
SETMAP: A SOFT ERROR TOLERANT MAPPING ALGORITHM FOR FPGA DESIGNS

WITH LOW POWER

BY

CHI-CHEN PENG

THESIS

Submitted in partial fulfillment of the requirements

for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the

University of Illinois at Urbana-Champaign, 2010

Urbana, Illinois

Adviser:

 Assistant Professor Deming Chen

 ii

ABSTRACT

Field programmable gate arrays (FPGAs) are widely used in VLSI applications due to

their flexibility to implement logical functions, fast total turn-around time, and low non-recurring

engineering cost. The most popular FPGAs in the market are SRAM-based FPGAs. However, as

process technologies advance to nanometer-scale regimes, the issue of reliability of devices

becomes critical. Soft errors are increasingly becoming a reliability concern because of the

shrinking process dimensions. In this thesis, we study the technology mapping problem for

FPGA circuits to reduce the occurrence of soft errors under the chip performance constraint and

power reduction. Compared to two power-optimization mapping algorithms, SVmap and Emap,

respectively, we reduce the single event upset (SEU) rate by 30.5% with a 3.7% power overhead

penalty and 50.1% with a 4.7% power overhead penalty using six-input LUTs. When multi-event

upset (MEU) occurs, our work reduces the soft error rate by 33% and 31.5% for double bit flips

and triple bit flips, respectively, compared to SVmap, and by 52.9% and 50.3% for double bit

flips and triple bit flips, respectively, compared to Emap.

 iii

ACKNOWLEDGMENTS

 I am heartily thankful to my adviser, Deming Chen, whose encouragement, guidance

and support from the beginning to the end enabled me to develop an understanding of the

research subject. He continually and convincingly conveyed a spirit of adventure with regard to

my research. Also I would like to thank my friends in the lab for assisting me in this research.

In addition, I would like to thank my wife, Huei-Lien Hsu, who takes on more

responsibility to take care of our baby. Her hard work helps me to focus on my research. This

thesis could not have been completed in time without her support.

 iv

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION ...1

CHAPTER 2 DEFINITION AND PROBLEM FORMULATION ...6

CHAPTER 3 CUT-ENUMERATION AND POWER MODEL ...8

CHAPTER 4 ALGORITHM DESCRIPTION ... 11

CHAPTER 5 EXPERIMENTAL RESULTS ... 20

CHAPTER 6 CONCLUSIONS AND FUTURE WORK ... 27

REFERENCES ... 28

 1

CHAPTER 1

INTRODUCTION

Soft errors have received much attention in the research community in recent years. A

soft error occurs when a cosmic particle, such as a neutron, strikes a portion of the circuit

causing the state of a node to change from 10 or 01. Soft errors are becoming a serious

problem in circuit design due to shrinking process dimensions. The smaller dimensions create a

situation where the capacitance at each node in the circuit is lower, consequently requiring a

smaller amount of charge to cause a glitch. This glitch can propagate through a logic network

provided: (1) the glitch occurs on a sensitized path, i.e., there is no logical masking; (2) the glitch

propagates un-attenuated or even amplified, i.e., there is no electrical masking; and (3) the glitch

arrives at the data input of a storage element during the latching window, i.e., there is no

latching-window masking.

Soft error can occur in the memory cell or logic circuit. Traditionally, soft errors in

memories have a greater impact than in logic circuits because memories have smaller cell size

and a bit flip resulting in SEUs becomes permanent before reprogramming takes place. Now, soft

errors in logic have become a major concern as well. Previous works attempting to reduce soft

errors thus have focused on these two areas: enhancing memory cells and modifying logic

circuits. For example, IBM and NASA [1] presented several SRAM architectures to resist SEUs.

Figure 1 is an example to show how an enhancing memory cell works [2]. When a memory cell

holds a value, either P1 and N2 or P2 and N1 are in the “on” state. Therefore, there are always

two SEU sensitive nodes in the cell. The decoupling resistor slows the regenerative response of

the cell, so the cell can tolerate a voltage transient pulse due to particle hit.

 2

In terms of logic, one of the famous structures is triple modular redundancy (TMR) [1],

[3], but the area penalty (200%) is large for this approach. Moreover, TMR architecture needs a

majority voting circuit (MAJ) to output the correct data; thus, the depth of a circuit will increase.

Figure 2 shows a TMR example. Figure 2(a) is the original circuit and Figure 2(b) is the TMR of

Figure 2(a). In Figure 2(b), combinational logic 1 is copied to combinational logic 2 and 3, and

one MAJ is connected to the output of these three combinational logic components. When one

SEU occurs in one of the three combinational logic components, the MAJ still can output the

correct data. Mohanram et al. [4] try to minimize area and reduce error rate at the same time.

They follow a TMR method but only replicate the most susceptible gates for soft error protection.

However, its area overhead is still very high (more than 100%).

In [5], circuit re-synthesis for improving soft-error reliability is presented. It assesses the

impact of individual gates on the circuit’s soft-error rate based on logic masking and don’t cares.

clk
Vdd

Vss Vss

Vdd
clk

D /D

P2 P1

N2 N1

Figure 1: Example of enhancing SRAM for avoiding SEU.

decoupling resistor

 3

Then, it increases reliability through addition of single gates. In [6], three different schemes for

detecting and correcting soft errors in configuration bits of the LUTs (look-up tables) of FPGAs

were proposed. The smallest area overhead among the three is about 48%. Reddy et al. [7]

proposed a FPGA architecture to detect 100% and correct 96% of SEUs with about 40% fewer

transistors than the TMR-based hardened memory cell architecture. Lee et al. [8] present a re-

synthesis work to reduce the soft-error rate for FPGAs. Their work targets dual-output LUT

architecture, which is supported in Xilinx’s Virtex-5 FPGA [9] and Altera’s Stratix II FPGA [10].

Yet, the applicability of this work may be limited. None of the above research worked on power

minimization.

in

(b)

Figure 2: Triple modular redundancy including majority voter schematic.

Combinational

Logic 1
in out

Combinational

Logic 1

MAJ

out

(a)

Combinational

Logic 2

Combinational

Logic 3

SEU

 4

Power minimization is an important task especially for FPGAs because FPGA chips are

intrinsically power-inefficient due to the significant amount of additional logic added for

providing reconfigurability. One effective way to perform power minimization is at the logic

synthesis level, more specifically, with technology mapping, which is a critical synthesis step for

FPGAs. There is previous work such as [11], [12], PowerMap [13], PowerMinMap [14], Emap

[15], and SVmap/DVmap [16] on low-power FPGA technology mapping. Techniques including

bin packing, dynamic programming, greedy algorithm, binate covering, network flow algorithm,

and cut-enumeration algorithm have been applied to hide the nodes of high-switching activity

into LUTs so the overall dynamic power can be reduced. However, none of the above works

considered fault tolerant and reliability issues.

In this thesis, we present a new soft-error tolerant mapping algorithm, SETmap, for

FPGA designs with low power. We adopt a cut-enumeration-based method that consists of cut

generation and cut selection. Our essential goal is to reduce the soft error rate. To achieve that,

we design a novel approach to effectively masking out soft errors during the mapping process.

Meanwhile, to make the mapper power-aware, we consider switch activity in the cost function.

Experimental results show that our algorithm produces significant error rate reduction over

previous low-power mapping algorithms, SVmap [16] and Emap [15], across a series of MCNC

and ICSAS’89 benchmarks with ignorable power overhead. To the best of our knowledge, this is

the first technology mapping algorithm that targets both soft-error reduction and low power for

FPGAs.

The rest of the thesis is organized as follows. In Chapter 2, we provide some basic

definitions and formulate the fault-tolerant mapping problem on SRAM-based FPGAs. Chapter 3

reviews the cut-enumeration procedure and power model. Chapter 4 presents a detailed

 5

description of our algorithm. Chapter 5 provides the experimental results, and Chapter 6

concludes this thesis.

 6

CHAPTER 2

DEFINITION AND PROBLEM FORMULATION

2.1 Definition

A DAG (directed acyclic graph) can represent a Boolean network. In a DAG, each node

represents a logic gate, and a directed edge (i, j) exists if the output of gate i is an input of gate j.

A PI node has no incoming edges, and a PO node has no outgoing edges. We use input(v) to

denote the set of nodes that are fanins of gate v. Given a Boolean network N, we use Ov to denote

a logic cone rooted on node v in N. The logic cone Ov is a sub-network of N consisting of v and

some of its predecessors, such that for any node wOv, there is a path from w to v that lies

entirely in Ov [17]. The maximum cone of v, consisting of all the predecessors of v, is called a

fanin cone of v, denoted as Fv [17]. A cut C is a partitioning of a cone Ov, such that the logic

between v and the cutline forms a smaller cone of v. The cut-set of the cut C consists of the

signals on the cutline, which can be represented as input(C). A cut is K-feasible if the cardinality

of the cut-set is ≤ K. We also call the cardinality of the cut-set the cutsize of the cut. The level of

a node v is the length of the longest path from any PI node to v. The level of a PI node is zero.

The depth of a network is the largest node level in the network. A Boolean network is l-bounded

if |input(v)| ≤ l for each node v.

2.2 Problem Formulation

The mapping problem for soft-error tolerance on SRAM-based FPGAs is to cover a given

l-bounded Boolean network with K-feasible cones so that soft-error tolerance after mapping is

maximized while the optimal mapping depth is guaranteed under the unit delay model. We also

strive to minimize the area and power overhead during such a mapping process. Our initial

networks are all 2-bounded and K is 5 and 6 in this thesis. Therefore, our final mapping solution

 7

is a DAG in which each node is a 5-LUT or 6-LUT and the edge (LUTu, LUTv) exists if LUTu is

in input(LUTv).

 8

Subcut C2

Figure 3 : Example of cut generation, cost function,

and global duplication adjustment.

 A B

E F

cut CR1
cut CR2

R

Subcut C1

 C D

CHAPTER 3

CUT-ENUMERATION AND POWER MODEL

3.1 Review of Cut-Enumeration

Cut-enumeration is an

effective method for finding all

the possible ways of the K-

feasible cones rooted on a node

[5], [6], [18]. We use a simple

example to illustrate the cut-

enumeration process. We use

{A,B,C,…} to represent a cut with

cut-set A,B,C…, where {A,B,C,…} are either internal signals or PIs. In Figure 3, all the cuts

rooted on node R can be generated by combining the cuts rooted on its fanin nodes E and F. For

this purpose, we can call the cuts on the fanin nodes subcuts. Combining C1 with C2 forms a new

cut CR1 = {A,B,C,D} rooted on R. The cut-enumeration process combines each subcut (or the

fanin node E or F itself, e.g., cut CR2) on one of the fanin nodes with each counterpart from the

other fanin node to form new cuts for the root node. If the input of the new cut exceeds K, the cut

is discarded. During this enumeration process, the arrival time and truth table for each cut can be

calculated. The arrival time of PI nodes is 0. The arrival time propagates through the cuts from

PIs to POs, where each cut (implementable by a K-LUT) on the paths represents one unit delay.

To get the minimum arrival time for a node v, we have [17], [18]:

()

([) 1]v i
C on v

i input C

Arr MIN MAX Arr
  



  (1)

 9

where C represents every cut generated for v through cut enumeration. Here, the arrival time of C

is MAX(Arri) + 1, where Arri is the minimum arrival time on input signal i of C. All the cuts that

can provide the minimum arrival time Arrv form a set MAv. Thus, the minimum arrival time for

each node in the network is propagated from the PIs through cuts and iteratively calculated until

all the POs are reached by a topological order. The longest minimum arrival time of the POs is

the minimum arrival time of the circuit, i.e., the optimal mapping depth of the circuit.

Similarly, the mapping cost can be propagated along the process of cut enumeration. The

cost for a cut C can be calculated as follows [17], [18]:

()

[/ ()]
iC C

i input C

A A f i U



  (2)

where UC is the cost contributed by cut C itself. Ai is the estimated cost (e.g., mapping area in

[17]) of a fanin cone rooted on signal i, and f(i) is the fanout number of signal i. Therefore, the

cost on i, i.e., the propagated cost for Fi, is shared and distributed into other fanout nodes of i.

Once the outputs reconverge, the total cost of the shared fanin cones can be summed. This idea

tries to estimate the mapping cost more accurately, considering the effects of gate fanout.

Otherwise, the cost of Fi may be counted multiple times while processing the different fanouts of

node i [17], [18]. However, we show in Chapter 4 that this estimation is no longer applicable to

soft-error cost.

3.2 Power Model

We model the dynamic power for an LUT as follows:

2

0
0.5 ()

k

neti inLU T dd
i

P f V C C   (3)

where αi is the switching activity on input i of the LUT, Cin is the input capacitance on an LUT (a

constant), and αo is the switching activity at the LUT output. We define Cnet as the estimated

 10

output capacitance of wires and buffers contained in the net driven by the LUT; Cnet is

changeable LUT by LUT. Since we do not have wire capacitance information during mapping,

we simply use
k

i
i

 as the switching cost in our cost function and try to minimize this quantity.

We do not specifically model the static power, but we try to reduce the total number of LUTs in

our mapping solution. With a smaller area, the static power would be reduced as well. To obtain

an accurate power evaluation, the gate-level FPGA power estimator fpgaEva_LP2 [19] will be

used in this thesis to obtain post-layout power analysis. In fpgaEva_LP2, the capacitances of

devices, interconnects, and programmable switches are extracted after routing to calculate

dynamic power during signal transition. The static power is estimated based on macro-modeling

using SPICE simulation. The power estimator fpgaEVA-LP2 achieved high fidelity compared to

SPICE simulation, and the absolute error is merely 8% on average [19].

 11

CHAPTER 4

ALGORITHM DESCRIPTION

On the basis of the cut-enumeration framework, we first present our solutions in terms of

soft error cost propagation (Section 4.1), cost function for a cut (Section 4.2), power cost and

global power cost adjustment (Section 4.3), and cut selection (Section 4.4). Then, we present the

overall algorithm in Section 4.5.

4.1 Soft Error Cost Propagation under the Timing Constraints

Cut enumeration can efficiently find all possible K-feasible cuts rooted on each node.

While enumerating cuts, we calculate and store the truth table of each cut. Then we use the

iterative procedure mentioned in Chapter 3 to estimate the soft error cost for each cut and each

node in the network. A cut has a higher soft error cost if it has a bigger probability to propagate a

soft error (bit flip) occurring at one of its inputs. The cost is smaller if a cut has a bigger chance

to mask such a soft error to propagate from its inputs. Once the soft error cost for the cut itself

can be estimated, the soft error for a fanin cone and the propagated cost for a cut C can be

estimated using a similar idea shown in Equation (2).

However, soft error cost should not be divided by the fanout number. The error can

propagate through all the fanouts of a node, and it is equivalent that the cost is duplicated by the

amount equal to the fanout number. Therefore, the propagated soft error cost for a cut becomes

()

()
C i C

i input C

S C ostS


  (4)

where
C

Cost is the soft error cost contributed by the cut C itself. The estimated soft error cost of

the fanin cone rooted on signal i is
iS . We propagate the soft error cost with the propagation

process of the minimum arrival time to guarantee the optimal mapping depth. After we calculate

 12

the soft error cost for every possible cut rooted on the node v, the lowest propagated soft error

cost Sv in the fanin cone Fv is below:

()

C M Av

v cM INS S




 (5)

The term Sv is the smallest propagated soft error cost up to node v under the constraint of an

optimal mapping depth. We use Equations (4) and (5) to calculate the soft error costs of the cuts

and nodes iteratively and go through all the nodes from PIs to POs. Note that Equation (4) will

be enhanced to include power cost and global duplication cost in Section 4.3. Next, we present

our cost estimation method of soft error for a cut itself.

4.2 Calculation of Cost Function for a Cut Itself

The purpose of our cost function is to find a cut which has better logic masking effect for

a soft error. Figure 4 and Figure 5(a) can explain the main idea. Figure 4 is a mapping solution

and Figure 5(a) is the truth table of the cut that implements LUT R in the Karnaugh map format.

Nodes {A, B, C, D} are the fanin LUTs of node R. Assume nodes A, B, C, and D output logic “1”;

according to Figure 5(a), the node R outputs “1.” When a soft error occurs at node A (node A

outputs “0”), node R still outputs “1” according to the truth table and is not affected by the soft

error. As a result, the soft error is masked. Note that this masking effect is the intrinsic property

CD

AB

00 01 11 10 D

EC

0 1

00 0 1 1 1 00 0 1
01 1 1 1 1 01 1 1

11 1 1 1 1 11 1 1
10 1 1 1 1 10 1 1

(a) (b)

Figure 5 : Truth tables of cuts CR1 (a) and

CR2 (b).

SEU

Figure 4 : Mapping result.

1

1

1 1→0
LUT A

LUT B

LUT C

LUT D

LUT R

1

 13

of the logic itself and is directly related to how LUT R is mapped. Driven by this observation,

our mapping result tries to find as many cuts as possible that have this property so we can filter

out more soft errors through technology mapping.

Our cost function for a cut consists of two components. Both are related to the input

combinations or input vectors in the truth table of an LUT. For example, in Figure 5, for the truth

table in (a), there are 16 possible input combinations (vectors). To compute the cost for a cut, we

compute two probability values first. One is the occurrence probability of the mth input vector in

the truth table of the cut, named as Pm, and the other is the probability of a bit flip for the LUT

when the mth input vector occurs, named as Pflip-m. Figure 3 illustrates how these two

components work together and how our cost function can select a better cut in terms of soft error

reduction. In Figure 3, two cuts CR1 and CR2 are rooted on the node R. Two truth tables in Figure

5 represent the functionalities of CR1 and CR2 respectively. Assume the probability of being logic

“1” (Pone) for the signals {A, B, C, D} are all 0.5:

(A) (B) (C) (D) 0.5one one one zeroP P P P    (6)

Then, Pone of signals {E, F} are 0.75 since nodes E and F are OR gates. In the truth table CR1,

there are 16 possible input vectors. If we assume that the inputs are not correlated, the probability

for each vector to occur is a simple product of the probabilities of the inputs being logic “1” (Pone)

or “0” (Pzero). For example, the probability for vector (1110) to occur in Figure 5(a) would be:

(A) (B) (C) (D) 0.0625one one one zeroP P P P    (7)

Before we explain how Pflip-m is computed, we define a concept called neighboring

vectors. In the truth table, if two outputs are neighbors, then the vectors to generate these two

outputs are neighboring vectors. In the truth table for cut CR1, output 0 is a neighbor of four other

outputs highlighted in bold color and italic font type. Then, the input vector for output 0 is a

 14

neighboring vector for the other four vectors that generate the four outputs respectively. To

compute Pflip-m, we need to examine the truth table to find out the neighboring outputs with

different logic values. Then, we can retrieve the corresponding neighboring vectors for these

outputs. Among these input vectors, each vector has a probability to generate an incorrect logic

value if one of the inputs in the vector had a bit flip (soft error propagated) because a bit flip in

that input would make this vector change into one of the neighboring vectors, which would

produce a different output value. We call these types of vectors error-propagation vectors. In

Figure 5(a), the error-propagation vectors are (0000), (0001), (0010), (0100), and (1000). In

Figure 5(b), such vectors are (000), (001), (010), and (100). An error-propagation vector has at

most cut_size number of neighboring vectors that generate different output values. Therefore, the

probability to propagate a bit flip for a cut due to the mth input vector is:

Pflip-m = Nm / cut_size (8)

where Nm is the number of neighboring vectors, which generate a different output value from the

mth input vector.

Continuing with the example, to get the soft error cost of CR1 in Figure 5(a), we only need

to deal with the five error-propagation vectors since only they have a chance to output wrong

data. Each vector may have a different probability to output the wrong data. In Figure 5(a), if

{ABCD} is supposed to be (0000) and a soft error occurs at one of these input signals, the output

of node R certainly produces the wrong data, which is “1.” As a result, the probability to

propagate a bit is Pflip-(oooo) = 4/4 = 1. But for the other error-propagation vectors (0001), (0010),

(0100), and (1000), there is only one neighboring vector (0000) with a different output value.

Then Pflip-m for these four vectors are all 1/4 = 0.25. The rest of the vectors in the truth table

 15

never flip outputs. On the basis of the above concepts, our soft error cost function is computed as

follows:

((), if =1 | (), if =0)one zerom
x m

P P x x P x x


 
 (9)

_

-

1

2

*

cut size

m flip m
C

m

Cost P P


  (10)

The term Pm is the probability of vector m, and CostC is the soft error cost contributed by the cut

C (Equation (4)). The rationale behind Equation (10) to compute CostC is that we enumerate

every input vector in cut C to evaluate its probability to propagate a soft error. The total

probability for soft-error propagation is a summation of the probability for each input vector.

This cost thus has a physical meaning. A smaller cost indicates that when one of the input signals

is flipped, cut C has a larger chance to mask it out. Therefore, the smaller the value of CostC is,

the better the cut C is for soft-error reduction. In Figure 5(a), given the input order of {ABCD},

the cost is

1 (0000) -(0000) (0001) -(0001)

(0010) -(0010) (0100) -(0100) (1000) -(1000)

(0.5 0.5 0.5 0.5) (4 / 4 1 / 4 1 / 4 1 / 4 1 / 4)

0.125

RC flip flip

flip flip flip

C ost P P P P

P P P P P P

   

     

        

 (11)

And, in Figure 5(b), given the input order of {ECD}, the cost is

2 (000) -(000) (001) -(001) (010) -(010) (100) -(100)

(0.25 0.5 0.5) (3 / 3) (0.25 0.5 0.5) (1 / 3)

(0.25 0.5 0.5) (1 / 3) (0.75 0.5 0.5) (1 / 3)

0.167

RC flip flip flip flipC ost P P P P P P P P       

       

       



 (12)

Therefore, Cut CR1 is the better choice in this example.

To compute the probability Pone or Pzero, existing analytical algorithms can be adopted

[20], [21]. However, we found that these heuristics are not accurate when the circuits contain

 16

reconvergent paths, especially when the path of reconvergence is long. For example, when we

use the method proposed in [20], the average estimation error compared to the result of Monte

Carlo simulation is 6.5%. Therefore, to accurately evaluate our mapping results, Monte Carlo

simulation is used to obtain Pone and Pzero in our work. We use 10,000 random input vectors at

PIs and count how many times each signal is evaluated as logic “1” during the simulation. Then,

the probability Pone for a signal is this number divided by 10,000, and Pzero = 1  Pone for a signal.

For the same reason, we can compute the switch activity by Monte Carlo simulation and obtain

more accurate estimation results.

4.3 Power Cost and Global Power Cost Adjustment

We accumulate all the switching activity values on the input nodes of a cut and use this

sum (Costpower) to penalize cuts that incur larger switching power. The smaller this sum is, the

bigger the chance that the cut can be picked. This naturally selects cuts that hide highly

switching nodes in LUTs to reduce power. Simply adding the power cost in our cost function,

however, is not accurate because of node duplication. In this thesis, we carried out duplication

cost adjustment, considering the specific characteristics of power cost. We use Figure 3 to

illustrate our solution. When cut CR1 is formed by combining subcut C1 and C2, node F needs to

be duplicated in the mapping solution due to an extra fanout going out of CR1. The duplicated

node F has its own cost and should be added to the cost of cut CR1. However, we cannot directly

sum these two costs because the total cost can be over-estimated by doing so. The propagated

soft error cost for a cut is refined as follows:

1 2

()

()
f fpoweriC C

i input C

S Cost Cost P PS


   
 (13)

 if fanout(subcut) > 1

0 otherwise

subcutf
Cost

P










 (14)

 17

where f1 and f2 are the two fanin nodes of the root node, and C is formed by the two subcuts

rooted on f1 and f2, respectively. The power cost of a subcut itself is Costsubcut, and  is a positive

constant. We set =0.01 through empirical study because this value balances the contributions of

power cost and soft error cost in the cost function.) Once SC is adjusted, it starts to influence the

cost of the following fanout cones. Thus, this cost adjustment has a global impact for the cost

propagation process and makes the power cost estimation more closely related to the actual

implementation. Such a duplication model would have an effect of reducing logic duplication

during mapping, thus reducing the total number of LUTs.

4.4 Cut Selection

Cut selection needs to select the best cuts to cover the entire circuits to complete the

mapping. To map a critical node v, only the cut that provides MAv (refer to Section 3.1) is picked

to implement the LUT to guarantee the optimal mapping depth. For the nodes that are on the

non-critical paths, we can use a cut that has smaller soft error cost SC as long as the cut can still

fulfil the timing requirement on the node to guarantee the optimal mapping depth.

4.5 Overall Algorithm

Overall, our algorithm can be summarized in Figure 6. At the beginning, we use cut-

enumeration to compute all possible cuts of every node and the functionality of every cut

(Section 4.1). After cut-enumeration, an optimal mapping depth is obtained. Then we estimate

Pone for every node in the program. The Compute_Soft_Error_Cost function calculates the soft

error cost for every cut following Equation (13) and Equation (14) (Section 4.2.) Meanwhile, the

Compute_Power_Cost function and global power cost adjustment (Section 4.3) can be carried

out for every cut. After the costs of all possible cuts are computed, we propagate the lowest

 18

Figure 6: SETmap algorithm.

algorithm SETmap

input: network, K (LUT input size)

output: mapping solution S.

/* cut enumeration. f(K; u) is a K-feasible cut rooted at u. */

for each node u in topological order do

if u is a primary input then

f(K; u) = {u};

else

v1; v2  fanins of u;

f(K; u) = {K-feasible combination of C1, C2 where C1 f(K; v1); C2  f(K; v2)};

 end

end

D = optimum mapping depth;

/* cost calculation and propagation */

Read Pone for every node;

for each node u in topological order do

for each cut rooted on u do

CostC = Compute_Soft_Error_Cost(cut);

Costpower = Compute_Power_Cost(cut);

 Glocal_power_cost_adjustment;

end

propagate_cost;

end

/* cut selection */

Push all PO nodes into a queue L;

while L is not empty do

Pop u from L;

best_cost = ∞;

for each timing_feasible cut C on u do

propagate_costC := SC;

if (best_cost > propagate_costC) then

best_cost := propagate_costC;

LUTu := C;

end-if

end-for

for each v  input(LUTu) do

if v has not been pushed into L then

Push v into L;

end

S := S ∪ {LUTu};

end

output S;

 19

costs. On the base of this framework, we can pick the best cut for a node driven by the timing

constraint to generate the final mapping solution (Section 4.4).

 20

CHAPTER 5

EXPERIMENTAL RESULTS

SETmap is implemented in C and merged with the SIS [22] system. We show the

detailed comparison results between SETmap, SVmap [16], and Emap [15] in terms of the

power consumption and the soft error rate using both MCNC and ICSAS’89 benchmarks.

Monte Carlo simulation is used to evaluate the soft error occurrence and propagation; and

fpgaEVA-LP2 [19] has been applied to obtain accurate post-layout power measurement. Twenty

thousand random input vectors have been generated first. The Monte Carlo simulation randomly

flips one bit in the circuit and then evaluates these 20,000 input vectors to obtain the output data.

For each benchmark, we carried out 500 separate runs with one random bit flip within each run.

Each simulation is driven by 20,000 different input vectors to get more stable results. The output

vectors at the POs are compared with correct output data (the golden model), and the total

number of propagated errors for the benchmark is calculated.

 21

Table 1. SEU reduction and power comparison result (k = 6)

 SETmap SVmap [16] Emap [15] SEU Rate Reduction Power Comparison

 SEU rate Power (w) SEU rate Power (w) SEU rate Power (w) vs SVmap vs Emap vs SVmap vs Emap

alu2 0.90% 0.048 1.35% 0.049 1.48% 0.050 -33.8% -39.5% -2.0% -4.0%

alu4 0.60% 0.235 1.11% 0.239 1.52% 0.245 -45.7% -60.4% -1.7% -4.0%

apex2 0.69% 0.346 1.17% 0.327 1.00% 0.319 -41.1% -31.3% 5.8% 8.6%

apex4 1.32% 0.230 5.83% 0.214 7.36% 0.195 -77.3% -82.0% 7.2% 17.7%

apex6 2.10% 0.331 3.03% 0.331 5.29% 0.319 -30.9% -60.4% -0.2% 3.6%

dalu 0.78% 0.079 0.60% 0.081 0.85% 0.077 29.0% -9.0% -2.8% 2.6%

ex1010 0.45% 0.662 3.43% 0.608 2.95% 0.605 -86.8% -84.7% 8.8% 9.4%

ex5p 0.55% 0.194 3.46% 0.175 3.50% 0.156 -84.1% -84.3% 11.3% 24.9%

frg2 5.49% 0.447 5.31% 0.437 7.93% 0.445 3.5% -30.8% 2.2% 0.5%

i10 3.97% 1.289 7.19% 1.297 8.13% 1.272 -44.8% -51.2% -0.6% 1.3%

misex3 0.96% 0.252 1.01% 0.246 1.85% 0.238 -5.4% -48.3% 2.4% 5.9%

pdc 0.42% 0.572 0.40% 0.500 2.01% 0.535 5.4% -79.0% 14.4% 6.9%

rot 3.72% 0.367 3.83% 0.369 3.56% 0.365 -2.9% 4.6% -0.6% 0.4%

s3330_

com
4.42% 0.772 7.24% 0.756 8.69% 0.773 -39.0% -49.1% 2.1% -0.1%

s3384_

com
10.56% 0.990 11.46% 0.995 14.34% 1.004 -7.9% -26.3% -0.5% -1.4%

seq 0.72% 0.309 1.05% 0.289 1.98% 0.284 -31.6% -63.6% 7.2% 9.0%

spla 0.63% 0.506 1.42% 0.480 2.10% 0.508 -55.1% -69.7% 5.4% -0.5%

vda 1.43% 0.117 2.68% 0.101 3.67% 0.102 -46.8% -61.1% 16.6% 14.8%

C3540 1.49% 0.090 1.44% 0.093 1.94% 0.092 3.4% -23.2% -3.7% -2.7%

C7552 2.79% 0.586 3.38% 0.573 5.84% 0.583 -17.6% -52.3% 2.2% 0.5%

AVE. 2.20% 0.421 3.32% 0.408 4.30% 0.408 -30.5% -50.1% 3.7% 4.7%

To compute the soft error rate, we divide the total number of propagated errors in the

simulation by ten million (500 runs * 20,000 input vectors) for each benchmark. Table 1 shows

the final results where K is 6. The SEU rate column shows the error rate, which indicates the

percentage where a soft error propagates all the way to the PO. The power column is the power

consumption reported by fpgaEVA-LP2. We compare to two previously published low-power

technology mappers, SVmap [16] and Emap [15]. Both guarantee optimal mapping depth.

Comparing to SVmap (the “vs SVmap” column) and Emap (the “vs Emap” column), SETmap

shows 30.5% and 50.1% improvement, respectively, for soft-error reduction with 3.7% and 4.7%

penalty on average. The error rate reduction is calculated as (SEU(SETmap) - SEU(map2)) /

SEU(map2). Power overhead is calculated as (Power(SETmap) - Power(map2)) / Power(map2).

 22

Table 2. Two and three bit flips comparison result (k = 6)

 Error rate for 2 flip-bits SEU Rate Reduction Error rate for 3 flip-bits SEU Rate Reduction

 setmap svmap setmap vs SVmap vs Emap svmap emap emap vs SVmap vs Emap

alu2 2.11% 2.56% 3.11% -17.5% -32.2% 3.23% 3.57% 3.98% -9.6% -19.0%

alu4 1.06% 2.01% 3.12% -47.1% -65.9% 1.75% 2.91% 4.64% -40.0% -62.4%

apex2 1.19% 1.60% 3.06% -25.7% -61.0% 1.68% 2.30% 4.02% -26.7% -58.1%

apex4 2.92% 11.37% 14.13% -74.3% -79.3% 3.88% 16.76% 21.63% -76.8% -82.1%

apex6 4.30% 5.23% 11.19% -17.9% -61.6% 7.07% 9.14% 16.00% -22.6% -55.8%

dalu 1.46% 1.13% 1.56% 29.0% -6.3% 2.19% 1.63% 2.53% 34.2% -13.4%

ex1010 0.78% 6.33% 6.49% -87.7% -88.0% 1.31% 8.66% 10.92% -84.9% -88.0%

ex5p 1.73% 4.81% 7.57% -64.0% -77.1% 2.12% 9.56% 9.69% -77.8% -78.1%

frg2 10.67% 11.14% 14.78% -4.2% -27.8% 16.01% 18.81% 22.23% -14.9% -28.0%

i10 8.02% 11.75% 14.85% -31.7% -46.0% 11.52% 18.51% 20.02% -37.8% -42.5%

misex3 1.18% 1.81% 3.51% -34.5% -66.3% 2.65% 4.72% 5.77% -43.9% -54.1%

pdc 1.13% 1.76% 3.53% -36.0% -68.1% 1.93% 3.55% 5.32% -45.8% -63.8%

rot 7.38% 6.83% 8.36% 8.0% -11.7% 9.83% 11.42% 13.55% -14.0% -27.5%

s3330_ com 8.40% 11.31% 16.12% -25.7% -47.8% 12.41% 17.58% 21.16% -29.4% -41.4%

s3384_ com 18.27% 22.64% 25.31% -19.3% -27.8% 26.76% 32.57% 35.86% -17.8% -25.4%

seq 1.30% 2.74% 4.12% -52.4% -68.4% 3.16% 4.96% 6.96% -36.3% -54.7%

spla 1.13% 3.28% 4.16% -65.6% -72.9% 2.48% 4.08% 5.64% -39.1% -56.0%

vda 3.15% 7.57% 8.99% -58.4% -64.9% 3.88% 10.35% 13.09% -62.5% -70.4%

C3540 3.56% 3.33% 4.04% 6.8% -11.9% 5.49% 3.44% 5.85% 59.7% -6.1%

C7552 5.91% 8.03% 12.49% -26.5% -52.7% 8.81% 11.31% 17.05% -22.2% -48.3%

AVE. 4.28% 6.36% 8.52% -32.2% -51.9% 6.41% 9.79% 12.30% -30.4% -48.7%

We also carried out experiments in Table 2 where each chip will experience two bit flips

and three bit flips. Overall, for the two-bit-flip case, SETmap is 32.2% and 51.9% better for soft-

error reduction compared to SVmap and Emap, respectively. For the three-bit-flip case, SETmap

is 30.4% and 48.7% better for soft-error reduction compared to SVmap and Emap, respectively.

More comparisons between soft error rate and the number of bit flips will be discussed in the end

of this chapter.

 23

Table 3. SEU reduction and power comparison result (k = 5)

 SETmap SVmap [16] Emap [15] SEU Rate Reduction Power Comparison

 SEU rate Power (w) SEU rate Power (w) SEU rate Power (w) vs SVmap vs Emap vs SVmap vs Emap

alu2 1.21% 0.039 1.85% 0.038 1.77% 0.038 -34.4% -31.5% 3.2% 1.8%

alu4 1.12% 0.221 1.72% 0.220 1.77% 0.220 -35.1% -36.9% 0.8% 0.5%

apex2 1.15% 0.301 1.71% 0.256 1.73% 0.245 -32.8% -33.6% 17.5% 22.9%

apex4 2.68% 0.200 6.80% 0.181 7.17% 0.167 -60.6% -62.6% 10.5% 19.6%

apex6 2.96% 0.242 3.66% 0.239 4.75% 0.242 -19.0% -37.7% 1.2% -0.1%

dalu 1.14% 0.079 0.90% 0.084 1.19% 0.078 27.2% -4.1% -6.1% 1.2%

ex1010 0.95% 0.586 2.52% 0.521 2.64% 0.553 -62.3% -64.0% 12.5% 5.9%

ex5p 1.87% 0.153 4.46% 0.149 4.74% 0.141 -58.0% -60.5% 2.8% 8.6%

frg2 4.40% 0.336 6.58% 0.330 8.17% 0.330 -33.2% -46.2% 1.9% 1.8%

i10 5.16% 0.948 6.07% 0.944 8.71% 0.929 -15.1% -40.8% 0.4% 2.0%

misex3 1.52% 0.221 3.07% 0.210 3.81% 0.206 -50.7% -60.3% 4.9% 7.3%

pdc 1.19% 0.494 1.34% 0.482 2.04% 0.475 -11.1% -41.8% 2.4% 3.9%

rot 4.07% 0.256 4.65% 0.272 4.62% 0.270 -12.4% -12.0% -6.0% -5.1%

s3330_

com
4.59% 0.579 7.54% 0.575 9.37% 0.565 -39.2% -51.0% 0.7% 2.5%

s3384_

com
11.63% 0.727 13.27% 0.730 13.77% 0.732 -12.3% -15.5% -0.4% -0.7%

seq 1.68% 0.271 3.02% 0.245 3.49% 0.247 -44.2% -51.8% 10.8% 9.6%

spla 2.50% 0.429 3.81% 0.397 3.91% 0.428 -34.3% -36.1% 8.0% 0.2%

vda 4.27% 0.076 4.44% 0.073 5.26% 0.078 -3.9% -18.9% 3.5% -2.6%

C3540 1.95% 0.070 2.02% 0.072 2.48% 0.069 -3.6% -21.4% -2.1% 1.3%

C7552 3.60% 0.435 4.85% 0.428 7.43% 0.436 -25.7% -51.5% 1.8% -0.2%

AVE. 2.98% 0.333 4.21% 0.322 4.94% 0.323 -28.04% -38.90% 3.41% 4.02%

In addition, we carried out experiments when K is 5. The final comparison results are

shown in Table 3 and Table 4. The error rates of SETmap when K = 6 are better than those when

K = 5 since a large cut size will produce more cuts rooted on a node than a smaller cut size, so

there is a better chance to find a low-cost cut. Table 5 shows the detailed information about the

reason why the error rate of the K = 6 case is better than the K = 5 case.

 24

Table 4. Two and three bit flips comparison result (k = 5)

Table 5. Soft error cost of cuts rooted on each node in ALU4

 Error rate for 2 flip-bits SEU Rate Reduction Error rate for 3 flip-bits SEU Rate Reduction

 setmap svmap setmap vs SVmap vs Emap svmap emap emap vs SVmap vs Emap

alu2 2.77% 2.90% 3.58% -4.5% -22.8% 4.01% 4.85% 5.11% -17.3% -21.5%

alu4 1.91% 3.28% 3.48% -41.9% -45.2% 3.19% 4.21% 6.00% -24.3% -46.9%

apex2 2.64% 3.20% 3.45% -17.3% -23.4% 2.98% 4.67% 4.79% -36.3% -37.9%

apex4 5.81% 12.89% 14.57% -54.9% -60.1% 7.15% 19.19% 21.26% -62.7% -66.3%

apex6 5.70% 6.44% 10.63% -11.6% -46.4% 7.86% 9.81% 15.55% -19.9% -49.4%

dalu 1.91% 1.83% 2.57% 4.8% -25.6% 3.51% 2.83% 3.39% 23.8% 3.4%

ex1010 1.83% 5.08% 6.12% -64.0% -70.1% 2.87% 7.33% 8.94% -60.8% -67.9%

ex5p 4.26% 7.24% 10.91% -41.2% -60.9% 5.62% 12.90% 15.62% -56.5% -64.1%

frg2 11.16% 12.18% 14.48% -8.4% -22.9% 14.60% 17.46% 19.30% -16.4% -24.4%

i10 10.96% 11.38% 16.89% -3.7% -35.1% 15.89% 17.53% 20.61% -9.4% -22.9%

misex3 3.40% 5.53% 6.52% -38.6% -47.9% 5.61% 8.26% 11.08% -32.0% -49.3%

pdc 2.67% 3.23% 4.08% -17.4% -34.5% 3.00% 5.01% 6.52% -40.1% -54.0%

rot 8.38% 7.54% 10.57% 11.3% -20.7% 11.28% 13.34% 13.85% -15.4% -18.5%

s3330_ com 8.71% 12.39% 16.39% -29.7% -46.8% 14.07% 19.69% 22.67% -28.5% -37.9%

s3384_ com 20.32% 25.24% 26.73% -19.5% -24.0% 27.42% 35.71% 38.76% -23.2% -29.3%

seq 3.08% 4.72% 6.31% -34.8% -51.2% 6.24% 8.45% 9.90% -26.1% -36.9%

spla 3.24% 4.68% 7.35% -30.8% -55.9% 7.12% 9.17% 10.88% -22.4% -34.6%

vda 6.21% 6.95% 10.01% -10.6% -37.9% 10.89% 11.55% 15.74% -5.7% -30.8%

C3540 4.11% 3.69% 5.20% 11.5% -20.9% 5.91% 5.95% 8.18% -0.7% -27.8%

C7552 6.33% 9.93% 14.41% -36.3% -56.1% 10.24% 12.31% 19.54% -16.8% -47.6%

AVE. 5.77% 7.52% 9.71% -21.9% -40.4% 8.47% 11.51% 13.89% -24.5% -38.2%

 K=5 K=6

Cut size number

of cut

sum of soft

error cost

average of soft

error cost

number

of cut

sum of soft

error cost

average of soft

error cost

2 205 90.9995 0.4439 187 83.0093 0.4439

3 434 109.6718 0.2527 381 98.4504 0.2584

4 850 107.185 0.1261 560 68.6 0.1225

5 1243 297.6985 0.2395 583 74.4491 0.1277

6 - - - 1021 194.8068 0.1908

average 683 151.3887 0.2656 546.4 103.8631 0.2287

 25

The “number of cut” column shows the number of cuts for cut sizes ranging from 2 to K,

where K is either 5 or 6. The “sum of soft error cost” column shows the total soft error cost for

each cut size. To get Table 5, we first find out the cut with the lowest cost rooted on each node in

the ALU4 benchmark. The cut size of the lowest cost cut rooted on each node is different from 2

to either 5 or 6. Since our cost function includes soft error cost and power cost, we extract the

soft error cost from the lowest cost of the cut rooted on each node. The results of ALU4 in Table

1, Table 3, and Table 5 show that the average of soft error cost and error rate when K = 6 are

13.9% and 25.6% better than those when K = 5. This result shows that both the soft error cost

and the soft error rate are related to K.

Figure 7 shows further error rate comparison results between SETmap, SVmap, and

Emap. The slopes of increasing error rate in SETmap are smaller than those in SVmap and Emap.

The error rates increase by 3.94% and 4.24% from one bit flip to three bit flips in SVmap when

K = 5 and 6, respectively. The error rates increase by 5.42% and 5.89% from one bit flip to three

bit flip in Emap when K = 5 and 6, respectively. However, in our algorithm, the error rates only

increase by 1.96% and 2.1% from one bit flip to three bit flips for these studies.

 26

Comparison while k = 5

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

one tw o three

number of bit flips

e
r
r
o

r
 r

a
te setmap

svmap

emap

Comparison while k = 6

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

one tw o three

number of bit flips

e
r
r
o

r
 r

a
te setmap

svmap

emap

 (b)

 (a)

Figure 7: Error rate comparison results between SETmap, SVmap, and Emap.

 27

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this thesis, we presented a mapping algorithm to reduce soft errors for FPGAs. Our

solution offered excellent soft-error reduction while guaranteeing optimal mapping depth under

the unit delay model. In addition, we consider power optimization to reduce the power overhead.

Experimental results showed that, compared to SVmap and Emap, respectively, our algorithm

SETmap produced 30.5% and 50.1% soft error rate reduction with 3.7% and 4.7% power penalty

for the SEU case. For multiple bit upsets, SETmap is 33% and 52.9% better for the two-bit-flip

case, and 31.5% and 50.3% better for the three-bit-flip case. Also, from one bit flip to three bit

flips, the error rate in our algorithm just increased by 2.1%, while it was 4.24% in SVmap and

5.89% in Emap. The result shows that our algorithm is also very effective dealing with multiple

bit flips. Future work would include studying the electrical and latching-window masking effects

of the FPGA routing interconnects. Layout-driven technology mapping will also be studied to

further improve circuit reliability against soft errors.

 28

REFERENCES

[1] F. L. Kastensmidt, L. Carro, and R. REIS, Fault-tolerance Techniques for SRAM-based

FPGAs. Dordrecht, Netherland: Springer, 2006.

[2] H. T. Weaver et al., “An SEU tolerant memory cell derived from fundamental studies of SEU

mechanisms in SRAM,” IEEE Transactions on Nuclear Science, vol. NS-34, no. 6, pp. 1281-

1286, 1987.

[3] R. Lyons and W. Vanderkulk, “The use of triple-modular redundancy to improve computer

reliability,” IBM Journal of Research and Development, vol. 6, no. 2, pp. 200-209, 1962.

[4] K. Mohanram and N. A. Touba, “Partial error masking to reduce soft error failure rate in

logic circuits,” in International Symposium on Defect and Fault Tolerance of VLSI Systems,

2003, pp. 433-440.

[5] S. Krishnaswamy, S. Plaza, I. Markov, and J. Hayes, “Enhancing design robustness with

reliability-aware resynthesis and logic simulation,” in International Conference on

Computer-Aided Design, 2007, pp. 149-154.

[6] H. Zarandi, S. Miremadi, C. Argyrides, and D. Pradhan, “Fast SEU detection and correction

in LUT configuration bits of SRAM-based FPGAs,” in International Parallel and

Distributed Processing Symposium, 2007, p. 6.

[7] E. S. S. Reddy, V. Chandrasekhar, M. Sashikanth, V. Kamakoti, and N. Vijaykrishnan, “A

novel CLB architecture to detect and correct SEU in LUTs of SRAM-based FPGAs,” in

International Conference on Field-Programmable Technology, 2004, pp. 121-128.

[8] J.Y. Lee, Y. Hu, R. Majumdar, L. He, and M. Li, “Fault-tolerant resynthesis for dual-output

LUTs,” in Asia and South Pacific Design Automation Conference, 2010, pp. 325-330.

[9] A. Cosoroaba and F. Rivoallon, “Achieving higher system performance with the Virtex-5

family of FPGAs,” Xilinx Corporation, CA. [Online]. Available:

http://www.xilinx.com/support/documentation/white_papers/wp245.pdf

[10] Altera Stratix II Device Handbook, Altera Corporation, CA, 2007. [Online]. Available:

http://www.altera.com/literature/hb/stx2/stratix2_handbook.pdf?GSA_pos=10&WT.oss_r=1

&WT.oss=handbook stratix device

[11] A. H. Farrahi and M. Sarrafzadeh, “FPGA technology mapping for power minimization,” in

International Conference on Field-Programmable Technology, 1994, no. 849, p. 66.

[12] J. Anderson and F. N. Najm, “Power-aware technology mapping for LUT-based FPGAs,” in

International Conference on Field-Programmable Technology, 2002, pp. 211-218.

[13] Z. H. Wang, E.C. Liu, J. Lai, and T.C. Wang, “Power minimization in LUT-based FPGA

technology mapping,” in Asia and South Pacific Design Automation Conference, 2001, pp.

635-640.

[14] H. Li, W.K. Mak, and S. Katkoori, “Efficient LUT-based FPGA technology mapping for

power minimization,” in Asia and South Pacific Design Automation Conference, 2003, pp.

353-358.

http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7BJu-Yueh+Lee%7D§ion1=AU&database=2&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7BYu+Hu%7D§ion1=AU&database=2&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7BMajumdar%2C+R.%7D§ion1=AU&database=2&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7BLei+He%7D§ion1=AU&database=2&yearselect=yearrange&sort=yr
http://www.engineeringvillage2.org/controller/servlet/Controller?CID=quickSearchCitationFormat&searchWord1=%7BMinming+Li%7D§ion1=AU&database=2&yearselect=yearrange&sort=yr

 29

[15] J. Lamoureux and S.J.E. Wilton, “On the interaction between power-aware CAD algorithms

for FPGAs,” in International Conference on Computer-Aided Design, 2003, pp. 701-708.

[16] D. Chen, J. Cong, F. Li, and L. He , “Low-power technology mapping for FPGA

architectures with dual supply Voltages,” in International Symposium on FPGA, 2004, pp.

109-117.

[17] D. Chen and J. Cong, “DAOmap: A depth-optimal area optimization mapping algorithm for

FPGA designs,” in International Conference on Computer-Aided Design, 2004, pp. 752-759.

[18] J. Cong, C. Wu, and E. Ding, “Cut ranking and pruning: Enabling a general and efficient

FPGA mapping solution,” in International Symposium on FPGA, 1999, pp. 29-35.

[19] F. Li, Y. Lin, L. He, D. Chen, and J. Cong, “Power modeling and characteristics of field

programmable gate arrays,” Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 24, no. 11, pp. 1712-1724, 2005.

[20] B. Krishnamurthy and I. G. Tollis, “Improved techniques for estimating signal probabilities,”

IEEE Transactions on Computers, vol. 38, no. 7, pp. 1041-1045, 1989.

[21] M. A. Al-Kharji and S. A. Al-Arian, “A new heuristic algorithm for estimating signal and

detection probabilities,” in Great Lakes Symposium for VLSI, 1997, pp. 26-31.

[22] E. M. Sentovich et al. (1992), SIS: A system for sequential circuit synthesis. Department of

Electrical Engineering and Computer Science, University of California at Berkeley, CA.

[Online]. Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/1992/2010.html

http://www.icims.csl.uiuc.edu/~dchen/CRU79_chen_new.pdf
http://www.icims.csl.uiuc.edu/~dchen/CRU79_chen_new.pdf

