.1145/2601248.2601251.

[23] Yukinao Hirata and Osamu Mizuno, “Do Comments Explain Codes
Adequately?: Investigation by Text Filtering”, Proceedings of the 8th
Working Conference on Mining Software Repositories (MSR ’11), pp.
242-245.

[24] Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori Pollock and
K. Vijay-Shanker, “Towards Automatically Generating Summary Com-
ments for Java Methods”, Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering (ASE ’10), pp. 43-52.

[25] Edmund Wong, Jinqiu Yang and Lin Tan, “AutoComment: Mining
Question and Answer Sites for Automatic Comment Generation”, Pro-
ceedings of the 28th IEEE/ACM International Conference on Automated
Software Engineering (ASE ’13), pp. 562-567.

[26] Peter Sommerlad, Guido Zgraggen, Thomas Corbat and Lukas Felber,
“Retaining Comments when Refactoring Code”, Companion to the 23rd
ACM SIGPLAN Conference on Object-Oriented Programming Systems
Languages and Applications (OOPSLA Companion ’08), pp. 653-662.

http://www.oracle.com/technetwork/java/javase/
http://wiki.c2.com/?SelfDocumentingCode

	I Backgrounds
	I-A Contribution of Paper

	II Structure of Comments
	II-A Comment Extent
	II-B Comment Target
	II-C Comment Category
	II-C1 Manual Annotation Experiment

	III Building Classifiers
	III-A Recognizing Comment Extent
	III-B Identifying Comment Target and Category

	IV Experiments
	IV-A Data Set
	IV-B Experimental Results
	IV-C Adapting to Another Language
	IV-D Applying to Large Corpora

	V Discussions
	VI Threats to Validity
	VII Related Work
	VIII Conclusion
	References

