
Generating Circuit Current Constraints to Guarantee

Power Grid Safety

by

Zahi Moudallal

A thesis submitted in conformity with the requirements
for the degree of Master of Applied Sciences

Graduate Department of Electrical & Computer Engineering
University of Toronto

c© Copyright 2014 by Zahi Moudallal



Abstract

Generating Circuit Current Constraints to Guarantee Power Grid Safety

Zahi Moudallal

Master of Applied Sciences

Graduate Department of Electrical & Computer Engineering

University of Toronto

2014

Verification of the chip power distribution network is a critical step in modern IC design.

Vectorless verification, developed as an alternative to simulation-based methods, requires

user-specified current constraints and checks if the worst-case voltage drops at all grid

nodes are below user-specified thresholds. However, obtaining/specifying the current

constraints remains a burdensome task for design teams. In this thesis, we define and

address the inverse problem: given a grid, we will generate circuit current constraints

which, if satisfied by the underlying logic, will guarantee grid safety. This approach

has many potential applications, including various grid quality metrics, and power grid-

aware placement and floorplanning. We give a rigorous problem definition and develop

some key theoretical results related to maximality of the current space. We then develop

two constraints generation algorithms that target key quality metrics like the peak total

power allowed by the grid and the uniformity of the temperature distribution.

ii



Acknowledgements

“Why are people sad? That’s simple. They are the prisoners of their personal history.

Everyone believes that the main aim in life is to follow a plan. They never ask if that

plan is theirs or if it was created by another person. They accumulate experiences,

memories, things, other people’s ideas, and it is more than they can possibly cope

with. And that is why they forget their dreams.” - Paulo Coelho

First and foremost, I give thanks and praise to God, Alhamdu lillah, for all his bless-

ings that guided me to finish this work.

I am deeply grateful to a number of people without whom this work would not have

been finished. I am forever indebted to these people for providing me with their immense

support and guidance, and with whom I have established a priceless friendship that I

cherish.

I am truly thankful for my supervisor Professor Farid Najm for his steady support

and guidance throughout the past two years. It has been an honor and a pleasure to work

with Professor Najm, who is a role model for me, for his constant beacon of intellect,

inspiration, and support both at the academic and personal level. Thank you professor;

this research would not have been possible without your thought leadership, great efforts,

and mentorship.

I would also like to thank Professors Mireille Broucke, Jianwen Zhu, and Wei Yu from

the ECE department at the University of Toronto for their time and effort in reviewing

this work.

During my internship at the University of Toronto in Summer 2011, I was very lucky

to work with Dr. Nahi Abdul Ghani who I benefited from his deep insight and vast

knowledge. I owe him a big thank you. I would also like to thank Abhishek for his

assistance and guidance during that period. I wish them both a great success in their

career. Many thanks go to my friend and my colleague Sandeep Chatterjee who I have

enjoyed working with throughout my degree program. I appreciate the long discussions

we had and his advice and assistance. I wish him the best in his future endeavor.

I am sincerely grateful for Mohammad B. Fawaz for being a great colleague and a true

friend over the past two years. I will never forget the invaluable moments that we shared

together inside and outside the office. I thank him for all the help, encouragement, and

support that he provided me. I can not imagine how hard the last two years would have

been without his constant assistance and inspiration. I wish him a great future.

A special acknowledgment go to my best friend Noha Sinno. I am very indebted to

iii



her for her presence in my life during the past two years, the unwaivering support during

critical months of my thesis, and her ability to listen to me nagging about research.

Thank you for the precious moments that we spent together, I would not be the same

without you.

I am also thankful for all the office mates in Pratt building, room 392, for the friendly

environment. I wish you all the best.

This journey has come to an end, with all its hard times and winding roads, which

I could not have passed without the unconditional support of my family. My greatest

gratitude goes to my wonderful parents Marwan and Amina, to whom I dedicate this

work. Their continuous sacrifices and pride in my success have raised my ambition and

provided me with unwaivering inspiration. I owe everything to you, no way I can pay

you back. I would also like to thank my brothers Shadi and Hani, my sister Nassma, my

brother-in-law Walid Itani, my sister-in-law Sara Kurdi, and my one year old nephew

Samir for sharing our life together which have always filled my heart with comfort and

joy.

Thank you all and God bless you.

iv



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 The Class of M-matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 The Power Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.2 Power Grid Model . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.3 Time Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Power Grid Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.1 Vector-Based Power Grid Verification . . . . . . . . . . . . . . . . 12

2.4.2 Vectorless Power Grid Verification . . . . . . . . . . . . . . . . . . 15

2.4.3 The Constraint-Based Vectorless Framework for Power Grid Veri-

fication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Maximal Safe Containers 22

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Safe Containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Maximizing Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.1 Constraints Templates . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.2 Largest Volume Container . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Maximal Containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5.1 Feasible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5.2 Extremal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

v



3.5.3 Irreducible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.5.4 Maximality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Constraints Generation Algorithms 36

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Peak Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3 Uniform Current Distribution . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Conclusion and Future Work 49

Bibliography 51

vi



List of Tables

4.1 Power Grid Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Results of both LPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Results of each LP using the other container . . . . . . . . . . . . . . . . 45

vii



List of Figures

1.1 Technology trends based on ITRS 2003-2005. . . . . . . . . . . . . . . . . 2

2.1 A simplified model of the PDN . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 An RC model of a power grid . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Simple RC grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Hierarchical power network analysis . . . . . . . . . . . . . . . . . . . . . 14

2.5 Flow diagram of the Stochastic approach in [1] . . . . . . . . . . . . . . . 15

4.1 An example of a power grid with 4 nodes, 2 current sources, and Vth =

[110 100 95 105]T (units of mV ). . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 An example of F(up) and F(us). . . . . . . . . . . . . . . . . . . . . . . 40

4.3 An illustration of perpendicular distances to hyperplanes. . . . . . . . . . 42

4.4 CPU time of both LPs and SPAI versus the number of grid nodes. . . . . 46

4.5 Peak Power Dissipation problem . . . . . . . . . . . . . . . . . . . . . . . 47

4.6 Contour plots for peak power density across the layout and the correspond-

ing histograms. The color bar units are mA/cm2. . . . . . . . . . . . . . 48

viii



Chapter 1

Introduction

1.1 Motivation

A well-designed chip power/ground network should deliver well-regulated voltages at all

grid nodes in order to guarantee correct logic functionality at the intended design speed.

However, with the continued scaling of semiconductor technology, there’s been a corre-

sponding increase in chip operating frequency and power dissipation. Fig. 1.1 illustrates

feature size, clock frequency, and maximum power dissipation of a high-performance chip

based on the 2003-2005 International Technology Roadmap for Semiconductors (ITRS)

data. As a result, modern high-performance integrated circuits often feature large switch-

ing currents that flow in the power and ground networks, causing excessive supply voltage

variations that put both circuit performance and reliability at risk. Therefore, efficient

verification of power grids is a necessity in modern chip design. We will use the term

“power grid” to refer to either the power or ground distribution networks. In this work,

we focus on RC power grids, but we are working to extend this to the RLC case in

future.

Power grid verification problem has been extensively addressed in the recent past in-

troducing novel methods and innovative ideas. A key concern for addressing this problem

is that verification should be applied at an early stage of the design flow, when it is still

possible to modify the grid. Generally, there are two approaches for power grid verifica-

tion: simulation-based and vectorless methods. A major drawback of simulation-based

methods is that they require detailed information on the circuit currents which are not

available early in the design flow. A state-of-the-art verification framework was proposed

in [2] that does not require full knowledge of the circuit currents. This method relies on

information that may be available at an early stage of the design, in the form of current

constraints. The idea behind this is to capture circuit uncertainty via design specs or

1
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Figure 1.1: Technology trends based on ITRS 2003-2005.

power budgets known in the early design stages. This type of approach, referred to as

vectorless verification, consists of finding the worst-case voltage fluctuations achievable

at all nodes of the grid under all possible transient current waveforms that satisfy user-

specified current constraints. The grid is said to be safe if these fluctuations are below

user-specified thresholds at all grid nodes.

This framework has been fully developed over the last decade [3], but a key question

remains: how would one obtain/specify the current constraints? In our work with col-

leagues in the industry, this point always comes up and remains a hurdle to adoption of

these methods! Providing the current constraints is a burdensome task for design teams,

and this thesis is aimed at addressing this problem.

Instead of the traditional approach of expecting users to provide current constraints

that would be used to check if the grid is safe (what one might call the forward problem),

we propose to solve the inverse problem: given a grid and the allowed voltage drop

thresholds at all grid nodes, we will generate circuit current constraints which, if satisfied

by the underlying circuitry, would guarantee grid safety. This is a significant departure

from previous work and represents the first time, in our experience, that this problem

has been addressed.

We believe that these current constraints would encapsulate much useful information

about the grid. First of all, the availability of current constraints at an early stage of the

design process provides a way to drive the rest of the design process, because these are

essentially power budgets for the logic blocks under the grid. If all design teams respect

these budgets throughout the design flow, then the grid is safe by construction at the end

of the design. If the constraints impose too severe a budget on a certain block in some

corner of the die, for example, then one can address the problem early on by modifying
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the grid, while it is still easy to do so, and generating a fresh set of constraints.

Alternatively, if the budgets are too severe for a candidate layout location of a high

level block, then perhaps the floorplan needs to be reconsidered. Indeed, the constraints

can be used to drive automated floorplanning as well as placement, so that grid-aware

placement may become feasible, something that has never been done before.

Furthermore, as we will see below, our work provides a high-level and early way to

qualify the candidate grid and assess how good it is relative to various quality metrics.

For example, using our approach, one can check what maximum level of peak power

dissipation for the whole die (or for a major part of the die) can be safely supported

by the candidate power grid. If the design has a peak power budget of 100 Watts, for

example, then the grid must be able to support the corresponding level of peak current

in the underlying circuit, and we will see that we can verify that type of objective.

Alternatively, one may be interested in spreading the power dissipation across the die in

some uniform fashion, in order to avoid thermal hot-spots. We can target that objective

by looking for constraints that spread the circuit current budget uniformly across the die

area. Modifications of the grid may be required to allow for that, and our engine can

identify whether these are needed, very early in the design process.

1.2 Contributions

The objective of this work is to define and address the inverse problem of an existing early

power grid verification framework, namely the constraints-based framework: we provide

circuit current constraints for power grids, knowing their allowed voltage fluctuation

thresholds at each node. If satisfied, these constraints ensure the safety of the grid.

Traditionally, the design team would rely on their expertise to specify current constraints.

However, in this thesis we provide a systematic method to generate these constraints.

This work builds on the constraints-based framework that was proposed in [2] and relies

on the upper-bound to the worst-case voltage drop that was first derived in [4], but

comprises a significant departure from previous work and represents the first time, in our

experience, that this problem has been addressed.

This thesis develops some key theoretical results as well as algorithms for constraints

generation. The contributions of this work are summarized below:

1. Establish a necessary and sufficient condition under which a current space would

guarantee grid safety. There are infinitely many current spaces that satisfy this

condition, which explains the second contribution.
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2. Characterize the most desirable current spaces, which we refer to as “maximal”, in

a sense that allows more flexibility in the circuit current loading.

3. Develop two algorithms for constraints generation that target key quality metrics

such as peak power dissipation that the power grid can safely support and unifor-

mity of temperature distribution. These algorithms allow a high level and an early

assessment of the grid design.

1.3 Organization

The remainder of this thesis is outlined as follows: In chapter 2, we present a brief

overview of the background material required for later chapters. Additionally, we de-

scribe the power grid model and review some major published works that focus on power

grid integrity verification techniques. Chapter 3 contains the bulk of the theoretical con-

tribution of this thesis. We define the problem of generating current constraints that

guarantee grid safety and study a highly desirable property of current spaces, i.e., “max-

imality”. Chapter 4 proposes a high-level and early way to qualify the candidate grid

design and assess how good it is relative to various quality metrics and develops two al-

gorithms that generate current constraints targeting these quality metrics. We conclude

giving future research directions in chapter 5.



Chapter 2

Background

2.1 Introduction

This chapter provides a brief overview of the background material necessary for the re-

search presented in later chapters. We first review properties of a special class of matrices

that will be crucial to the analysis to follow. We then switch gears to provide an overview

of the power distribution network and the main parasitic effects in modern chip design,

after which we describe the power grid model and derive the system equations. Subse-

quently, we introduce the power grid verification problem and discuss several research

works that have contributed to the advancement of vector-based and vectorless methods.

Finally, a vectorless technique that is of central importance to this work, namely the

constraints-based framework, is reviewed in details along with several publications that

suggest improvements thereon.

2.2 The Class of M-matrices

We use standard definitions and results from [5, 6]. Throughout the rest of the thesis, we

will use the notation x ≤ y (or x < y), for any two vectors x and y, to denote that xi ≤ yi

(or xi < yi), ∀i, respectively. Similarly, we will use the notation X ≥ 0 (or X > 0), for

any matrix X, to denote that Xij ≥ 0 (or Xij > 0), ∀i, j, respectively.

Definition 1. [5] A square matrix G is called an M-matrix if:

gij ≤ 0, ∀i 6= j and R(λi) > 0, ∀i (2.1)

where gij is the (i, j)th element of G, λi is an eigenvalue of G, and R(λi) is the real part

of the eigenvalue λi.

5
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Lemma 1. [5] If G is an M-matrix, then G−1 exists and its entries are non-negative,

which we denote by G−1 ≥ 0.

An n×n matrix G can be used to construct a graph G whose vertices are {1, 2, . . . , n}

and whose directed edges are (i, j) for every gij 6= 0. The graph G is referred to as the

associated graph of G.

Definition 2. A directed graph G is said to be strongly connected if it has a directed path

from every vertex to every other vertex.

Lemma 2. [5] A square matrix G is said to be irreducible if and only if its associated

graph G is strongly connected.

Definition 3. A matrix G is said to be diagonally dominant if |gii| ≥
∑

j 6=i |gij|, ∀i. A

matrix G is said to be strictly diagonally dominant if |gii| >
∑

j 6=i |gij|, ∀i.

Definition 4. A square matrix G is said to be irreducibly diagonally dominant if it

is irreducible, it is diagonally dominant, and there is an i ∈ {1, 2, . . . , n} for which

|gii| >
∑

j 6=i |gij|, i.e., it is strictly diagonally dominant in at least one row.

Lemma 3. [6] If G is irreducibly diagonally dominant with gii > 0, ∀i, and gij ≤ 0, ∀i 6=

j, then G is an M-matrix and its inverse has strictly positive entries, which we denote

by G−1 > 0.

2.3 The Power Grid

2.3.1 Overview

The power distribution network (PDN) of an integrated circuit is a distributed system

that is responsible to deliver the appropriate supply voltage from pad locations to all on-

chip logic cells. Typically, the PDN is modelled as three decoupling stages: starting at

the voltage regulator module (VRM), through the motherboard, package and finally the

on-die PDN. A simplified high level model of the PDN is depicted in Fig. 2.1. In this work,

we will focus on the on-die part of the PDN, commonly referred to as the “power grid”.

The power grid is a multiple-layer metallic mesh that connects the external power supply

pins to the chip circuitry, providing the supply voltage connections to the underlying

circuit components.

Ideally, the voltage levels on the grid are uniform and equal to the supply voltage

(Vdd). However, due to the parasitics of the grid transmission lines, circuit activity,
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Figure 2.1: A simplified model of the PDN

coupling effects, and electromigration [7], the voltage levels on the grid might vary. This

voltage drop variation on the power grid may have serious effects on the dynamic circuit

behavior and timing analysis of the integrated circuit such as reducing the noise margins,

slowing down the circuit, and causing soft errors [8, 9, 10, 11].

With the continued scaling of semiconductor technology, expected to arrive at 5nm

in 2020, there’s been a corresponding increase in chip operating frequency and power

dissipation. As a result, modern high-performance integrated circuits often feature large

switching currents that flow in the power and ground networks, causing excessive supply

voltage variations that put both circuit performance and reliability at risk. Therefore,

efficient analysis and verification of power grids is a necessity in modern chip design. In

turn, this requires an accurate model of the power grid and its parasitic effects.

Several previous works have attempted to study the various parasitics of power grids

and their effects on circuit behavior and consequently on the voltage drop. The main

parasitic effects are: resistive, capacitive, and inductive. Due to the sheet resistance of

metal lines, typically composed of copper, the power grid exhibits resistive effects. In

modern microprocessors, the number of metal layers have substantially increased due to

the large volume of interconnect required for grid routing. As a result, the voltage drop

induced by the metal resistance becomes significant. This voltage drop, referred to as

IR drop, is a major amount of the total voltage drop on the grid [12, 13], and has in-

creased from one technology generation to the next, as metal lines widths have decreased.

Capacitive effects refer to the parasitic capacitance between metal wires, MOSFET ca-

pacitance, and on-chip decoupling capacitance. The capacitance on power grids can be

classified as either implicit or explicit. Implicit capacitance arise from the proximity of

metal lines to one another, intrinsic capacitance of non-switching devices, and the capac-
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itance between N-well and substrate [12]. Decoupling capacitance, commonly referred

to as decap, behave as an on-chip low-pass filter that reduces noise and counters fast

switching currents, keeping the supply voltage drop within a safe margin. Alone, implicit

capacitance is not enough for dealing with supply voltage noise. A common practice is

to insert explicit decap by filling on-die white spaces at strategic locations, i.e., empty

areas in the chip floorplan, with devices whose gate oxide capacitance provides a de-

coupling effect. Therefore, any power grid model must account for effects arising from

both types of capacitances. Other effects that need to be modeled are inductive effects.

They are becoming increasingly significant on the power grid [14, 15], creating Ldi/dt

noise. However, in this thesis we will ignore inductive effects in the power grid model for

simplicity.

2.3.2 Power Grid Model

Consider an RC model of the power grid, where every grid metal branch is represented

by a resistor, and where nodes are used to represent either a via or a connection of more

than two branches on the same metal layer. We assume that there exists a capacitor from

every node to ground and we ignore all line-to-line coupling capacitance. In a power grid,

some nodes have ideal current sources (to ground) representing the currents drawn by

the logic circuits tied to the grid at these nodes, while other nodes may be connected

to ideal voltage sources representing the connection to the external voltage supply Vdd.

Excluding the ground node, let the power grid consist of n + p nodes, where nodes

1, 2, . . . , n are the nodes not connected to a voltage source, and the remaining nodes

(n + 1), (n + 2), . . . , (n + p) are the nodes where the p voltage sources are connected.

Let i(t) be the non-negative vector of all the m current sources connected to the grid,

whose positive (reference) direction of current is from node-to-ground. Without loss of

generality, suppose that nodes attached to current sources are numbered 1, . . . ,m, where

m ≤ n. Let H =
[

Im 0
]T

be an n×m matrix where Im is the m-dimensional identity

matrix, and let is(t) = Hi(t). Let νk(t) be the voltage waveform at every node k, and let

ν(t) be the vector of all νk(t) signals. Applying Kirchhoff’s Current Law (KCL) at every

node, k = 1, . . . , n, leads to the following matrix formulation:

Gν(t) + Cν̇(t) = −is(t) +G0vdd (2.2)

where G, G0, and C are n× n matrices resulting from the application of the traditional

modified nodal analysis formulation [16], and vdd is a constant vector each entry of which

is equal to Vdd. C is the n × n diagonal non-negative capacitance matrix, which is
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Figure 2.2: An RC model of a power grid

non-singular because every node is attached to a capacitor; G0 is n × n matrix of the

conductance elements connected to Vdd sources; G is the n×n conductance matrix, which

is known to be symmetric and diagonally dominant with positive diagonal entries and

non-positive off-diagonal entries. Assuming the grid is connected (so thatG is irreducible)

and has at least one voltage source (so G is strictly diagonally dominant in at least one

row), then G is irreducibly diagonally dominant and, by Claim 3, we have that G is an

M-matrix with G−1 > 0. Notice that if we set all is,k(t) = 0, ∀t, in (2.2), and because

the power grid is a stable RC system, then there is no transients and νk(t) = Vdd, ∀t, so

that the above system equation becomes:

Gvdd = G0vdd (2.3)

Because G, G0, and vdd do not depend on is(t), then the identity in (2.3) is valid in

general. Benefiting from (2.3), we can rewrite (2.2) as:

G[vdd − ν(t)]− Cν̇(t) = is(t) (2.4)

Define vk(t) = Vdd − νk(t) to be the time-varying voltage drop at node k, note that

v̇k(t) = −ν̇k(t), and let v(t) be the n × 1 vector of voltage drops, then the system

equation can be written as:

Gv(t) + Cv̇(t) = is(t) (2.5)

One could use the revised system equation described in (2.5) to directly solve for the
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voltage drop values. It is easy to see that the system equation (2.5) is equivalent to (2.2),

with all the voltage sources set to zero (short circuit) and all the current source directions

reversed.

To better illustrate this, we will apply MNA to the circuit in Fig. 2.3. Notice that,

the nodes attached to current sources are numbered first, so that:

is(t) =
[

i1(t) i2(t) 0 0 0 0
]

(2.6)

G =























g1 + g2 + g7 −g2 0 −g7 0 −g1

−g2 g2 + g3 −g3 0 0 0

0 −g3 g3 + g4 + g8 −g4 0 0

−g7 0 −g4 g4 + g5 + g7 −g5 0

0 0 0 −g5 g5 + g6 −g6

−g1 0 0 0 −g6 g1 + g6 + g9























(2.7)

C =























c1 0 0 0 0 0

0 c2 0 0 0 0

0 0 c3 0 0 0

0 0 0 c4 0 0

0 0 0 0 c5 0

0 0 0 0 0 c6























(2.8)
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2.3.3 Time Discretization

We can write a discrete-time version of the system equation (2.5) using a finite-difference

approximation for the derivative of a function x(t), such as a Backward Euler numerical

integration scheme, i.e.:

ẋ(t) ≈
x(t)− x(t−∆t)

∆t
(2.9)

where ∆t > 0 is the time step.

Applying this to (2.5) leads to:

v(t) = A−1Bv(t−∆t) + A−1is(t) (2.10)

where B = C/∆t is an n× n diagonal matrix with bii > 0, ∀i, and A = G+ B. Because

G satisfies the conditions of Claim 3, then it’s clear that A = G + B also satisfies the

same conditions, so that A is an M-matrix with A−1 > 0.

Notice that, this finite-difference approximation has modeled the voltage drop v(t) as

a linear function at a time interval ∆t. Therefore, the choice of the time step ∆t has a

significant impact on the accuracy of the voltage drop values, which we will later discuss

in more details.

2.4 Power Grid Verification

A well-designed chip power/ground network should deliver well-regulated voltages at all

grid nodes in order to guarantee correct logic functionality at the intended design speed.

As discussed earlier, the power grid exhibits a variation in the voltage levels due to

parasitics. A large drop in supply voltage may lead to timing violations or logic failure.

Therefore, to verify the grid safety one should check that the supply voltage is within

an acceptable range under all possible current traces, i.e. an exhaustive simulation of

the power grid under all possible input current waveforms. One would like, however,

to verify grid safety without performing a brute-force approach. This is because an

exhaustive simulation of the grid is infeasible. Large body of research work was devoted

to develop efficient methods for finding the voltage drop on the power grid.

Generally, there are two approaches to verify grid safety: vector-based and vectorless

approaches. Vector-based methods, also known as simulation-based methods or pattern

dependant methods, involve simulating the grid under a set of current waveforms drawn

by the underlying non-linear circuit. Vectorless methods, also known as pattern inde-

pendent methods, attempt to find conservative bounds on the voltage drops without
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knowledge of the input vectors.

In this section, we will review several state-of-the-art power grid voltage integrity

verification methods. First, we will review few vector-based methods, then, we will review

vectorless techniques. A particular vectorless framework that is of central importance to

our work will be reviewed separately. Finally, we will review several publications that

improved on this framework.

2.4.1 Vector-Based Power Grid Verification

Broadly defined, vector-based techniques consist of simulating the whole power grid under

an exhaustive set of input vectors. A huge research work has been carried out in the recent

past in this area, introducing novel pattern dependent methods. Some methods try to

find a small set of input patterns that would maximize power supply noise, i.e., maximize

voltage drop. Other methods attempt to reduce the grid to a coarser structure, analyze

the reduced model, and map the solution back to the original grid. Such techniques are

essential for modern industrial designs where grids can consist of over a billion nodes and

exhaustive simulation of the whole grid is infeasible. In this section, we will provide an

overview of some simulation-based verification methods that employ various innovations

such as multigrid techniques, macromodeling techniques, and application of random walk

algorithms.

A genetic algorithm (GA) based method was suggested in [17]. Basically, this tech-

nique generates iteratively a small set of input patterns that maximize power supply

noise. The authors start with an initial set of patterns, which can be either generated

randomly or specified by the user, and they assign a fitness value to each input pattern.

The GA algorithm, then, iteratively generates successive set of patterns with likely higher

fitness based on “evolution like” operations, such as selection, crossover, and mutation.

A main issue with this class of search algorithms is that they require a suitable fitness

function as the quality of the input patterns generated by GA highly relies on the fit-

ness function used. In this approach, the authors assigns the fitness function to be the

peak current the design draws in response to the pattern. The peak current can be effi-

ciently estimated using a waveform simulator that employs event-driven logic simulation

algorithm. Notice that higher peak currents means more current flows in the resistive

network and, hence, larger voltage drops. If the peak voltage drop is itself the fitness

function, then this would require circuit-level simulation which severely slows down the

simulation. The algorithm terminates when no further improvement is achieved or the

number of iterations exceeds a certain value. The final set of patterns is then fed to a
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transistor-level simulator in order to derive a more accurate estimate of power supply

noise. The authors in [18] use a similar approach where the fitness function is a combina-

tion of the peak current of each block and the peak current of the entire design. Results

show that the method in [18] is capable of identifying a larger set of critical nodes than

the method in [17]. Both methods, however, give a lower bound on the actual number

of critical nodes. Such methods are therefore insufficient for the thorough verification of

the power grid reliability.

For a given set of current waveforms, the authors in [19] propose a multigrid-like ap-

proach, inspired by the Algebraic Multigrid (AMG) and the Standard Multigrid (SMG)

techniques. In short, the proposed method is an iterative grid reduction algorithm that

produces a significantly reduced coarser grid. The objective of the grid reduction algo-

rithm is to selectively remove as many nodes as possible while maintaining the ability to

estimate voltages at the removed nodes. Generally speaking, grid reduction algorithm,

such as those based on SMG techniques, skip every other wire of the grid. However,

typical power grids may be irregular, i.e., different edges may have different lengths and

different separation distances. Thus, the reduction algorithm should present a systematic

mechanism for reducing any general grid. After coarsening the grid, the proposed tech-

nique solves the reduced system and maps the solution back to the original system. The

voltages at the removed nodes on the finer grid are interpolated based on the voltages

of the kept nodes that are strongly connected to it. Simulation results show that the

proposed technique achieves up to 16X-20X speedups for static analysis and up to 600X

for dynamic analysis.

A “divide and conquer” based method was proposed in [20] that exploits the hierar-

chical structure of the power grid. The grid is partitioned into small local grids that are

connected to a global grid via port nodes at the interface. The hierarchical approach for

power grid analysis is presented in Fig. 2.4 from [20]. Each local grid is modeled by the

following linear system:

I = Y V + S (2.11)

where V and I are vectors of voltages at the ports and currents through the ports,

respectively, Y is the port admittance matrix, and S is a current vector that captures

the effect of the current sources internal to a local grid at the port nodes. The set (Y, S)

in (2.11) is referred to as the macromodel of the respective local grid, and is derived from

the modified nodal equations of the partition. Solving the original grid boils down to

simulating the reduced global grid, and finally, computing the voltages at the local nodes

of each local partition. Simulation results show that this approach achieves a 2X-5X

speedup as well as a 10X-20X reduction in memory requirement as opposed to solving
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Figure 2.4: Hierarchical power network analysis

the traditional flat approach.

A random walk approach for power grid analysis was proposed in [21]. In brief, the

authors pose power grid analysis as a probabilistic problem where the voltage at each

node is expressed as the expected value of the voltages on neighboring nodes, weighted

by conductance values. Several Monte Carlo simulations are performed in the form of

random walks on the grid to estimate statistically the voltage levels on the power grid.

A major feature of this approach is that it allows efficient estimation of the voltage drop

at selected nodes without the need to solve the entire system.

To sum up, vector-based approaches to power grid verification require a circuit sim-

ulator to simulate the grid based on loading currents that are generated from a prior

fast simulation of the underlying logic. Although simulation-based methods are widely

adopted in industry, nowadays, these methods suffer two major limitations. On one hand,

a simulation-based scheme cannot be applied at an early stage of the design flow, when

detailed information on the circuit currents is not available. Typically, the grid is verified

early in the design process before the underlying logic blocks have been finalized. On

the other hand, these methods are optimistic in a sense that they provide a lower bound

on the actual worst-case voltage drop. For one thing, it is impossible to generate a rep-

resentative set of simulation vectors. Hence, finding the actual worst-case voltage drop

requires an exhaustive set of current waveforms in order to cover all possible scenarios
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Figure 2.5: Flow diagram of the Stochastic approach in [1]

and guarantee power integrity, which is infeasible.

2.4.2 Vectorless Power Grid Verification

Vectorless verification refers to a class of techniques for verification that do not rely on

simulating the power grid for specific input patterns. In this section, we will review a pat-

tern independent verification method. Another method that relies on constraints-based

framework is particularly relevant to this work and will thus be reviewed separately in

section 2.4.3. After that, we will review several published works that suggest improve-

ments to this framework.

In [1], the authors suggest a method that relies on statistical verification. The main

objective of this method is to find the first-order statistics (mean and variance) of the

voltage drop on the grid. In short, the authors model the currents drawn by the power

grid as stochastic processes, then they propose a method to propagate the statistical

parameters, which includes correlations between different blocks both in time and space,

through the linear system of the power grid to obtain the distribution of voltage drops at

any node in the grid. A flow diagram of the proposed methods is presented in Fig. 2.5. As
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a first step, the grid is partitioned into large blocks keeping the correlation between the

currents drawn by these blocks minimal. The blocks are then simulated in order to obtain

the mean, auto-correlation, and cross-correlation for each block current. After that, the

power supply network is modelled as a linear system in order to obtain the transfer

function from every circuit block to every node voltage. These impulse responses, along

with the statistical parameters of block currents are then used to generate statistical

parameters for the voltage drop.

2.4.3 The Constraint-Based Vectorless Framework for Power

Grid Verification

Overview

Constraint-based framework, which was first introduced in [2], is a vectorless power grid

verification scheme that relies on information that may be available at an early stage

of the design, in the form of current constraints. The intuition behind this framework

is to capture circuit uncertainty via design specs or power budgets known in the early

design stages, which are represented as current bounds. Essentially, vectorless verifi-

cation consists of finding the worst-case voltage fluctuations achievable at all nodes of

the grid under all possible transient current waveforms that satisfy user-specified cur-

rent constraints. The grid is said to be safe if these fluctuations are below user-specified

thresholds at all grid nodes. These methods are often formulated as linear programs

(LPs) to find the worst-case voltage drop under current constraints.

The authors in [2] distinguish two types of constraints: local constraints and global

constraints. Local constraints represent bounds on the current drawn by individual cur-

rent sources, whereas, global constraints express bounds on the sum of currents drawn

by groups of current sources simultaneously, at any time t. Depending on the level of

abstraction, a current source may represent a single logic gate, a cell, or a large block;

the latter is more typical in practice.

Let is(t) be an n × 1 vector of current sources and IL be the n × 1 vector of peak

values that the current sources can draw. Notice that local constraints are defined for

every node on the grid. Thus, a node not connected to a current source, i.e., is,k(t) = 0,

∀t, can be represented by a zero-current upper bound, i.e., IL,k = 0. Local constraints

can be captured by a system of inequalities as:

0 ≤ is(t) ≤ IL (2.12)
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Notice that, verifying the grid under local constraints alone would allow chip com-

ponents to simultaneously draw their peak allowable currents, however, this is typically

not the case. Although it would be much easier to verify the grid under local constraints

alone, this will allow for pessimistic scenarios, i.e., a grid may be identified as failing

when, in fact, it is safe. Different groups of current sources could belong to different

functional blocks, where each functional block is characterized by a power budget. This

notion is captured by means of global constraints. Global constraints are meant to rep-

resent circuit specification or functionality at an early design stage by imposing upper

bounds on the sum of total currents drawn by groups of current sources. Said differently,

global constraints can be thought of as power budgets on groups of logic blocks. If there

are l global constraints, then these constraints may be expressed as:

0 ≤ Uis(t) ≤ IG, ∀t ≥ 0, (2.13)

where IG is an l × 1 vector of upper bounds corresponding to global constraint values,

and U is an l × n incidence matrix consisting of 1 and 0 elements only, where a 1 at the

(i, j)th entry of U means that the current source at node j is included in the ith global

constraint. Local and global constraints can be compactly captured using the following

system of inequalities:

0 ≤ Ris(t) ≤ IM , ∀t ≥ 0 (2.14)

where R is an (n + l) × n matrix, whose top n × n block is the n-dimensional identity

matrix and the bottom l × n block is the matrix U , defined in (2.13), and where

IM =

[

IL

IG

]

(2.15)

A current waveform vector is(t) is said to be feasible if it satisfies the current con-

straints 0 ≤ Ris(t) ≤ IM at every time point. LetA represent the set of all current vectors

Is that satisfy the constraints, which is referred to as the feasible space of currents:

A = {Is : 0 ≤ RIs ≤ IM} (2.16)

For ease of expression, the notation Is ∈ A will be used to signify that the transient

current waveform is(t) satisfies the current constraints 0 ≤ Ris(t) ≤ IM at all points in

time.



Chapter 2. Background 18

Verifying the Grid

This framework assumes that the user has specified voltage drop thresholds that must

not be exceeded. Finding the worst-case voltage fluctuations can be formulated as a

voltage maximization problem, which would then be compared against the threshold.

The current constraints defines a search space for currents that will be used to carry out

the optimization. It is crucial that these constraints are linear so that the region A is

convex. If vi(t) is the voltage drop at node i and at time t, then the worst-case voltage

drop can be expressed as follows:

vmax,i
△

= max
Is∈A

(vi(t)) (2.17)

Note that, the feasibility region A is time independent, so that the result of the above

maximization is also time independent. Said differently, the voltage drop vi(t) is max-

imized over all possible transient current waveforms that satisfy 0 ≤ Ris(t) ≤ IM , ∀t.

Therefore, the worst-case voltage drop at node i is the same at any time point, so that

performing the optimization at only one time point is sufficient.

In this approach, power grid verification is done sequentially, maximizing the voltage

drop at each node, one at a time. For ease of expression, we denote by vmax the vector

of maximum voltage drops at all nodes, so that:

vmax
△

= emax
Is∈A

(v(t))
△

=

















max
Is∈A

v1(t)

max
Is∈A

v2(t)

...

max
Is∈A

vn(t)

















(2.18)

keeping in mind that the entries of vmax are computed sequentially.

The authors in [4] derived the exact worst-case voltage drop using (2.10). Assuming

that we are only interested in steady state solution, i.e., when the solution is independent

of the initial condition of the grid, and for current constraints in the form of (2.14), so

that A is time independent, the worst-case voltage drop can be expressed as:

vmax = lim
p→∞

p−1
∑

k=0

emax
Is∈A

[

(

A−1 C

∆t

)k

A−1Is

]

(2.19)

Recall that evaluating an emax(·) operation requires n linear programs (LPs), where the

runtime of each LP is proportional to the number of nodes in the grid. Also, notice
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that solving (2.19) requires an infinite summation of emax(·) evaluations. Clearly, it is

prohibitively expensive to compute (2.19).

In another approach, the authors in [4] derive an upper-bound to the exact worst-case

voltage drop as:

vub
△

= G−1A emax
Is∈A

(A−1Is) (2.20)

The author in [3] provides a simpler proof for this upper-bound, which we will present

below. Given that the values of the source currents is(·) at any two time points are

independent variables, we can use (2.10) to write:

vmax = emax
Is∈A

(v(t)) = emax
Is∈A

[(A−1B)v(t−∆t)] + emax
Is∈A

(A−1Is) (2.21)

where the variable vector Is denotes the current vector at any chosen time point, again

due to the independence of the currents across time. Recall that A−1B ≥ 0, because

A−1 ≥ 0 and B ≥ 0, which leads to:

vmax ≤ A−1B emax
Is∈A

[v(t−∆t)] + emax
Is∈A

(A−1Is) (2.22)

However, because vmax is time independent, so that emax
Is∈A

[v(t−∆t)] = emax
Is∈A

[v(t)] = vmax,

then we can rewrite (2.22) as:

(In − A−1B)vmax ≤ emax
Is∈A

(A−1Is) (2.23)

where In is an n×n identity matrix. Notice that, because B = A−G, then In−A
−1B =

In−A
−1(A−G) = A−1G. Furthermore, we have In+G

−1B = In+G
−1(A−G) = G−1A,

where In is the n× n identity matrix. But In ≥ 0, G−1 > 0, and B ≥ 0 with bii > 0, ∀i,

so that:

In +G−1B = G−1A > 0 (2.24)

Multiplying (2.23) by G−1A, due to (2.24), we get:

vmax ≤ G−1A emax
Is∈A

(A−1Is) = vub (2.25)

Notice that computing vub provides a major simplification of the problem as it requires a

single emax(·) evaluation, A−1 computation, and LU factorization of G. Several improve-

ments have been made to mitigate the runtime complexity of constraint-based framework.

Because this method requires as many LPs as the number of nodes in a grid, [22] pro-

posed a sparse approximate inverse technique to reduce the runtime of the LPs. Due
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to locality and topology properties of a grid, voltages of grid nodes are not completely

independent, which was exploited by dominance relations among voltage drops in [23].

Recently, in [24], a restriction of the problem to a hierarchically structured set of power

constraints was considered to achieve a significant runtime improvement. Another inter-

esting technique was proposed in [25] that verifies each subgrid of the original network

independently, imposing boundary conditions on the neighboring nodes of that subgrid,

i.e. without explicitly involving nodes that are not directly connected to the subgrid.

Choice of Time Step

Thus far, we have ignored the effect of the time step ∆t on the accuracy of the voltage drop

values. Generally speaking, for a discrete time system such as that in (2.10), the choice of

the time step largely depends on the input waveform is(t). For a fast switching is(t), ∆t

should be small enough to trace the transient behavior of the grid voltages. As for the

constraints-based framework, such as (2.19) and (2.25), the currents become variables

that can take different values from one time-point to the next. In the above derivations,

we have implicitly assumed that the current waveforms may change arbitrarily within

the time step ∆t. In other words, the currents can switch from zero to their maximum

values in the feasibility region A within a single time step. Although it greatly simplifies

the analysis, it is unrealistic to assume that the currents at different time instances are

independent variables, because the transient behavior of the currents is dictated by the

speed of the underlying circuitry. It is worth mentioning, however, that our implicit

assumption, when used with small ∆t, is conservative as it covers all slower currents

scenarios. Note that too small a ∆t, close to machine epsilon, might introduce numerical

instabilities. Therefore, the choice of the time step ∆t must rely on design expertise, by

accounting to both: the dynamics of the current loads and the grid transient behavior.

Obtaining Current Constraints

Constraints-based verification methods have been fully developed over the last decade [3],

but a key question remains: how would one obtain/specify the current constraints? The

constraints are meant to capture the peak power dissipation of circuit blocks. It’s easy

to see how to get the constraints for a logic block that is available (down to the cell

level) and small enough to exhaustively simulate, by using an “offline” characterization

process. Otherwise, if the block is unavailable or too large to simulate, one must rely on

engineering judgment, and/or expertise from previous design activities, which places an

undue burden on users. Thus, providing the current constraints is a burdensome task for
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design teams, and our work is aimed at addressing this problem.



Chapter 3

Maximal Safe Containers

3.1 Introduction

The traditional approach of constraints-based framework is to check if the grid is safe

under current constraints that are provided by the user. In this chapter, we address the

inverse problem: given a grid and the allowed voltage drop thresholds at all grid nodes, we

will generate circuit current constraints which, if satisfied by the underlying logic, would

guarantee grid safety. The rest of the chapter is organized as follows. In section 3.2,

we begin with a couple of definitions and notions that will help us provide a rigorous

definition of the inverse problem. We term a set of circuit current constraints that, if

adhered to by the underlying logic, would guarantee grid safety, as a safe container. In

section 3.3, we present a major result of this thesis establishing a necessary and sufficient

condition for a container to be safe. This condition, however, suggests that there is an

infinity of possible safe containers. Recall that a container defines a set of circuit current

constraints that can be used to drive automated floorplanning as well as placement.

Therefore, we are interested in a container that would allow more flexibility in the circuit

loading currents which, in turn, would allow more flexibility for the subsequent design

stages. In section 3.4, we present two ideal, though impractical, approaches to find the

largest volume container. Finally, in section 3.5, we introduce the notion of maximal

containers and present the bulk of the theoretical contribution of this thesis culminating

in the necessary and sufficient conditions given in Theorem 1.

22
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3.2 Problem Definition

We have a power grid as defined in section 2.3.2, discretized in section 2.3.3, and we are

modifying the constraints-based framework defined in 2.4.3. We will introduce the notion

of a container for a current waveform, which will help us construct different alternative

current constraints that guarantee grid safety.

Definition 5. (Container) Let t ∈ R, let i(t) ∈ R
m be a bounded function of time, and

let F ⊂ R
m be a closed subset of Rm. If i(t) ∈ F , ∀t ∈ R, then we say that F contains

i(t), represented by the shorthand i(t) ⊂ F , and we refer to F as a container of i(t).

Definition 6. (Safe Grid) Let Vth ∈ R
n, Vth ≥ 0, be a given vector of the voltage drop

thresholds at all grid nodes. We say that the grid is safe for a given i(t), ∀t ∈ R, if the

corresponding v(t) ≤ Vth, ∀t ∈ R.

To check if a power grid is safe, one would typically be interested in the worst-case

voltage drop at some grid node k, at some time point τ ∈ R, over a wide range of

possible current waveforms. Using the above notation, and given a container F that

contains a wide range of current waveforms that are of interest, we can express this as

maxi(t)⊂F(vk(τ)). Clearly, because F is the same irrespective of time, and applies at all

time points t ∈ R, then this worst-case voltage drop must be time-invariant, independent

of the chosen time point τ . At the risk of some abuse of notation, we will now redefine

the emax(·) operator based on the “container” notation, which is used to capture in a

single vector all the separate worst-case voltage drop maximizations, as follows.

Definition 7. (emax) For a given container F , and for an arbitrary τ ∈ R, define:

v∗(F)
△

= emax
i(t)⊂F

[v(τ)]
△

=



















max
i(t)⊂F

(v1(τ))

max
i(t)⊂F

(v2(τ))

...

max
i(t)⊂F

(vn(τ))



















(3.1)

to be the n×1 vector whose every entry is the worst-case voltage drop at the corresponding

node under all possible current waveforms i(t) contained in F , with the convention that,

if F = φ, then emax
i(t)⊂F

[v(τ)] = 0.

Definition 8. (Safe Container) For a given container F , we say that F is safe if v∗(F) ≤

Vth.
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Thus, if F is safe, then the grid is guaranteed to be safe under all possible current

waveforms that are contained in F . We will see below that a safe container F can be

expressed as a set of constraints on the circuit currents that drive the grid, thereby

providing a set of linear constraints that are sufficient to guarantee grid safety. We will

find, however, that the choice of F is not unique. Indeed, there is an infinity of possible

safe containers. In the following sections, we will first characterize the most desirable

safe containers, and then develop algorithms to generate specific types of containers for

practical grids.

Let M = A−1 > 0 and define the n×m matrix M ′ =MH > 0.

Definition 9. For any F ⊂ R
m, define:

v(F)
△

= G−1A emax
I∈F

(M ′I) (3.2)

where I ∈ R
m is a vector of artificial variables, with units of current, that is used to carry

out the emax(·) operation, and with the convention that emaxI∈F (M ′I) = 0, if F = φ.

In [4] and [3], the authors have derived the following upper-bound on v∗(F)1:

v∗(F) ≤ v(F) (3.3)

In the forward version of the grid verification problem [3], where F is given and one

is interested to check if the grid is safe, the upper bound v(F) is useful as a sufficient

condition for grid safety. If v(F) ≤ Vth, then v
∗(F) ≤ Vth and the grid is safe. This has

been found to be a tight upper bound [3]. For our inverse version of the problem, Vth

is given and we are interested to discover a container F for which v(F) ≤ Vth, so that

v∗(F) ≤ Vth and the grid is safe. In the next section, this upper bound (3.2) will be used

to characterize the class of safe containers, which will lead us to investigate the most

desirable containers, which we will call maximal.

3.3 Safe Containers

Let u ∈ R
n and define the sets U and F(u) as follows:

U
△

= {u ∈ R
n : 0 ≤ u ≤ Vth} (3.4)

1In [4], the upper bound on the worst case voltage drop is in terms of i(t) and M
′, as in (3.2).

In [3], the proof is presented in terms of is(t) = Hi(t) and M , but it can be easily shown that
the upper bound in [3] also implies (3.2).
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F(u)
△

= {I ∈ R
m : I ≥ 0, M ′I ≤MGu} (3.5)

and notice that:

MGu ≤MGu′ =⇒ F(u) ⊆ F(u′), ∀u, u′ ∈ R
n (3.6)

We will see that it is enough to consider (as we will, in this thesis) only containers of the

form (3.5). The restriction to I ≥ 0 is obvious because i(t) ≥ 0 is already assumed in our

grid model, above, but the rest of (3.5) is due to the following necessary and sufficient

condition. We will use R
n
+ to denote the set of n-dimensional vectors with non-negative

components.

Lemma 4. For any u ∈ R
n
+, we have 0 ≤ v(F(u)) ≤ u.

Proof. For any u ∈ R
n
+, if F(u) = φ then, from Definition 9, 0 = v(F(u)) ≤ u. Otherwise,

if F(u) 6= φ, then Definition 9 provides that v(F(u)) ≥ 0, due to (2.24) and the fact

that I ≥ 0, for all I ∈ F(u), by definition. Furthermore, from (3.5), we have M ′I ≤

MGu, ∀I ∈ F(u), so that:

emax
I∈F(u)

(M ′I) ≤MGu (3.7)

Multiplying both sides of (3.7) with G−1A ≥ 0, due to (2.24), we get v(F(u)) ≤ u, which

completes the proof.

Lemma 5. For any J ⊂ R
m
+ , v(J ) ≤ Vth if and only if ∃u ∈ U such that J ⊆ F(u).

Proof. The proof is in two parts.

Proof of the “if direction:” Let J ⊆ F(u) for some u ∈ U , it follows that emaxI∈J (M ′I) ≤

emaxI∈F(u) (M
′I), from which v(J ) ≤ v(F(u)), due to G−1A ≥ 0. Using Lemma 4, we

get v(J ) ≤ v(F(u)) ≤ u which, due to u ∈ U , gives v(J ) ≤ Vth.

Proof of the “only if direction:” Let J ⊂ R
m
+ with v(J ) ≤ Vth, and let u = v(J ) ≤ Vth

so that:

G−1A emax
I∈J

(M ′I) = u (3.8)

Then, because G−1A ≥ 0 due to (2.24) and I ≥ 0 for any I ∈ J , then u ≥ 0, so that

u ∈ U , and multiplying (3.8) with MG, we get:

emax
I∈J

(M ′I) =MGu (3.9)

so that, ∀I ∈ J , we have M ′I ≤MGu which, coupled with I ≥ 0 gives J ⊆ F(u).
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Therefore, i) F(u) is safe for any u ∈ U (due to v(F(u)) ≤ Vth), and ii) all possible

safe containers J (based on v(J ) ≤ Vth) may be found either as specific F(u) for some

u ∈ U , or as subsets of such F(u) containers.

3.4 Maximizing Volume

In this section, we present two ideal, but computationally infeasible, approaches for cur-

rent constraints generation. Recall that, a container defines a closed subset of Rm where

every member of this set constitutes a possible assignment of the current waveforms.

As pointed out earlier, a container can be used to drive subsequent steps of the design

process, and hence, the “larger” a container is, the more flexibility is provided for the

rest of the design stages. Therefore, it is desirable to provide the user with the “largest”

container, or a container that has the largest volume. In the following, we show that

these approaches are extremely expensive, but they are worth documenting nonetheless.

3.4.1 Constraints Templates

We digress briefly from the rest of the thesis to assume that the user has specified certain

templates for the desired constraints, then we attempt to grow their constraint values

as much as possible while still ensuring the safety of the power grid. These templates

reflect the dependencies among different functional blocks in the circuit. For example,

current sources I1, I3, and I8 may be known to originate from blocks that are functionally

dependent, and so the user may specify that a global constraint be found that includes

only these three currents. Solving this problem is useful for two things:

i) We will find a set of constraints, based on the user-specified templates, that forms

a safe container.

ii) Because these constraints represent dependencies among functional blocks, finding

the constraints values would give us the largest allowable current drawn by a single,

or a group, of functional blocks which represent power budgets for these functional

blocks. The availability of these budgets at an early stage of the design process is

crucially important for the rest of the design flow, as we have discussed earlier.

A drawback of this framework is that it requires the design team to identify function-

ally dependant blocks. At an early design stage, design teams usually have a tentative
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placement of major functional blocks of the chip. Therefore, one would rely on engi-

neering judgment and/or expertise, based on the available information of this chip or

previous designs of similar chips, to capture these dependencies.

Definition 10. With α ≥ 0 a p× 1 vector of real variables, we define:

G(α)
△

= {I ∈ R
m : SI ≤ α} (3.10)

where S is a p ×m incidence matrix consisting of 1 and 0 elements only, where a 1 at

the (i, j)th entry of S means that the current source at node j is included in the ith global

constraint.

We can formulate the problem as follows: given p-templates of global constraints

provided by the user, which are represented by S, we are interested in finding the largest

volume container G(α), such that G(α) ⊆ F(u), for some u ∈ U . This can be solved

using an optimization problem in the variables α and u as follows:

Maximize V (G(α))

Subject to G(α) ⊆ F(u)

u ∈ U

(3.11)

where V (G(α)) denotes the volume of the polytope defined by G(α).

There are two issues in the optimization problem that will be discussed hereafter: i)

the objective function is the volume of the polytope G(α), and ii) it has a subset-check,

i.e. G(α) ⊆ F(u), as an optimization constraint.

Several research works have attempted to compute the volume of a convex poly-

tope. Some works present efficient algorithms to compute the volume using recursive

approaches or finite-element methods. Lasserre in [26] presents a recursive analytic ex-

pression for the volume of a convex polyhedron in R
m which is:

V (m,S, α) =

(

1

m

) p
∑

i=1

π(x,Hi)× V (m− 1, S, α) (3.12)

where V (m,S, α) is the volume of G(α), π(x,Hi) is the Euclidean distance from any point

x, e.g. the origin, to a hyperplane Hi of G(α), and V (m − 1, S, α) is the volume of the

polytope generated by projecting the original polytope on the hyperplane Hi. Clearly, it

is prohibitively expensive to compute this recurrence. Unfortunately, there is no closed

form expression for the volume of a polytope.
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One way to overcome this issue is to approximate the volume of the polytope by the

volume of the ellipsoid inscribed in it. Thus, we are interested in finding the ellipsoid

of maximum volume that lies inside F(u), for some u ∈ U . Note that, we require the

ellipsoid to be inscribed inside F(u), for some u ∈ U , in order to guarantee that G(α)

is safe. The authors in [27] address the maximum volume inscribed ellipsoid problem

where, for a given α, the maximum volume ellipsoid inscribed in G(α) can be computed

using the following convex optimization problem in the variables P and q:

Maximize log detP

Subjet to ‖Pψi‖2 + ψT
i d ≤ αi i ∈ {1, . . . , p}

(3.13)

where the ellipsoid is defined as ε
△

= {Pu+ q | ‖u‖2 ≤ 1}, P is an m×m matrix, q is an

m× 1 vector, ψi is the ith row of S, αi is the ith entry of α, and log detP is the volume

of the ellipsoid ε.

In the simple scenario where u is fixed in the maximization problem (3.11), one

can employ an iterative random-search global optimization technique, such as Simulated

Annealing (SA) [28, 29]. At each iteration, SA generates a candidate point and computes

the acceptance function which depends on a variable called the temperature. The SA

makes the transition to the candidate point if the value of the acceptance function is

larger than certain probability. Nonetheless, the algorithm would still require a subset-

check, i.e. to check whether G(α) ⊆ F(u), in every iteration. A subset-check problem,

also referred to as polytope containment problem, is typically solved using as much LPs as

the number of constraints in F(u) [30]. Therefore, this problem is prohibitively expensive

and remains only of theoretical interest.

3.4.2 Largest Volume Container

In this section, we investigate a similar but simpler problem to the constraints templates

problem. Instead of maximizing the volume of a subset of F(u), in this section we are

interested in maximizing the volume of F(u) itself. This can be solved using a non-linear

optimization problem in the variable u as:

Maximize V (F(u))

Subject to u ∈ U
(3.14)

Notice that, a major simplification of (3.14) over (3.11) is that we eliminated the

subset-check from the constraints of the optimization problem. Although (3.14) still

requires a closed-form expression of the volume of a polytope, one can use SA based
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algorithm and approximate the volume using (3.13) as we have discussed in the previous

section. However, this method is also computationally expensive and unscalable.

3.5 Maximal Containers

Recall that, due to Lemma 5, we have: i) F(u) is safe for any u ∈ U (due to v(F(u)) ≤

Vth), and ii) all possible safe containers J (based on v(J ) ≤ Vth) may be found either

as specific F(u) for some u ∈ U , or as subsets of such F(u) containers. Note that, if

J ⊆ F(u), for some u ∈ U , with J 6= F(u), then clearly F(u) is a better choice than

J . Choosing J would be unnecessarily limiting, while F(u) would allow more flexibility

in the circuit loading currents. Therefore, it is enough to consider only containers of the

form F(u).

Going further, if F(u1) ⊆ F(u2) with F(u1) 6= F(u2), then clearly F(u2) is a better

choice than F(u1). Thus, in a sense, the “larger” the container, the better. We capture

this with the notion of maximality, as follows.

Definition 11. Let E be a collection of subsets of Rm and let X ∈ E . We say that X is

maximal in E if there does not exist another Y ∈ E , Y 6= X , such that X ⊆ Y.

Let E = {F(u) : u ∈ U} be a family of subsets of Rm, induced by U . Note that 0 ∈ U

for any Vth ≥ 0, and F(0) = {0}, due to M ′ > 0 combined with I ≥ 0, ∀I ∈ F(0). It

follows that E always contains a non-empty set as a member.

Maximality is a highly desirable property and we would like to generate containers

that are provably maximal. The purpose of the rest of this section is to give necessary

and sufficient conditions for F(u) to be maximal in E . The maximality of F(u) relies

on crucial properties of u that we will discuss in the following subsections. Note that,

because E always contains a non-empty set as a member, then F(u) = φ is never maximal

in E - this will be useful below.

3.5.1 Feasible

Definition 12. For any u ∈ R
n, u is said to be feasible if F(u) is not empty, otherwise

it is infeasible.

Because F(0) = {0}, then u = 0 is always feasible. In general, we have the following

lemma.

Lemma 6. For any u ∈ R
n, u is feasible if and only if MGu ≥ 0.
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Proof. To prove the “if direction,” let u ∈ R
n with MGu ≥ 0, in which case clearly

0 ∈ F(u), so that F(u) is not empty and u is feasible. To prove the “only if direction,”

let u ∈ R
n be feasible so that F(u) is not empty, and there exists an I ∈ R

m such that

I ≥ 0 andM ′I ≤MGu. Due toM ′ ≥ 0 combined with I ≥ 0, we have 0 ≤M ′I ≤MGu,

so that MGu ≥ 0.

Notice that if u ∈ R
n is feasible then multiplying both sides ofMGu ≥ 0 by G−1A ≥ 0

gives u ≥ 0, so that, u ∈ R
n
+. Notice also that, if Vth,k = 0, then for every u ∈ U we

have uk = 0. In this case, the only feasible u ∈ U is u = 0, because MG =M(A−B) =

In −MB, so that MGu|k = uk −MBu|k = −MBu|k < 0.

3.5.2 Extremal

Definition 13. For any u ∈ U , we say that u is extremal in U if ∃k ∈ {1, . . . , n} such

that uk = Vth,k.

Denote by m′
ij the (i, j)th element of M ′ and by c′j its jth column.

Lemma 7. If F(u) is maximal in E then u is feasible and extremal in U .

Proof. We will prove the contrapositive. Let u ∈ U be either infeasible or not extremal

in U ; we will prove that F(u) is not maximal in E . If u is infeasible then F(u) = φ,

which we already know is not maximal in E . Now consider the case when u is feasible

but not extremal in U . In other words, we have MGu ≥ 0 and 0 ≤ u < Vth, so that

ǫ
△

= min∀i (Vth,i − ui) > 0. Let 1 be the n × 1 vector whose every entry is 1 and let

u′ = u + ǫ1. Because G is irreducibly diagonally dominant with positive diagonal and

non-positive off-diagonal entries, then G1 ≥ 0, with G1 6= 0. Let γ
△

= G (u′ − u) = ǫG1,

so that γ ≥ 0 with γ 6= 0, thenMγ > 0 so thatMGu′ > MGu. Furthermore, considering

u′ = u + ǫ1, we have 0 ≤ u′ ≤ Vth due to the definition of ǫ, so that u′ ∈ U . We have

so far established that there exists u′ ∈ U with MGu < MGu′, so that F(u) ⊆ F(u′),

due to (3.6). It only remains to prove that F(u) 6= F(u′). For some i ∈ {1, . . . ,m}, let

j = argmin∀k (MGu′|k /m
′
ki), δ = (MGu′|j /m

′
ji) ≥ 0, ei ∈ R

m be the vector whose ith

entry is 1 and all other entries are 0, and I(i) = δei ≥ 0. Notice that, for any k, we have:

M ′I(i)
∣

∣

k
= δ M ′ei|k = δ c′i|k = δm′

ki (3.15)

Therefore, M ′I(i)
∣

∣

j
= δm′

ji = MGu′|j > MGu|j, so that I(i) 6∈ F(u). By definition

of δ, we have δ ≤ (MGu′|k /m
′
ki), for every k, meaning δm′

ki ≤ MGu′|k, for every k.

Using (3.15), we then have M ′I(i)
∣

∣

k
= δm′

ki ≤ MGu′|k, for every k, which leads to

I(i) ∈ F(u′), and the proof is complete.
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3.5.3 Irreducible

Definition 14. We say that u ∈ R
n is reducible if there exists u′ ≤ u, u′ 6= u, with

F(u′) = F(u); otherwise, u is said to be irreducible.

We will see that irreducibility of u is a crucial property that is required for maximality

of F(u).

Lemma 8. For any feasible u ∈ R
n and z ∈ R

n such that 0 ≤MGz ≤MG (u− v(F(u))),

let u′ = u− z, it follows that F(u′) = F(u).

Proof. For any I ∈ F(u′), we have I ≥ 0 and M ′I ≤ MGu′ = MGu −MGz ≤ MGu,

because MGz ≥ 0, so that I ∈ F(u). It follows that F(u′) ⊆ F(u). In addition, for any

I ∈ F(u), we have I ≥ 0 and:

M ′I ≤ emax
I∈F(u)

(M ′I) =MGv(F(u)) (3.16)

Notice that for any z with 0 ≤ MGz ≤ MG (u− v(F(u))), we have MGu′ = MGu −

MGz ≥ MGu−MG (u− v(F(u))) = MGv(F(u)). Combining this with (3.16), we get

M ′I ≤ MGu′, so that I ∈ F(u′). Therefore, F(u) ⊆ F(u′) from which F(u′) = F(u),

and the proof is complete.

Corollary. For any feasible u ∈ R
n, let u′ = v(F(u)), it follows that F(u′) = F(u).

Proof. Let z = u − v(F(u)), so that z satisfies the conditions of Lemma 8, and let

u′ = u− z = v(F(u)). Then, by Lemma 8, F(u′) = F(u).

Lemma 9. For any u ∈ R
n
+, u is irreducible if and only if it is feasible and v(F(u)) = u.

Proof. The proof is in two parts.

Proof of the “if direction:” The proof is by contradiction. Let u be feasible with

v(F(u)) = u and suppose that u is reducible so that there exists u′ ≤ u, u′ 6= u,

with F(u′) = F(u). Notice that F(u) is not empty, because u is feasible, so that F(u′)

is not empty and u′ is feasible. Therefore, we get:

u′ − v(F(u′)) = u′ − v(F(u)) = u′ − u+ u− v(F(u))

Notice that, because u′ is feasible, we haveMGu′ ≥ 0 and u′ ≥ 0, due to (2.24). Because

v(F(u′)) ≤ u′, due to Lemma 4, it follows that u′ − u + u − v(F(u)) ≥ 0, meaning

that u − v(F(u)) ≥ u − u′ ≥ 0. But u − u′ 6= 0, so that v(F(u)) 6= u and we have a

contradiction that completes the proof.
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Proof of the “only if direction:” We will prove the contrapositive. Let u be either

infeasible or v(F(u)) 6= u, and we will prove that u is reducible. If u is infeasible

then F(u) = φ and u 6= 0 (recall, u = 0 is always feasible), and it is easy to find

another infeasible u′ with u′ ≤ u and u′ 6= u, as follows. Let u′ = 1
2
u, from which

MGu′ = 1
2
MGu 6≥ 0, because u is infeasible, so that u′ is infeasible. Therefore, we have

found u′ ≤ u, u′ 6= u, with F(u′) = F(u) = φ which means u is reducible. If u is

feasible and v(F(u)) 6= u, let u′ = v(F(u)) ∈ R
n
+, due to Lemma 4, which also provides

that v(F(u)) ≤ u, so that u′ ≤ u, u′ 6= u, with F(u′) = F(u) due to the Corollary to

Lemma 8, and u is reducible.

Note, if u is irreducible and extremal in U , then uk = Vth,k for some k, and v(F(u))|k =

Vth,k.

Lemma 10. For any feasible u ∈ R
n
+, let u

′ = v(F(u)), it follows that u′ is irreducible.

Proof. For any u ∈ R
n
+, let u′ = v(F(u)). Notice that MGu′ = MGv(F(u)) =

emaxI∈F(u)(M
′I) ≥ 0 due to M ′ ≥ 0 and I ≥ 0 for any I ∈ F(u), so that u′ is

feasible, due to Lemma 6. Because u′ = v(F(u)), it follows from the Corollary to

Lemma 8 that F(u′) = F(u), from which v(F(u′)) = v(F(u)). With this, notice that

u′ − v (F(u′)) = u′ − v (F(u)) = 0, from which v(F(u′)) = u′. Using Lemma 9, it follows

that u′ is irreducible, and the proof is complete.

Lemma 11. For any u ∈ R
n
+, u is irreducible if and only if:

MGu ≤MGu′ ⇐⇒ F(u) ⊆ F(u′), ∀u′ ∈ R
n (3.17)

Proof. The proof is in two parts.

Proof of the “if direction:” We give a proof by contradiction. Given (3.17) and suppose

u is reducible, so that it is either infeasible or v(F(u)) 6= u. If u is infeasible, then

F(u) = φ ⊆ F(u′), for any u′ ∈ R
n, so thatMGu ≤MGu′, for any u′ ∈ R

n, due to (3.17).

But this is impossible, because we can always find a u′ ∈ R
n that violatesMGu ≤MGu′,

as follows. Let 1 be the n × 1 vector whose every entry is 1 and let w = −G−1A1 so

that MGw = −1 < 0, and let u′ = u + w so that MGu′ − MGu = MGw < 0.

Therefore, it must be that u is feasible and v(F(u)) 6= u. Let u′ = v(F(u)), so that

F(u′) = F(u) due to the Corollary to Lemma 8, with MGu′ =MGv(F(u)). Recall that

MGv(F(u)) = emaxI∈F(u)(M
′I) ≤MGu, andMGv(F(u)) 6=MGu due to v(F(u)) 6= u,

so that MGu′ ≤ MGu, MGu′ 6= MGu. This means that we have F(u) ⊆ F(u′) while

MGu 6≤MGu′, which contradicts (3.17), and the proof is complete.
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Proof of the “only if direction:” Let u be irreducible, so that u is feasible with v(F(u)) =

u. Due to (3.6), it only remains to prove that ∀u′ ∈ R
n,F(u) ⊆ F(u′) =⇒ MGu ≤

MGu′. Notice that F(u′) is non-empty, because F(u) 6= φ and F(u) ⊆ F(u′), from

which u′ is feasible. Because u and u′ are feasible, and using u = v(F(u)), notice that:

MGu′ −MGu =MGu′ −MGv(F(u))

=MGu′ − emax
I∈F(u)

(M ′I)

≥MGu′ − emax
I∈F(u′)

(M ′I) ≥ 0

where we used emaxI∈F(u′) (M
′I) ≥ emaxI∈F(u) (M

′I), because F(u) ⊆ F(u′). Therefore,

MGu′ −MGu ≥ 0, so MGu ≤MGu′ and the proof is complete.

The following lemma provides a necessary algebraic condition for u to be irreducible,

which becomes a necessary and sufficient condition in the case m = n, i.e. when every

grid node is connected to a current source. Denote by r′i the ith row of M ′ and by mij

the (i, j)the element of M .

Lemma 12. For any u ∈ R
n, define w

△

=MGu, we have the following:

1. if u is irreducible then

wi

mii

≤
wj

mji

, ∀i, j ∈ {1, . . . , n} (3.18)

2. in case m = n, if (3.18) holds then u is irreducible.

Proof. The proof is in two parts.

Proof of 1: Let u ∈ R
n
+ be irreducible, so that v(F(u)) = G−1A emaxI∈F(u)(M

′I) = u.

Equivalently, multiplying both sides by MG, we get emaxI∈F(u)(M
′I)|i = wi, ∀i ∈

{1, . . . , n}. Then, for every i, there exists a y(i) ≥ 0, M ′y(i) ≤ w, and M ′y(i)
∣

∣

i
= wi, from

which:

r′jy
(i) ≤ wj, ∀j ∈ {1, . . . , n} (3.19)

r′iy
(i) = wi (3.20)
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which we can write, after expanding the dot product, as:

wj ≥
m
∑

k=1

mjky
(i)
k , ∀j ∈ {1, . . . , n} (3.21)

wi =
m
∑

k=1

miky
(i)
k (3.22)

For every j, multiply (3.21) by mii and (3.22) by mji, then subtract the second equation

from the first, to get:

miiwj −mjiwi ≥

m
∑

k=1

(miimjk −mjimik) y
(i)
k (3.23)

M being the inverse of an M-matrix, the path product condition holds [31], so miimjk ≥

mjimik, ∀i, j, k, and the right-hand side of (3.23) is non-negative. In turn, this means

that the left-hand side is non-negative, which leads directly to (3.18) and completes the

proof.

Proof of 2: For any i ∈ {1, 2, . . . , n}, let ei ∈ R
n be the vector whose ith entry is 1 and

all other entries are 0, let x(i) = wi

mii

ei ≥ 0. Then:

Mx(i) =
wi

mii

Mei =
[

wi

mii

m1i
wi

mii

m2i · · · wi

mii

mni

]T

≤ w (3.24)

where the last inequality is due to (3.18). Hence, x(i) ∈ F(u). WithMx(i)
∣

∣

i
= wimii/mii =

wi due to (3.24), it follows that emaxI∈F(u)(MI) = w = MGu, so that v(F(u)) =

G−1A emaxI∈F(u)(MI) = u and u is irreducible.

3.5.4 Maximality

As pointed out earlier, we are interested in safe containers that are maximal in E . We now

present our main result that gives the necessary and sufficient conditions for maximality.

Theorem 1. F(u) is maximal in E if and only if u is irreducible and extremal in U .

Proof. The proof is in two parts.

Proof of the “if direction:” We give a proof by contradiction. Let u ∈ U be irreducible

and extremal in U , but suppose that F(u) is not maximal in E , so that ∃u′ ∈ U such that

F(u) ⊆ F(u′), with F(u) 6= F(u′). Because F(u) 6= F(u′), then clearly MGu 6= MGu′,

and using Lemma 11, we have MGu ≤MGu′. Let δ =MGu′−MGu, so that δ ≥ 0 and
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δ 6= 0. Because G−1A > 0 from (2.24), then G−1Aδ = u′ − u > 0. Then u < u′ ≤ Vth,

due to u′ ∈ U , so that u is not extremal in U , and we have a contradiction that completes

the proof.

Proof of the “only if direction:” We give a proof by contradiction. Given that F(u) is

maximal in E , we know from Lemma 7 that u is feasible and extremal in U . Suppose

u is reducible, so that v(F(u)) 6= u, because we already have that u is feasible. Recall

that 0 ≤ v(F(u)) ≤ u. Let u′
△

= v(F(u)) 6= u, so that u′ ∈ U . Let δ = MGu−MGu′ =

MGu − emaxI∈F(u)(M
′I), then we have δ ≥ 0 and δ 6= 0 (due to u′ 6= u). Because

G−1A > 0, then G−1Aδ = u−u′ > 0. Consequently, we have u′ < u ≤ Vth, due to u ∈ U ,

so that u′ is not extremal in U . Therefore, by Lemma 7, F(u′) is not maximal in E .

However, F(u) = F(u′), due to the Corollary to Lemma 8, so that F(u) is not maximal

in E , a contradiction that completes the proof.

This important theoretical result forms the basis for our choice of practical constraints

generation algorithms that are guaranteed to give maximal containers, as we will see

in the next section. Recall that whenever u is irreducible and extremal in U , then

v(F(u))|k = Vth,k, for some k, so that the kth grid node will experience its maximum

allowable voltage drop. In other words, a maximal container always causes some node(s)

on the grid to experience the maximum allowable voltage drop.

3.6 Conclusion

Early power grid verification is a key step in modern chip design. Traditionally, it has been

performed either by simulation or by vectorless verification, both of which have serious

shortcomings. We propose a novel method to solve the inverse problem of vectorless

verification, by generating circuit current constraints that ensure power grid safety. We

develop some key theoretical results to allow the generation of constraints that correspond

to maximal current spaces.



Chapter 4

Constraints Generation Algorithms

4.1 Introduction

So far, we have shown that a container F(u) is safe and maximal in E if and only if

u satisfies the conditions of Lemma 5 and Theorem 1. The evident question becomes,

among all safe containers that satisfy the maximality condition, which one is most con-

venient for the desired application-specific chip? Early in the design flow, design teams

typically have some high level requirements for the intended design. A mobile processor,

for example, might require a maximum power dissipation of 3 Watts whereas a desktop

processor might require up to 200 Watts. One would like to check if the candidate grid

can support the corresponding level of peak power in the underlying circuit. Additionally,

one would like to verify the ability of the grid to spread the power dissipation across the

die in a uniform fashion, which is intended for temperature-aware ICs. In this chapter,

we will discuss some design objectives that will lead us to algorithms for finding specific

maximal safe containers F(u).

4.2 Peak Power Dissipation

An interesting quality metric for a power grid is the peak total power dissipation that it

can safely support in the underlying circuit. We refer here to the instantaneous power

dissipation, which is conservatively approximated by Vdd
∑m

j=1 ij(t). Thus, we are inter-

ested in a safe container that is maximal in E and that allows the highest possible
∑

∀j Ij.

For any u ∈ U , we define σ(u) to be the largest sum of current source values allowed

36
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under F(u):

σ(u)
△

= max
I∈F(u)

(

m
∑

j=1

Ij

)

(4.1)

and we define σ∗ to be the largest σ(u) achievable under all possible u ∈ U , so that:

σ∗ △

= max
u∈U

(σ(u)) (4.2)

Let up ∈ U be such that σ(up) = σ∗, and I∗ ∈ F(up) be such that
∑m

j=1 I
∗
j = σ∗. In

general, up and I∗ may not be unique. Based on (3.4) and (3.5), we can express the

combined (4.1) and (4.2) as the following linear program (LP):

σ∗ = Max
∑m

j=1 Ij

subject to M ′I ≤MGu

0 ≤ u ≤ Vth

I ≥ 0

(4.3)

Let D be the feasible region of the LP (4.3):

D
△

= {(I, u) : I ≥ 0,M ′I ≤MGu, 0 ≤ u ≤ Vth} (4.4)

so that, from the above, we have:

σ∗ = max
(I,u)∈D

(

m
∑

j=1

Ij

)

(4.5)

Notice that, (0, 0) ∈ D so that D is not empty, and all of σ∗, up, and I
∗ are well-defined.

Also, for every (I, u) ∈ D, we have M ′I ≤ MGu and I ≥ 0 which, because M ′ ≥ 0,

gives 0 ≤ M ′I ≤ MGu so that u is feasible, due to Lemma 6. Therefore, up is feasible

and the container F(up) = {I ∈ R
m : I ≥ 0,M ′I ≤MGup} provides the desired current

constraints:

i(t) ≥ 0, ∀t ∈ R

M ′i(t) ≤MGup, ∀t ∈ R

The following lemma establishes the maximality of F(up), based on Theorem 1. Denote

by cj the jth column of M , and notice that c′j = cj, for every j ∈ {1, 2, . . . ,m}.

Lemma 13. F(up) is maximal in E .
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Proof. We give a proof by contradiction; the proof is in two parts. First, we will prove

that if F(up) is not maximal in E , then there exists a u ∈ U that is not extremal in U ,

with σ(u) = σ∗. Second, we will prove that, for any u ∈ U such that σ(u) = σ∗, we have

that u is extremal in U , which will provide a contradiction that completes the proof.

Suppose that F(up) is not maximal in E , so that either up is not extremal in U or up is

reducible, due to Theorem 1. If up is not extremal in U , then we have found a u = up ∈ U

that is not extremal in U , with σ(u) = σ∗. If up is reducible, then by Lemma 9 and because

up is feasible, we must have v(F(up)) 6= up. Let u
′ = v(F(up)) , so that F(u′) = F(up),

due to the Corollary to Lemma 8, and, by (4.1), we have σ(u′) = σ(up) = σ∗. Let

δ = MGup −MGu′. Recall that MGup ≥ MGv(F(up)) and MGup 6= MGv(F(up)),

due to v(F(up)) 6= up, from which δ ≥ 0 and δ 6= 0. Combining this with G−1A > 0,

from (2.24), we have G−1Aδ = up − u′. Therefore, we have 0 ≤ u′ < up ≤ Vth, the

final step due to up ∈ U , so that u′ ∈ U , u′ is not extremal in U and σ(u′) = σ∗. This

completes the first part of the proof.

Next, we will prove that, for any u ∈ U with σ(u) = σ∗, we have that u is extremal

in U . For any such u, there must exist a vector I ∈ F(u) such that
∑m

j=1 Ij = σ∗. We

will proceed by contradiction. Suppose that u is not extremal in U , so that u < Vth.

Let ǫ
△

= min
∀k

(Vth,k − uk) > 0, let 1 be the n × 1 vector whose every entry is 1, and let

0 ≤ γ = u+ ǫ1 ≤ Vth due to the definition of ǫ, from which γ ∈ U . Notice that:

MGγ =MGu+ ǫMG1

Because G is irreducibly diagonally dominant with positive diagonal and non-positive

off-diagonal entries, then G1 ≥ 0, with G1 6= 0, so that ǫMG1 > 0, because ǫM > 0,

and MGγ > MGu.

Now, let λ = min∀i (MGγ|i −MGu|i) /max∀i,j(mij). Because MGγ > MGu and

M > 0, it follows that λ > 0. Also, let e1 ∈ R
n be the vector whose 1st entry is 1

and all other entries are 0 and let I ′ = I + λe1. Because λ > 0, we have λe1 ≥ 0,

λe1 6= 0, I ′ ≥ I ≥ 0, and I ′ 6= I, so that
∑m

j=1 I
′
j >

∑m

j=1 Ij = σ∗. Furthermore, we have

I ′ ∈ F(γ), because:

M ′I ′ =M ′I + λM ′e1 =M ′I + λc′1 (4.6)

=M ′I +
min∀i (MGγ|i −MGu|i)

max∀i,j(mij)
c1 (4.7)

≤MGu+min
∀i

(MGγ|i −MGu|i)1 (4.8)

≤MGγ (4.9)
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Figure 4.1: An example of a power grid with 4 nodes, 2 current sources, and
Vth = [110 100 95 105]T (units of mV ).

where in (4.8) we used I ∈ F(u) and c1/max∀i,j(mij) ≤ 1, and the last inequality is due to

MGu < MGγ. Therefore, we have found γ ∈ U and I ′ ∈ F(γ) with σ(γ) =
∑m

j=1 I
′
j > σ∗,

which contradicts (4.5). It follows that u is extremal in U .

As an example, the LP (4.3) is run on the small grid in Fig. 4.1 and the resulting

container is shown in Fig. 4.2 where up = [89 100 95 98]T (units of mV ). Notice that

this method, in order to allow the maximum peak power, may generate a container that

is skewed in a way that imposes a tight constraint on current in certain locations of the

die (such as at i2(t)) while allowing larger current in other locations (such as at i1(t)).

Other approaches are possible to avoid this skew and even out the current allowances, as

we will see next.

4.3 Uniform Current Distribution

The design team may be interested in a grid that safely supports a uniform current

distribution across the die, so as to allow a placement that provides a uniform temperature

distribution. We can generate constraints that allow that objective by searching for a

safe maximal container F(u) that contains the hypersphere in current space that has the

largest volume, or the largest radius θ. In other words, this method aims to “raise the

minimum” and avoid the skew indicated above. We will develop a method (4.16) which,

when applied to the simple grid in Fig. 4.1, generates the container shown in Fig. 4.2,

where us = [83 91 95 92]T (units of mV ).
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Figure 4.2: An example of F(up) and F(us).

Let S(θ) ⊂ R
m denote the hypersphere with radius θ, centered at the origin and let

S+(θ) = S(θ) ∩ R
m
+ be the part of that hypersphere that is in the first quadrant of Rm.

Denote by ri the ith row of M . For any u ∈ U , define Hi = {I ∈ R
m : I ≥ 0, r′iI = riGu}

to be the hyperplane that constitutes the ith outer boundary of F(u), as in the 2-

dimensional example in Fig. 4.3. Define Di to be the distance from the origin to Hi

which, according to [32], can be expressed as:

Di =
|riGu|

di
(4.10)
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where di =
√

∑m

j=1m
2
ij > 0. As we’re interested in a non-empty F(u), we will enforce

that θ ≥ 0 and u is feasible, i.e., riGu ≥ 0, ∀i, so that:

Di =
riGu

di
(4.11)

In order to have S+(θ) ⊆ F(u), we will require that:

θ ≤ Di, ∀i ∈ {1, . . . , n} (4.12)

which can be expressed compactly as:

θd ≤MGu (4.13)

where d = [d1 · · · dn]
T . For any u ∈ U , we define ρ(u) to be the largest θ ≥ 0 for

which (4.13) is satisfied, so that:

ρ(u)
△

= max
0≤θd≤MGu

(θ) (4.14)

and we define ρ∗ to be the largest ρ(u) achievable under all possible u ∈ U , so that:

ρ∗
△

= max
u∈U

(ρ(u)) (4.15)

Let us ∈ U be such that ρ(us) = ρ∗. In general, us may not be unique. We can express

the combined (4.14) and (4.15) as the following linear program:

ρ∗ = Max θ

subject to θd ≤MGu

0 ≤ u ≤ Vth

θ ≥ 0

(4.16)

Let S be the feasible region of the LP (4.16):

S
△

= {(θ, u) : θ ≥ 0, θd ≤MGu, 0 ≤ u ≤ Vth} (4.17)

so that, from the above, we have:

ρ∗ = max
(θ,u)∈S

(θ) (4.18)
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Figure 4.3: An illustration of perpendicular distances to hyperplanes.

Notice that, (0, 0) ∈ S so that S is not empty, and ρ∗ and us are well-defined. Also,

for every (θ, u) ∈ S, we have θd ≤ MGu and θ ≥ 0. Because d ≥ 0, it follows that

0 ≤ θd ≤ MGu so that u is feasible, due to Lemma 6. Therefore, us is feasible and

the container F(us) = {I ∈ R
m : I ≥ 0,M ′I ≤ MGus} provides the desired current

constraints:

i(t) ≥ 0, ∀t ∈ R

M ′i(t) ≤MGus, ∀t ∈ R

The following lemma, based on Theorem 1, establishes the maximality of F(us).

Lemma 14. F(us) is maximal in E .

Proof. We give a proof by contradiction; the proof is in two parts. First, we will prove

that if F(us) is not maximal in E , then there exists a u ∈ U that is not extremal in U ,

with ρ(u) = ρ∗. Second, we will prove that, for any u ∈ U such that ρ(u) = ρ∗, we have

that u is extremal in U , which will provide a contradiction that completes the proof.

Suppose that F(us) is not maximal in E , so that either us is not extremal in U or us is

reducible, due to Theorem 1. If us is not extremal in U , then we have found a u = us ∈ U

that is not extremal in U , with ρ(u) = ρ∗. If us is reducible, then by Lemma 9 and because

us is feasible, we must have v(F(us)) 6= us. Let u′ = v(F(us)), so that F(u′) = F(us)

due to the Corollary to Lemma 8. Clearly, S+(ρ∗) ⊆ F(u′), because S+(ρ∗) ⊆ F(us),

so that ρ(u′) = ρ∗. Let δ = MGus −MGu′. Recall that MGus ≥ MGv(F(us)) and

MGus 6= MGv(F(us)), due to v(F(us)) 6= us, from which δ ≥ 0 and δ 6= 0. Combining
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this with G−1A > 0, from (2.24), we have G−1Aδ = us − v(F(us)) > 0. Therefore, we

have 0 ≤ u′ < us ≤ Vth, the final step due to us ∈ U , so that u′ ∈ U , u′ is not extremal

in U and ρ(u′) = ρ∗. This completes the first part of the proof.

Next, we will prove that, for any u ∈ U with ρ(u) = ρ∗, we have that u is extremal

in U . We will proceed by contradiction. Suppose that u is not extremal in U , so that

u < Vth. Let ǫ
△

= min
∀k

(Vth,k − uk) > 0, let 1 be the n × 1 vector whose every entry is 1,

and let 0 ≤ γ = u+ ǫ1 ≤ Vth, due to the definition of ǫ, from which γ ∈ U . Notice that:

MGγ =MGu+ ǫMG1 (4.19)

Because G is irreducibly diagonally dominant with positive diagonal and non-positive

off-diagonal entries, then G1 ≥ 0, with G1 6= 0, so that ǫMG1 > 0, because ǫM > 0,

and MGγ > MGu.

Now, let λ = min∀i (MGγ|i −MGu|i) /max∀i(di) and let θ′ = ρ∗ + λ. Because

MGγ > MGu and di > 0, ∀i, it follows that λ > 0 and θ′ > ρ∗ ≥ 0. Furthermore, we

have (θ′, γ) ∈ S, because:

θ′d = ρ∗d+
min∀i (MGγ|i −MGu|i)

max∀i(di)
d (4.20)

≤MGu+min
∀i

(MGγ|i −MGu|i)1 (4.21)

≤MGγ (4.22)

where in (4.21) we used (ρ∗, u) ∈ S and d/max∀i(di) ≤ 1, and the last inequality is

due to MGu < MGγ. Therefore, we have found (θ′, γ) ∈ S and θ′ > ρ∗, which contra-

dicts (4.18). It follows that u is extremal in U .

4.4 Results

The above two algorithms (4.3) and (4.16) have been implemented using C++. Both

problems require the computation of the inverse of A, which was generated using the

sparse approximate inverse technique (SPAI), as was done in [22]. The maximizations

were performed using the Mosek optimization package [33]. We conducted tests on a set of

power grids with a 1.1 V supply voltage that were generated based on user-specifications,

including grid dimensions, metal layers, pitch and width per layer, and C4 and current

source distributions, consistent with 65nm technology. All results were obtained using a

2.6 GHz Linux machine with 24 GB of RAM.
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Table 4.1: Power Grid Specifications

Power Grid

Name Nodes Current Sources Voltage Sources Interconnects

G1 8,413 552 364 12,512
G2 18,678 1,119 779 27,806
G3 32,554 2,070 1,272 48,515
G4 50,444 3,192 2,040 75,505
G5 113,304 7,140 4,400 169,160
G6 200,828 12,656 7,906 300,394
G7 312,232 19,460 12,191 466,773

The number of variables in (4.3) is n+m, and the number of variables in (4.16) is n+1,

where n is the total number of nodes and m is the number of current sources attached to

the grid. Denote by P (u)
△

= Vdd × σ(u) the peak power dissipation allowed under F(u).

In Table 4.3, we present the results of both LPs in columns 5 and 7, respectively. For

instance, on a 312,232 node grid, the peak power dissipation is 59.77 mW and the largest

current radius for which the part of the hypersphere in the first quadrant is contained

in F(us) is 2.03 µA. The CPU times for solving (4.3) and (4.16) are given in columns 6

and 8, respectively. Note that these CPU times do not include the time for computing

the approximate inverse, which is reported separately in column 4. For example, the

total CPU time for solving (4.3) corresponds to the sum of the CPU times reported in

columns 4 and 6. Fig. 4.4 shows a plot of the CPU time of both LPs and SPAI versus the

number of nodes in a grid. Complexity analysis shows that both LPs have around O(n1.7)

empirical complexity while SPAI has around O(n1.9) empirical complexity. Moreover, the

only source of error is the sparse approximation (SPAI) of A−1, which is controlled by

enforcing an error tolerance of 10−4 between every entry of the exact inverse and the

corresponding entry of the approximate inverse.

To study the difference between the containers generated using (4.3) and (4.16),

we used two methods. First, we computed the peak power dissipation achievable under

F(us), which is P (us), and the largest current radius for which the part of the hypersphere

in the first quadrant is contained in F(up), which is ρ(up). The results obtained for

P (us) and ρ(up) are reported in columns 9 and 10 of Table 4.3. The results show that

P (us) ≪ P (up) and ρ(up) ≪ ρ(us) on all grids. In fact, the peak power dissipation

achievable under F(us) is at most 59% of that achievable under F(up). Also, the largest

current radius for which the part of the hypersphere in the first quadrant is contained
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Table 4.2: Results of both LPs

Power Grid SPAI Peak Power
Uniform Current

Distribution

Name
CPU

P (up) in mW
CPU

ρ(us) in µA
CPU

Time Time Time

G1 1.3 min 1.73 1.15 min 1.77 2.2 min
G2 4.6 min 3.71 5.51 min 2.11 12.86 min
G3 13.38 min 6.75 23.51 min 1.47 36.7 min
G4 27.7 min 9.83 29.28 min 1.8 57.2 min
G5 2.52 h 22.06 1.92 h 1.44 3.38 h
G6 6.8 h 40.69 6.37 h 2.11 11.9 h
G7 17.73 h 59.77 11.19 h 2.03 18.68 h

Table 4.3: Results of each LP using the other container

Power Grid
Peak Power Uniform Current

using us Distribution using up

Name P (us) in mW ρ(up) in µA

G1 0.6 0.84
G2 1.86 1.06
G3 3.02 0.462
G4 5.09 0.8
G5 11.07 0.45
G6 22.7 0.98
G7 35.23 0.98

in F(up) is at most 50% of that contained in F(us). Thus, each approach provides a

unique trade-off for the chip design team. Furthermore, we present in Fig. 4.5 a plot of

the peak power dissipation allowable under F(up) and F(us) for each grid with respect

to the number of nodes in a grid. The power dissipation varies linearly with the number

of nodes, so that one can estimate the peak power dissipation (P (up)) for a 1 billion node

grid to be 191.5 Watts. This conforms with the maximum power dissipation of a modern

IC as depicted in Fig. 1.1.

Another way to compare the two approaches (4.3) and (4.16), is to look at the power

density, i.e., the power dissipation per unit area of the die, allowed by the two resulting

containers. To assess this, we maximize the allowed power (current) within a small

window of the die surface, and we do this for every position of that window across the die.
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Figure 4.4: CPU time of both LPs and SPAI versus the number of grid nodes.

We divide the die area into κ× κ of these windows and compute the peak power density

inside each, using a variation of (4.3). In Figs. 4.6a and 4.6b, we present contour plots for

κ = 35 for the peak power densities under F(up) and F(us), respectively, on a 50k node

grid. Note that the current constraints based on F(up) allow higher current densities at

certain spots but also include some spots with very small and restricted current density

budgets. This large spread in power densities can lead to thermal hotspots. This may be

avoided by using F(us) which, as expected and as seen in the figure, provides a uniform

distribution of power densities across the die area compared to F(up), which is reflected

in a smaller standard deviation. Of course, F(up) supports a larger overall peak power

dissipation than F(us), which is reflected in a larger mean. There is a clear trade-off

between the two methods, making them both useful but also pointing the way to future
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Figure 4.5: Peak Power Dissipation problem

work for managing this trade-off and investigating other possibilities.

4.5 Conclusion

In this chapter, we discuss some design objectives and develop two constraints generation

algorithms that target key quality metrics of the grid: the maximum power dissipation the

grid can safely support and the uniformity of the power spread across the die. These key

quality metrics provide a high level and early assessment of the candidate grid design.

We show that the generated constraints satisfy the safety and maximality conditions

that were presented in chapter 3. We then study the difference between the generated

containers and show that each approach provides a unique trade-off for the chip design

team.
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Chapter 5

Conclusion and Future Work

With the continued scaling of semiconductor technology, there has been an emerging

need for robust design of a chip’s power distribution network. This distribution network

should supply a well-regulated source of supply voltage at the intended design speed.

Having excessive fluctuations in the voltage levels supplied to the underlying logic would

put both circuit performance and reliability at risk.

The on-die part of the power distribution network, or simply the power grid, should

be designed and examined prior to the completion of the circuit design itself. The reason

behind this is that one should verify the grid when modifications to the design can be

easily incorporated. There has been much research in the recent past on designing power

grid verification techniques, however, the most commercially adopted tools assume a fully

designed circuit and can only be used after placement and routing. As a result, design

teams rely on previous design activities, without a way to factor in circuit uncertainty

to reduce the extent of over-design.

To overcome these issues, there has been much focus on power grid verification tech-

niques that can be performed early in the design process. One of the emerging tools

is the constraints-based framework that relies on information that may be available at

an early stage of the design, in the form of current constraints. This framework laid

the foundation for several other methods employing various innovations. Essentially,

grid verification is casted as computing the worst-case voltage fluctuation achievable at

all nodes of the grid under all possible transient current waveforms that satisfy user-

specified current constraints. A major contribution of this approach was in providing a

systematic verification framework that can find the worst-case voltage drop on the power

grid early in the design flow. However, this verification tool requires the user to provide

current constraints. In practice, design teams rely on their expertise to specify current

constraints which remains a burdensome task.

49
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Instead of the traditional approach of requiring design teams to specify current con-

straints that can be used to verify the safety of the grid, the main focus of this thesis was

to provide a systematic method to generate circuit current constraints, given the voltage

drop thresholds at all grid nodes. If satisfied, these constraints would ensure power grid

safety. Moreover, these constraints encapsulate much useful information about the grid

and their availability at an early stage of the design process provides a way to drive the

rest of the design process.

In chapter 3, we developed a rigorous problem definition and some key theoretical

results related to maximality of the current space defined by the constraints. The subject

of chapter 4 was to develop algorithms to generate sets of current constraints that are

maximal targeting specific design objectives. For example, the maximum peak power

dissipation a grid can safely support and the uniformity of the power spread across the

die. Results showed that current constraints generated by both algorithms provide unique

trade-offs for the chip design team.

Future work will mainly cover three headlines. First, the runtime complexity of the

provided algorithms might become a hurdle to generate current constraints for larger

power grids. Note that some parts of the algorithms can be parallalized. Therefore, it

would be necessary to investigate various methods to optimize the runtime complexity.

Second, we aim at developing an automated floorplanning as well as grid-aware place-

ment. These algorithms can design possible floorplans and cell placements that factor

in the safety of the grid. Finally, it might be viable to extend our work to an RLC grid

model.
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