
An Efficient Real-time Data Pipeline for the
CHIME Pathfinder Radio Telescope X-Engine

Andre Recnik∗, Kevin Bandura‡, Nolan Denman∗†, Adam D. Hincks§, Gary Hinshaw§

Peter Klages∗, Ue-Li Pen¶, and Keith Vanderlinde∗†
∗Dunlap Institute for Astronomy & Astrophysics, University of Toronto
†Department of Astronomy & Astrophysics, University of Toronto

‡Department of Physics, McGill University
§Department of Physics and Astronomy, University of British Columbia
¶Canadian Institute for Theoretical Astrophysics, University of Toronto

Contact Email: vanderlinde@dunlap.utoronto.ca

Abstract—The CHIME Pathfinder is a new interferometric
radio telescope that uses a hybrid FPGA/GPU FX correlator. The
GPU-based X-engine of this correlator processes over 819 Gb/s
of 4+4-bit complex astronomical data from N=256 inputs across
a 400 MHz radio band. A software framework is presented
to manage this real-time data flow, which allows each of 16
processing servers to handle 51.2 Gb/s of astronomical data, plus
8 Gb/s of ancillary data. Each server receives data in the form of
UDP packets from an FPGA F-engine over the eight 10 GbE
links, combines data from these packets into large (32MB-
256MB) buffered frames, and transfers them to multiple GPU
co-processors for correlation. The results from the GPUs are
combined and normalized, then transmitted to a collection server,
where they are merged into a single file. Aggressive optimizations
enable each server to handle this high rate of data; allowing the
efficient correlation of 25 MHz of radio bandwidth per server. The
solution scales well to larger values of N by adding additional
servers.

I. INTRODUCTION

The increasing performance of commodity computer hard-
ware has opened up new possibilities for building real-time
radio correlators. Traditionally correlators have used custom
ASICs or FPGAs for all calculations. The first systems built
with off-the-shelf hardware used CPUs, for example the real-
time software correlator designed for the Giant Metrewave
Radio Telescope (GMRT) [1]. While early experiments using
GPUs showed relatively poor performance [2], the develop-
ment of new GPUs and the efficient xGPU code [3] for
NVIDIA’s CUDA platform has popularized the use of GPUs
in FX style correlators.

FX correlators operate in two stages: first the F-engine
samples astronomical data from each radio input and channel-
izes it into frequency bands using a Fourier transform, then
the X-engine correlates all of the inputs against one another
within each frequency band. The low cost and flexibility of
10 Gigabit Ethernet (10 GbE) has enabled these two stages
to be easily separated, as demonstrated by Parsons, et al. [4];
with separate FPGAs performing the F-engine and X-engine
stages connected by a 10 GbE packet switched network. A
recent trend has been to replace FPGAs with GPUs in the
X-engine, leading to the so called hybrid correlator approach.
Projects using hybrid correlators include: the Precision Array

for Probing the Epoch of Reionization (PAPER) [5], the Large
Aperture Experiment to Detect the Dark Ages (LEDA) [6], and
the Murchison Wide-field Array (MWA) [7].

The Canadian Hydrogen Intensity Mapping Experiment
(CHIME) Pathfinder [8] is a cylindrical radio telescope with
128 dual-polarization receivers for N = 256 total inputs. It
uses a newly developed hybrid FX correlator. The F-engine
consists of 16 custom FPGA boards, each with 16 ADCs,
which sample and channelize the data into 1024 frequency
bins. The data are reduced to 4+4-bit complex numbers, then
a custom backplane network shuffles this data, such that each
FPGA has data for all inputs in a subset of frequency bands.
The shuffled data is then transmitted over 128 x 10 GbE links
in User Datagram Protocol (UDP) packets to a GPU based
X-engine.

This paper presents the software pipeline, called
kotekan,1 which manages data flow in the X-engine.
The data is received from the F-engine as UDP packets, is
merged and sent to the GPUs for processing, then the output
from the GPUs is sent out to the collection and aggregation
server. The software is written in the C programming
language.

In the CHIME Pathfinder, this software runs on 16 servers,
built mostly with low-cost consumer-grade hardware. Each
server has one Intel i7 4-core CPU, two AMD R9 280X
GPUs, one AMD R9 270X GPU, two Silicom 4x 10 GbE
network interface cards (NICs), and 16 GB of DDR3 RAM.
The GPUs and NICs are each connected to the CPU by 8x
PCI Express (PCIe) 3.0 lanes. An abstract layout of each of
these components is given in Figure 1. The operating system
used is CentOS Linux 6.5.

II. DATA FLOW

The software design is based around generic buffer ob-
jects, which support multiple consumers and producers, and
handle the majority of thread synchronization tasks using

1Given the musical acronym of the experiment, CHIME, the collaboration
uses musically inspired names for system components. Kotekan is a style of
playing fast interlocking parts in Balinese Gamelan music using percussive
instruments. http://en.wikipedia.org/wiki/Kotekan

ar
X

iv
:1

50
3.

06
18

9v
2

 [
as

tr
o-

ph
.I

M
]

 1
5

Ju
n

20
15

Intel i7-4820K
3.7 GHz

4G
B

 D
D

R
3

21
33

 M
H

z
4G

B
 D

D
R

3
21

33
 M

H
z

4G
B

 D
D

R
3

21
33

 M
H

z
4G

B
 D

D
R

3
21

33
 M

H
z

2x
 1

G
bE

P
or

ts

1 Gb/s Each

To
 S

w
itc

h
 a

nd
C

o
nt

ro
l/C

o
lle

ct
io

n
 S

e
rv

er

Silicom 4x 10GbE
(PE310G4SPi9)

Silicom 4x 10GbE
(PE310G4SPi9)

AMD R9 280X

AMD R9 270X

AMD R9 280X

59 GB/s
Total

8x
 P

C
Ie

 3
.0

63
G

b
/s

 E
a

ch

8x
 S

F
P

+
 fr

o
m

 F
P

G
A

s 10Gb/s Each

Fig. 1: Abstract GPU server layout. Speeds are the theoretical
transfer rates supported by the given bus; achievable rates vary.
There are 16 GPU servers in the in the CHIME Pathfinder.

Linux pthreads. In kotekan, they are almost exclusively
used as FIFO ring buffers. Most subsystems in kotekan
communicate only via these ring buffers, allowing individual
components to be changed without affecting the system as a
whole. This also allows individual components to have variable
run times, without negatively impacting other operations.

The main components in kotekan are networking threads,
GPU threads, GPU call-back threads, a GPU post-processing
thread, and an output thread. Each of these components
interfaces with one or more of the buffer objects. These threads
form the data path as shown in Figure 2.

Since the data changes shape between steps, an ancillary
data package is carried along each step of the data path. To
limit calls to malloc and free, these objects live in a pool
which is only allocated at the start of the application, and
only freed at the end of the application. In fact, the entire
application does not malloc or free any memory outside
of startup and shutdown.

Each of the eight network inputs is processed as its own
stream until after the correlation, at which point it is combined
with the other 7 streams on the system before being sent to
the collection server. In the current configuration, each of the
AMD R9 280X GPUs processes 3 of these streams, and the
AMD R9 270X processes 2. The mapping of streams to GPUs
can be adjusted by configuration file.

In addition to kotekan, which runs on the processing
servers, software on the data collection server combines results
from all of the processing servers into a single file.

The following subsections trace this data flow from the F-
engine through to the output file.

A. UDP Packet Processing

Channelized data is received from the F-engine in UDP
packets over standard 10Gb/s Ethernet lines (10GbE). Each
UDP packet is ∼9K in size and has the structure shown in
Figure 3. The packet is designed in such a way that the

10GbE NIC

Packet Buffer

7.45 Gb/s (DMA)

Host Memory Write

Host Memory Read

Network
Thread

9KB

64MB+

GPU Staging Buffer7.45 Gb/s

6.4 Gb/s

64MB+

6.4 Gb/s (DMA)

GPU
Input Data Buffers

2MB+

Output Data Buffers

GPU
Thread

Kernels

2MB+

GPU Result Buffer

GPU Post
Processing Thread*

20MB+

TCP Frame Buffer

Output
Thread

1.6 Mb/s (DMA)

Kernel TCP Buffer

1GbE NIC

1.6 Mb/s
Each

16 Mb/s

16
 M

b
/s

16 Mb/s

16
 M

b
/s

Kernel
User

User
Kernel

Fig. 2: Data flow for one of eight streams per server. This chart
traces data from one of the 10GbE inputs. GPU input data rates
are constant, while output data rates depend on the desired
integration time and are shown here for 10 seconds. The values
beyond the “GPU Post-Processing Thread” represent a merged
stream.

channelized data section can be used by the GPU without
modification. All that is required of the system is to place
that data into the right location in a large host frame, which
can then be copied to the GPU over PCIe. While the CPU
does have to process the header and footer information, it very
rarely needs to modify the data.

With N = 256 inputs, the F-engine packs all inputs for 8
frequency bands into each 10 GbE stream. Each of the values is
a 4+4-bit complex number, so all 256 inputs for one frequency
take up 256 bytes. For 8 frequency bands this represents 2KB.
To reduce the number of packets per second and lower the
CPU load, 4 time samples are recorded in each packet. The
header contains a streamID that identifies which frequency
bands are represented in the packet, and a sequence number
which gives the relative time and is synchronized across the

Header

Data (1-4 Frames)

8 Frequencies per Frame

256 bytes per frequency

2048 Bytes per Frame

2048-8192 Bytes per packet

Post FFT 4-bit Scaling Flags

ADC Flags

FREQ BIN 1
256ANT - 256 bits

FREQ BIN 0

1 bit flag per antenna per frequency
256 Bytes per Frame

ADC INPUT 256 ANT
512bits

FREQ BIN 7 FREQ BIN 6

...

1 flag per input

cookieLENStream ID Prot

#Antennas#Freq Bins
#Fra
-mes

ENC

Ancillary data

Timestamp

031

16 bytes

256ANT - 256 bits

256ANT - 256 bits

256ANT - 256 bits

Fig. 3: The UDP packet format sent by the FPGAs.

entire array.
There are a number of considerations to make when pro-

cessing UDP packets at high rates:
1) Efficiently receiving packets from the network: The

Linux kernel has a large overhead when processing high
bandwidth network traffic. Early tests showed that even with
large packets and optimizations to the Linux kernel network
parameters, it would be unable to process the required data
rates while simultaneously managing the GPU PCIe transfers.
The solution was to bypass the Linux kernel’s network stack
entirely using modified network drivers and custom kernel
modules. There are a number of pre-built solutions which
enable kernel bypass, including: DPDK [9], netmap [10], and
others. For this project, NTOP’s PF RING/DNA [11], [12]
framework was chosen for its support on the chosen network
card vendor. However, the overall system is not tied to a
particular bypass stack; changing the bypass stack would just
involving replacing calls to the PF RING API with another
bypass API.

The most important aspect of these bypass drivers, aside
from avoiding slow kernel packet processing code, is the use
of a co-mapped ring buffer that is addressable in both user and
kernel space. This allows the NIC driver to write directly to
the co-mapped memory with a Direct Memory Access (DMA)
operation, avoiding the traditional kernel-to-user-space copy.

2) Handling Losses/Errors: Since the network protocol is
UDP, the system must handle lost, out of order, and duplicate
packets. This is achieved by tracking the sequence number in
each packet header. When the system detects packet loss, it
writes zeros into the area of the GPU staging buffer where
the missing packet would have been placed. This removes the
requirement to zero the buffers between each use; the network
thread guaranties the buffer will have good data or zeros in
every location. In the case of out of order packets, the sequence
number is used to copy the packet into the correct location.
Duplicate packets are simply ignored.

In early testing with the standard socket API, vectored

I/O was used to separate the packet into data and header
components with a readv system call. The sequence number
was inferred based on the pervious packet, and the data was
copied directly to the GPU staging buffer. If the sequence
number did not match the expected number, then the data
was moved or overwritten. Given low packet loss, this saves
a second copy for the vast majority of packets, and allowed
maximum capture rates around 40 Gb/s per CPU. With the
addition of co-mapped memory this became unnecessary, since
the sequence number can be read before moving the data to
the GPU staging buffer.

3) Efficient Memory Transfers: The standard memory copy-
ing functions like memcpy found in libc are inefficient for
use in a high bandwidth environment like this one. This issue
largely stems from the fact that compilers assume temporal
locality, that data being copied will be used in the near future
and should be added to the CPU cache. This causes the des-
tination memory to be cached in the process of performing a
copy. This puts huge pressure on the cache when moving large
amounts of data, resulting in unnecessary memory controller
usage.

To mediate the issue caused by the standard memcpy, a set
of custom memory copy functions that use Intel AVX intrinsics
with non-temporal hints were created. The non-temporal hint
prevents the memory copy destination from being added to
the CPU’s cache. These functions copy the data from the co-
mapped packet buffer to the GPU staging frame.

B. Kernel Invocation Process
A set of GPU programs called kernels do the actual cross-

correlation and integration. The kernels are written in the Open
Computing Language (OpenCL) framework2, allowing them to
be run on a number of different platforms. The kernels used
achieve very high levels of efficiency using packed multiply-
accumulate operations and are detailed in [13].

The first step in this process is copying the data to the GPU’s
device memory, a process largely managed by the OpenCL
drivers. In our tests we found that large (32 MB or greater)
frames transferred most efficiently. The memory used for these
frames is page-locked allowing the GPU drivers to preform an
efficient DMA operation to copy the memory between the host
and device.

In contrast to some systems using xGPU [3] like the MWA
[7] and LEDA correlators [6] which promote the data from
4-bit to 8-bit integers in their CPUs, this system does not
promote the data before sending it to the GPUs. Avoiding this
promotion reduced both CPU memory and PCIe bandwidth,
and was a key part in limiting the number of servers and CPUs
needed.

The entire process is pipelined to allow concurrent operation
of the memory transfers and kernel invocations, as shown in
Figure 4. The “Copy to Host Memory” step is not run on
every invocation, since the correlation kernels simply add to
the output of the last run, extending the integration time of
the output.

2https://www.khronos.org/opencl/

Data
Ready

Copy to GPU
Memory

Kernels

Copy to Host
Memory

Host
Callback

Data
Ready

Copy to GPU
Memory

Kernels

Copy to Host
Memory

Host
Callback

Data
Ready

Copy to GPU
Memory

Kernels

Copy to Host
Memory

Host
Callback

Host Events

GPU Copy-in Queue

GPU Kernel Queue

GPU Copy-out Queue

Host Callbacks

Fig. 4: GPU Pipeline. The “Kernels” stage includes correlation, as well as extra data processing operations like time shifting
or RFI detection. The dashed lines indicate optional steps or dependencies. The time taken by each step is not to scale.

When executing an OpenCL device operation, for example
a memory copy or kernel invocation, there is a delay between
the function call and the time the device starts the operation.
To minimize this delay, we pre-load entire chains of OpenCL
operations, the first of which is set to depend on the “Data
Ready” event in Figure 4, which is triggered by the GPU
thread when a buffer has been filled by a network thread.
When a chain finishes, a call-back function (“Host Callback”
in Figure 4) adds a new chain of events which replaces the
one that just finished, and marks the associated output buffer
as full, so the GPU post-processing thread can take the data.

C. GPU Post-Processing
This GPU post-processing thread combines all eight

streams, and then normalizes the results to correct for lost
input samples.

Loss of input samples can result from packet loss, or
numerical range and sampling limitations in the FPGAs and
ADCs. When this happens the data points are zeroed, before
they are transferred to the GPU. This causes some correlated
data points to contain fewer input samples in each integration.
The network threads track packet loss and F-engine error flags,
which are used by the GPU post-processing thread to generate
a normalization matrix as follows:

• Packet loss is tracked as a single counter, then added to
every point in the normalization matrix at the end of each
integration.

• The F-engine flags are extracted from bit-fields in the
packet footers and stored in counters for each input
and frequency per integration. The counters are used to
populate the normalization matrix at the end of each
integration.

• If two or more inputs are flaged by the F-engine in the
same time sample, the previous step will result in a double
counting in the normalization matrix at their intersections.

To correct this, these intersections are recorded per sam-
ple, and subtracted from the normalization matrix.

The fraction of lost data given by the normalization matrix
is then applied to the correlation matrix.

This process is optimized in two ways. First the bit-field of
flags in the footer is read initially as 32-bit integers, and bit-
field extraction is performed only if the 32-bit representation
of the bit-field is non-zero. With a low number of flaged data
points, this avoids checking each bit individually. Second, by
only updating counts of errors and their associated intersec-
tions, the number of memory accesses is greatly reduced. The
complexity of tracking the intersections per time sample is
O(E2), where E is the number of flaged data points in a given
time sample. This can be processed by the CPU, provided
E � N .

After the data has been combined and normalized, it is
formatted for transmission over a TCP stream and placed in
an output buffer. A final output thread then transmits this data
to the collection server using a TCP socket connection.

D. Data Collection

At the collection server, the TCP streams from each
kotekan instance are combined. The streamID is used
to identify the frequency bands provided by each stream,
allowing the collection server to correctly order the frequency
bands regardless of how the 10 GbE links were connected
to the individual processing servers. The sequence number is
used to align the frames in time. The data is saved to disk using
the Hierarchical Data Format Version 5 (HDF5) standard3.

Individual servers may be switched off and back on without
interrupting the entire system. If one or more of the servers
stops working, the collection server simply stops recording the
frequency bands associated with that server. When the server

3http://www.hdfgroup.org/HDF5/

TABLE I: Data Processing Rates

Data Type Rate per Link Rate per Host Full System Rate

4-bit Sky Data 6.4 Gb/s 51.2 Gb/s 819.2 Gb/s

4-bit Sky Data +
Headers & Flags

7.45 Gb/s 59.6 Gb/s 953.6 Gb/s

Packets per Sec-
ond (PPS)

97,565 PPS 781,250 PPS 12.5 MPPS

Output Data (10s
Cadence)

16.8 Mb/s 16.8 Mb/s 269.5 Mb/s

is repaired, it reconnects to the collection system, and those
frequency bands resume recording.

III. DISCUSSION

This software pipeline design was largely focused on max-
imizing input data bandwidth per CPU, in order to minimize
the overall cost of the system. Table I shows the data rates
achieved by the software in operation.

There are ways in which the pipeline could be made even
more efficient. The packets are written to a user/kernel space
mapping buffer, then copied to a GPU staging buffer. This
copy could be avoided if the data segment of each packet was
sent directly to the GPU buffers via DMA from the NIC, with
the headers/footers sent to another buffer for processing. Such
a solution would require a tighter coupling with software and
the NIC driver, so that the userspace application could direct
which memory the NIC DMA transfered packet sections into.
The OpenFabrics Enterprise Distribution4 (OFED) kernel by-
pass software can in principle provide this; it was not pursued
it due to lack of driver support on the chosen hardware.

As the number of inputs N increases, the computation
cost of correlation increases as O(N2), while data bandwidth
scales only as O(N). With more servers required to do the
correlation, the bandwidth to each should go down. However,
as co-processors become more powerful, it will be possible to
correlate larger values of N with fewer servers, continuing to
put pressure on the bandwidth requirements of each server.

The generic design of this software allows it to be extended
easily to large values of N . It has already been scaled from
N = 16 in early tests of the CHIME Pathfinder using one
server, to the current N = 256 mode using 16 servers, and is
expected to scale to N = 2048 for the full CHIME experiment.

IV. CONCLUSION

We have developed an optimized software pipeline to man-
age the data flow in the X-engine of a hybrid FX FPGA/GPU
correlator. Using a combination of kernel bypass network
drivers, efficient memory copy functions, memory pools, min-
imal memory copies, large packets and GPU frames, and
GPU kernels that can process 4-bit data, the system achieves
a very high input data bandwidth per server and per CPU.
This allows input data processing rates of over 51.2 Gb/s per
single socket server, and 819 Gb/s system wide. In terms of
radio bandwidth, the systems process the full 400 MHz band

4https://www.openfabrics.org/

of the CHIME Pathfinder, with N = 256 inputs, using only
16 servers. The system has been shown to scale well from
N = 16 to N = 256, and will be used in a future system with
N = 2048 and a total input bandwidth of close to 8 Tb/s.

ACKNOWLEDGMENTS

We are very grateful for the warm reception and skillful
help we have received from the staff of the Dominion Radio
Astrophysical Observatory, which is operated by the National
Research Council of Canada. We acknowledge support from
the Canada Foundation for Innovation, the Natural Sciences
and Engineering Research Council of Canada, the B.C. Knowl-
edge Development Fund, le Cofinancement gouvernement du
Québec-FCI, the Ontario Research Fund, the CIfAR Cos-
mology and Gravity program, the Canada Research Chairs
program, and the National Research Council of Canada. We
thank Xilinx University Programs for their generous support of
the CHIME project, and AMD for donation of test units. Peter
Klages thanks IBM Canada for funding his research and work
through the Southern Ontario Smart Computing Innovation
Platform (SOSCIP).

REFERENCES

[1] J. Roy, Y. Gupta, U.-L. Pen, J. Peterson, S. Kudale, and J. Kodilkar,
“A real-time software backend for the gmrt,” Experimental Astronomy,
vol. 28, no. 1, pp. 25–60, 2010. [Online]. Available: http://dx.doi.org/
10.1007/s10686-010-9187-0

[2] R. V. van Nieuwpoort and J. W. Romein, “Using many-core hardware
to correlate radio astronomy signals,” in Proceedings of the 23rd
International Conference on Supercomputing, ser. ICS ’09. New
York, NY, USA: ACM, 2009, pp. 440–449. [Online]. Available:
http://doi.acm.org/10.1145/1542275.1542337

[3] M. Clark, P. L. Plante, and L. Greenhill, “Accelerating radio astronomy
cross-correlation with graphics processing units,” Int. J. High Perform.
Comput. Appl., vol. 27, no. 2, pp. 178–192, May 2013. [Online].
Available: http://dx.doi.org/10.1177/1094342012444794

[4] A. Parsons et al., “A scalable correlator architecture based on
modular fpga hardware, reuseable gateware, and data packetization,”
Publications of the Astronomical Society of the Pacific, vol.
120, no. 873, pp. pp. 1207–1221, 2008. [Online]. Available:
http://www.jstor.org/stable/10.1086/593053

[5] A. R. Parsons, A. Liu, J. E. Aguirre, Z. S. Ali, R. F. Bradley et al.,
“New Limits on 21cm EoR From PAPER-32 Consistent with an X-Ray
Heated IGM at z=7.7,” Astrophys.J., vol. 788, p. 106, 2014.

[6] J. Kocz et al., “Digital Signal Processing Using Stream High Per-
formance Computing: A 512-Input Broadband Correlator for Radio
Astronomy,” Journal of Astronomical Instrumentation, vol. 4, p. 50003,
Mar. 2015.

[7] S. M. Ord et al., “The Murchison Widefield Array Correlator,” Pub-
lications of the Astronomical Society of Australia, vol. 32, p. 6, Mar.
2015.

[8] K. Bandura et al., “Canadian Hydrogen Intensity Mapping Experiment
(CHIME) pathfinder,” in Society of Photo-Optical Instrumentation En-
gineers Conference Series, vol. 9145, Jul. 2014, p. 22.

[9] Intel, Intel Data Plane Development Kit: Programmer’s Guide, 2014.
[10] L. Rizzo, “netmap: a novel framework for fast packet i/o,” in USENIX

Annual Technical Conference, 2012.
[11] L. Deri, “Improving Passive Packet Capture:Beyond Device Polling,”

in 4th International System Administration and Network Engineering
Conference, 2004.

[12] NTOP. (2012) RFC-2544 performance test - PF Ring-DNA VS
Standard network Driver. [Online]. Available: http://www.ntop.org/
wp-content/uploads/2012/04/DNA ip forward RFC2544.pdf

[13] P. Klages, K. Bandura, N. Denman, A. Recnik, J. Sievers, and K. Vander-
linde, “Data Packing for High-Speed 4-Bit GPU Correlators,” In Press.
IEEE ASAP, 2015.

