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Abstract The problem of local community detection in graphs refers to the
identification of a community that is specific to a query node and relies on
limited information about the network structure. Existing approaches for this
problem are defined to work in dynamic network scenarios, however they are
not designed to deal with complex real-world networks, in which multiple types
of connectivity might be considered. In this work, we fill this gap in the lit-
erature by introducing the first framework for local community detection in
multilayer networks (ML-LCD). We formalize the ML-LCD optimization prob-
lem and provide three definitions of the associated objective function, which
correspond to different ways to incorporate within-layer and across-layer topo-
logical features. We also exploit our framework to generate multilayer global
community structures. We conduct an extensive experimentation using seven
real-world multilayer networks, which also includes comparison with state-of-
the-art methods for single-layer local community detection and for multilayer
global community detection. Results show the significance of our proposed
methods in discovering local communities over multiple layers, and also high-
light their ability in producing global community structures that are better
in modularity than those produced by native global community detection ap-
proaches.
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LIRMM - Université Paul Valéry, Montpellier, France, E-mail: arnaud.sallaberry@lirmm.fr
P. Poncelet
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1 Introduction

Community detection is a classic problem in network science and related fields,
which has been traditionally addressed with the aim of determining an orga-
nization of a given network into subgraphs that express dense groups of nodes
well-connected to each other (Newman and Girvan 2004). This corresponds to
an optimization problem that is global as it requires knowledge on the whole
network structure. The problem is known to be computationally difficult to
solve, while its approximate solutions have to cope with both accuracy and
efficiency issues that become more severe as the network increases in size.
Large-scale, web-based environments have indeed traditionally represented a
natural scenario for the development and testing of effective community detec-
tion approaches. Further challenges correspond to the emergence of processing
complex real-world network systems, which are indeed pervasive in many fields
of science (Mucha et al. 2010; Carchiolo et al. 2010; Tang et al. 2012; Kivela
et al. 2014; Loe and Jensen 2015; Kim and Lee 2015). In this regard, multilayer
network models provide a powerful and more realistic tool for the analysis of
such complex systems, enabling an in-depth understanding of the character-
istics and dynamics of multiple, interconnected types of node relations and
interactions (Cai et al. 2005; Berlingerio et al. 2013; Dickison et al. 2016).

However, one important aspect to consider is that we might often want
to identify the personalized network of social contacts of interest to a single
user only: to this aim, we would seek to determine the expanded neighbor-
hood of that user which forms a densely connected, relatively small subgraph.
This is known as local, or node-centric, community detection problem (Clauset
2005; Chen et al. 2009), whose general objective is, given limited information
about the network, to identify a community structure which is centered on
one or few seed users. The development of methods that can identify query-
dependent local communities is beneficial for any scenario in which computing
a global community structure is not feasible (e.g., because the whole network
information is not available at processing time), or it is not required (e.g.,
the communities are to be computed only for a subset of target users). As an
intuitive practical example, if we want to simply check whether two users in a
network belong to the same community, a global community detection method
would process the whole network, while a local approach can efficiently dis-
cover the two communities of interest by accessing and manipulating only a
relatively small portion of the network. This reduction of memory-footprint
requirements by local community detection methods also enables an efficient
processing of dynamic networks, whose structure may change over time (e.g.,
the insertion of new nodes and edges can be handled at each step of explo-
ration); yet, local approaches can be useful to cope with privacy and access
restriction issues that typically arise from policies adopted in most online so-
cial networks (e.g., limitation in the number of queries per day, permission to
extract only the ego network of a limited number of seed nodes, and so on).

In the last few years, we have been witnessing an increasing interest to-
wards the local community detection problem (Chen et al. 2009; Branting
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2012; Fagnan et al. 2014; Zakrzewska and Bader 2015; Li et al. 2015). Surpris-
ingly, the problem has been mainly investigated by focusing on networks that
are built on a single node-relation type or context. However, this is not the
case in many situations. For instance, in social computing, an individual often
has multiple accounts across different social networks, and in fact it has nowa-
days become important to link distributed user profiles belonging to the same
user from multiple platforms (Kim and Lee 2015; Loe and Jensen 2015). An
alternative scenario is obtained by considering that relations of different types
can be available for the same population of a social network (Dickison et al.
2016); these might include online as well as offline (i.e., real-life) relations,
such as followship, like/comment interactions, working relationship, lunch re-
lationship, etc. Both scenarios can effectively be represented using a multilayer
network model. Dealing with multiple graph-relation dimensions for a set of
entities makes the previously discussed emergence of using a local community
detection approach, as well as the reduction of memory requirements, even
more evident and important. In general, several questions may arise, such as:

– How can we profitably use the various relations in which an individual is
involved to discover her/his own community?

– How do the different relations affect the size and form of a multilayer local
community being discovered?

– What advantages does the development of a method for multilayer local
community detection may bring with respect to single-layer local community
detection as well as to multilayer global community detection?

Contributions. In this work we aim to answer the above questions, by con-
tributing a framework for the novel problem of local community detection in
a multilayer network. To the best of our knowledge, we are the first to bring
the local community detection problem into the context of multilayer networks
since all previous works address the multilayer community detection task from
a global point of view (e.g., (Mucha et al. 2010; Tang et al. 2012; Papalexakis
et al. 2013; Kuncheva and Montana 2015; Kim and Lee 2015; Loe and Jensen
2015)). More in detail, we summarize our contributions as follows.

– We introduce and formalize the problem of local community detection for
multilayer networks (ML-LCD), following an unsupervised paradigm.

– We provide three definitions of the objective function in the ML-LCD prob-
lem, which correspond to different ways to incorporate within-layer and
across-layer topological features.

– To enable comparative evaluation with global community detection meth-
ods in multilayer networks, we exploit our ML-LCD framework to generate
multilayer global community structures.

– We present an extensive experimentation of ML-LCD, using seven real-
world multilayer networks. We assess the meaningfulness of our methods
and analyze their different behaviors in identifying multilayer local commu-
nities. Moreover, we have conducted two stages of comparative evaluation
with state-of-the-art methods for (single-layer) local community detection
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as well as for global community detection in multilayer networks; remark-
ably, in the latter case, ML-LCD has shown to produce communities with
comparable or even better multilayer modularity.

Remarkably, the proposed ML-LCD methods are designed to provide com-
munity solutions that can meet several criteria of significance and quality. More
specifically, under the classification framework discussed in the survey work on
multilayer community detection methods by Kim and Lee (2015), our meth-
ods meet all (but one, i.e., algorithm insensitivity) of the desired properties for
multilayer community detection methods, namely: multiple layer applicability;
consideration of each layer’s importance (this is in particular embedded in the
first of our methods, but it can in principle be brought to the other methods
as well); flexible layer participation (every local community has in general a
different coverage of the layers’ structure); no-layer-locality assumption (our
local communities do not depend on initializations steps biased by a particular
layer); independence from the order of layers; and overlapping layers (two or
more local communities can share substructures over different layers).

The rest of the paper is organized as follows. Section 2 overviews related
work, Section 3 describes our proposed local community detection methods
for multilayer networks, Sections 4 and 5 present experimental evaluation,
Section 6 concludes the paper and provides pointers for future research.

2 Related Work

We organize a brief discussion on related work into two parts: the first is
devoted to community detection in multilayer networks, the second concerns
local community detection methods.

Community detection in multilayer networks. Identifying a com-
munity structure in multilayer networks is a research topic that has gained
considerable attention in the last few years (Kim and Lee 2015; Loe and Jensen
2015; Kivela et al. 2014). Early studies have focused on adaptations of the no-
tion of modularity (Newman and Girvan 2004) to multilayer networks (Mucha
et al. 2010; Carchiolo et al. 2010). Alternatively, new evaluation criteria have
been designed specifically for multilayer networks (e.g., redundancy (Berlin-
gerio et al. 2011)).

Tang et al. (2009) utilize structural feature extraction and cross-dimension
integration to find a concise representation of features from the various layers
(dimensions). A basic k-means clustering method is applied on the computed
embedding to produce a community structure over the multilayer graph. In a
subsequent work of the same authors (Tang et al. 2012), a utility integration
criterion is introduced for computing utility matrices of a community detec-
tion method for each layer separately. Then it optimizes an objective function
for the aggregated multilayer utility matrix. Kuncheva and Montana (2015)
propose a community detection method for multilayer networks based on a
multilayer random walk model. It first runs a different random walk for each
layer, then a dissimilarity measure between nodes is obtained leveraging the
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per-layer transition probabilities, finally a hierarchical clustering method is
used to produce the communities. The approach proposed by Hmimida and
Kanawati (2015) leverages the concept of leaders in a network (Yakoubi and
Kanawati 2014), i.e., nodes having higher degree centrality than most of their
direct neighbors. These nodes, which first need to be identified over the whole
network, form their own communities. An iterative local preference-merging
method is then performed to compute and update the membership-preference
vector of each node in function of preferences of its neighbors, so that each
node will be assigned to the community defined by the leader ranked first
in its preference vector. Other works have resorted to representation models
such as third-order tensors (Papalexakis et al. 2013), hypergraphs (Michoel
and Nachtergaele 2012), or transactional representation to support frequent
pattern mining (Berlingerio et al. 2013).

Note that, by definition, all the above approaches address the problem
of community detection from the conventional, global perspective, i.e., they
assume to access the entire network structure in order to produce a partitioning
of the network graph into a set of communities.

Local community detection. One of the earliest contribution to local
community detection is the Clauset’s framework (Clauset 2005), which is de-
signed to explore the graph through local expansion starting from a seed node.
Chen et al. (2009) exploit the Clauset framework to determine the quality of
a community by comparing its internal versus external connectivity. Brant-
ing (2012) compares different local community detection methods, which are
organized into two broad categories, namely xenophobic and non-xenophobic
approaches: the former try to maximize (resp. minimize) the internal (resp.
external) connectivity, while the non-xenophobic algorithms discard the exter-
nal connectivity. Fagnan et al. (2014) propose a local community strategy that
accounts for the number of internal and external triads. While still exploiting
the Clauset framework, it finally produces a non-overlapping global community
structure. The approach presented by Zakrzewska and Bader (2015) employs
a seed set expansion procedure that incrementally updates the community as
the underlying graph changes. Kanawati (2015) evaluates the impact of apply-
ing different ways of combining multiple local community functions to identify
the node-centric communities. The Lemon algorithm proposed by Li et al.
(2015) exploits truncated random walks and approximate invariant subspace
to discover a local community for any given seed set. The number of random
walk steps is a key parameter, which should be set high enough to reach all
the nodes in the target community, and at the same time low enough to not
spread to an unnecessary bigger graph.

It should be emphasized that none of the above works is designed to deal
with multilayer networks. Different mention concerns the work by Jeub et al.
(2015), where the solution of a personalized PageRank is approximated for a
local partition of the multilayer network in order to find communities. However,
the approach assumes complete knowledge about the network structure, and
the local perspective is intended as the way the random walk is personalized,
which differs from identifying local communities using multilayer features. In



6

this work, we aim to fill this gap in the literature by contributing the first
framework for multilayer local community detection.

3 Multilayer Local Community Detection

In this section, we first describe the graph model used to represent a multilayer
network. We formally state the Multilayer Local Community Detection (ML-
LCD) problem. Then, we formulate the multilayer local community functions
and describe the algorithmic framework for identifying a local community cen-
tered around an input seed node. We finally discuss computational complexity
aspects of the proposed ML-LCD methods.

3.1 Multilayer network model

We refer to the multilayer network model described in (Kivela et al. 2014). Let
L = {L1, . . . , L`} be a set of layers. Each layer corresponds to a given type of
entity relation, or edge-label. Consider a set V of entities (e.g., users), then for
each choice of entity in V and layer in L, we need to indicate whether the entity
is present in that layer. We denote with VL ⊆ V × L the set containing the
entity-layer combinations in which an entity is present in the corresponding
layer. The set EL ⊆ VL × VL contains the undirected links between such entity-
layer pairs. We hence denote with GL = (VL, EL,V,L) the multilayer network
graph with set of nodes V.

For every layer Li ∈ L, let VLi
= {v ∈ V | (v, Li) ∈ VL} ⊆ V be the

set of nodes in the graph of Li, and ELi
⊆ VLi

× VLi
be the set of edges in

Li. To simplify notations, we will also refer to VLi and ELi as Vi and Ei,
respectively. Note that while entities (i.e., elements of V) are not required to
participate to all layers, however each entity has to appear in at least one
layer, i.e.,

⋃
i∈1..` VLi

= V. Moreover, the only inter-layer edges are regarded
as “couplings” of nodes representing the same entity between different layers;
in other terms, EL can be seen as partitioned into the set of intra-layer edges
and the set of inter-layer coupling edges, i.e., EL = {((u, Li), (v, Lj)) | u, v ∈
V ∧ Li, Lj ∈ L ∧ i = j} ∪ {((v, Li), (v, Lj)) | v ∈ V ∧ Li, Lj ∈ L ∧ i 6= j}.

3.2 Problem statement

Local community detection approaches generally implement some strategy
that at each step considers a node from one of three sets, namely: the commu-
nity under construction (initialized with the seed node), the shell of nodes that
are neighbors of nodes in the community but do not belong to the community,
and the unexplored portion of the network. Figure 1 illustrates an example of
multilayer local community identified over a multilayer network; in the figure,
we also utilize terms boundary and core nodes to differentiate between the
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Fig. 1 A local community identified over an example 3-layer network. The local community
(delimited by a rounded rectangle) is centered on a seed node s, while core nodes, boundary
nodes, and shell nodes are denoted with filled, empty, and dotted circles, respectively. Dotted
edges starting from the shell nodes point to unknown portions of the network. (Best viewed
in color version, available in electronic format)

within-community nodes that have and do not have neighbors, respectively, in
the shell set.

A key aspect in the task at hand is how to select the best node in the shell to
add to the community to be identified. Most algorithms, which are designed to
deal with simple (i.e., single-layer) network graphs, try to maximize a function
in terms of the internal edges, i.e., edges that involve nodes in the community,
and to minimize a function in terms of the external edges, i.e., edges to nodes
outside the community. By accounting for both types of edges, nodes that are
candidates to be added to the community being constructed are penalized in
proportion to the amount of links to nodes external to the community (Clauset
2005; Chen et al. 2009; Branting 2012; Fagnan et al. 2014).

In this work we follow the above general approach and extend it to iden-
tify local communities over a multilayer network as presented in the problem
statement reported next.

Definition 1 (Multilayer Local Community Detection problem) Given
a multilayer graph GL = (VL, EL,V,L) with set of nodes V, and a seed node
v0 ∈ V, find a subgraph Gv0

L ⊆ GL that contains v0 and maximizes the multi-
layer local community function LC:

Gv0
L = argmax

G=(V,E,V,L)⊆GL
∧ v0∈V

LC(G) = argmax
G=(V,E,V,L)⊆GL

∧ v0∈V

LCint(G)

LCext(G)
(1)
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where LCint(G) is a function proportional to the density of links among nodes
within G, and LCext(G) is a function proportional to density of links between
nodes within G and nodes outside G.

It should be emphasized that our formulation accounts for the internal-to-
external connection density ratio rather than the absolute amount of internal
and external links to the community. This is an important aspect since, as
first analyzed in (Chen et al. 2009), it allows for alleviating the issue of insert-
ing many weakly-linked nodes (i.e., outliers) into the local community being
discovered.

In our setting, we also have to cope with the complexity of a multilayer
network model. In this regard, in the following section we shall provide dif-
ferent definitions of our multilayer local community functions LCint(G) and
LCext(G).

3.3 Multilayer Local Community functions

Given GL = (VL, EL,V,L) and a seed node v0, we denote with C ⊆ V the
node set and with EC ⊆ EL the edge set of subgraph Gv0

L corresponding
to the local community built around node v0; moreover, when the context
is clear, we will use C to refer to the local community subgraph. Symbol
EC

i = {(u, v)|∃((u, Li), (v, Li)) ∈ EC} will be used to specialize EC for edges
in the community that correspond to a given layer Li.

As discussed in the previous section, for a local community being con-
structed, the shell set refers to nodes external to the community that are
neighbors of nodes in the community, and these within-community neighbors
of shell nodes are also called boundary nodes. We define the shell set of C as:

S = {v ∈ V \ C | ∃((u, Li), (v, Lj)) ∈ EL ∧ u ∈ C}

and the boundary set of C as:

B = {u ∈ C | ∃((u, Li), (v, Lj)) ∈ EL ∧ v ∈ S}.

Moreover, we denote with EB = {(u, v) | ((u, Li), (v, Lj)) ∈ EL ∧ u ∈
B ∧ v ∈ S} the set of edges outgoing from C, and for any layer Li, E

B
i =

{(u, v)|∃((u, Li), (v, Li)) ∈ EB} as the portion of EB corresponding to edges
of layer Li.

We devise different ways for completely specifying the internal-to-external
connection density ratio expressed in the objective function of the problem in
Def. 1. In particular, we will consider two intuitive criteria:

– Extension of the local community functions to handle multiple layers. In
Sect. 3.3.1, we accomplish this by linearly combining the layer-specific con-
tributions to the connection density ratio.
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– Integration of multilayer-aware, “homophilic” bias to control the commu-
nity expansion. Homophily explains the tendency of individuals to associate
and bond with similar others. Therefore, we might also want to make the
evaluation of a candidate node sensitive to the affinity of the node with
some of the community members. The rationale here is to bias the choice of
a node in terms of its (direct or indirect ) homophily with the community,
rather than only considering its contribution to the internal-to-external
connection density ratio. In Sects. 3.3.2 and 3.3.3, we pursue this goal by
modeling a within-layer similarity-based factor and a cross-layer similarity-
based factor, respectively, into the objective function.

3.3.1 Layer-weighting-based local community functions

In our first specification of the problem in Def. 1, we incorporate multilayer
features in the local community functions. One intuitive way to do this is to
account for the relevance of each of the layers, which brings to the following
definition of layer-weighting-based local community functions.

Definition 2 (Layer-weighted local community functions) Given GL =
(VL, EL,V,L) and a local community C, the layer-weighting-based local com-
munity internal function is defined as:

LCint(C) =
1

|C|
∑
v∈C

∑
Li∈L

ωi|EC
i (v)| (2)

The layer-weighting-based local community external function is defined as:

LCext(C) =
1

|B|
∑
v∈B

∑
Li∈L

ωi|EB
i (v)| (3)

where ωi (for every Li ∈ L) are non-negative real-valued coefficients, with∑
Li∈L ωi = 1, which define a weighting scheme over the layers.

The layer weighting scheme based on coefficients ωi is set by default to
a uniform distribution. Alternatively, it can be specified following either in
an unsupervised or a supervised way. For instance, assuming to have some
external knowledge on the relevance of the layers, the weights would be defined
proportionally, thus following a supervised criterion. On the other hand, using
any other distribution reflecting some known or computable graph property of
the nodes/edges in each layer, would correspond to an unsupervised approach.

3.3.2 Within-layer similarity-based local community functions

While accounting for the presence of multiple layers, we believe it is also
important to control the community expansion based on a notion of similarity
in the node linkage, which might express a homophilic factor in the definition
of multilayer local community functions.
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To this end, two major requirements are: (i) how to choose the analytical
form of the similarity function, and (ii) how to deal with the different, layer-
specific connections that any two nodes might have in the multilayer graph.
We address the first point in an unsupervised fashion, by resorting to any
similarity measure that can express the topological affinity of two nodes in
the graph. Concerning the second point, one straightforward solution is to
determine the similarity between any two nodes focusing on each layer at a
time. The above points are formally captured by the following definition.

Definition 3 (Within-layer similarity-based local community func-
tions) Given GL = (VL, EL,V,L) and a local community C, the within-layer
similarity-based community internal relation is defined as:

LCint(C) =
1

|C|
∑
v∈C

∑
Li∈L

∑
(u,v)∈EC

i
∧u∈C

simi(u, v) (4)

The within-layer similarity-based community external relation is defined as:

LCext(C) =
1

|B|
∑
v∈B

∑
Li∈L

∑
(u,v)∈EB

i
∧u∈S

simi(u, v) (5)

where simi(u, v) denotes the similarity between nodes u, v contextually to layer
Li.

As previously mentioned, we adopt an unsupervised approach to the eval-
uation of the similarity between two nodes u, v, by measuring the topological
affinity of u and v. We choose to accomplish this by resorting to any topology-
based similarity measure between two node sets, or more generally, between
their induced subgraphs. In this work, we regard the generic form of simi(u, v)
as f(Ni(u), Ni(v)), where f denotes a function proportional to the similarity
of two node sets Ni(u), Ni(v), with Ni(x) = {y ∈ V|(y, x) ∈ Ei} as the set
of neighbors of a node x in layer Li. In Section 4 we will discuss similarity
measures used in our experimental evaluation.

3.3.3 Cross-layer similarity-based local community functions

One evident simplification in the previous definition is that it expresses the
homophily between two nodes by quantifying the strength of their connections
considering the layers on which they lay as separately to each other. This
might also be a limitation in that the within-layer similarity-based method is
not able to capture indirect homophily, i.e., ties between nodes that are not
directly connected through the network: nevertheless, two nodes can still have
some topological affinity even without the presence of an explicit edge in the
network (e.g., having lots of friends in common while being unknown to each
other). Based on this simple intuition, we provide our definition of cross-layer
similarity-based local community functions.
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Definition 4 (Cross-layer similarity-based local community functions)
Given GL = (VL, EL,V,L) and a local community C, the cross-layer similarity-
based community internal function is defined as:

LCint(C) =
1

|C|
∑

u,v∈C

∑
Li,Lj∈L
∧u∈Vi,v∈Vj

simi,j(u, v) (6)

The cross-layer similarity-based community external relation is defined as:

LCext(C) =
1

|B|
∑

v∈B,u∈S

∑
Li,Lj∈L
∧u∈Vi,v∈Vj

simi,j(u, v) (7)

where simi,j(u, v) denotes the similarity between u in layer Li and v in layer
Lj.

Analogously to the previous definition, simi,j(u, v) corresponds to a topology-
based similarity measure between the sets of neighbors of u and v, which
however in this case are located in different layers.

3.4 Multilayer Local Community Identification Algorithm

Algorithm 1 reports the pseudo-code of the general scheme of our proposed
MultiLayer Local Community Detection (ML-LCD) methods.

The scheme takes as input the multilayer graph GL and a seed node v0,
and computes the local community C associated to v0. Recall that knowledge
on the topology of the multilayer graph is only partial in our setting; pre-
cisely, at any give time step, only the direct neighbors of a node are known
in advance. Note also that the general scheme is actually instantiated in three
algorithms, according to Def. 2, Def. 3, or Def. 4. We will use notation ML-
LCD-lw , ML-LCD-wlsim , and ML-LCD-clsim to refer to the ML-LCD algo-
rithm equipped with layer-weighting-based, within-layer similarity-based, and
cross-layer similarity-based local community functions, respectively.

At the beginning, the boundary set (B) and the community (C) are ini-
tialized with the starting seed, while the shell set (S) is initialized with the
neighborhood set of v0 considering all the layers in L. The initial value of
LC(C) is computed (lines 3–4) according to one of the three approaches for
the definition of the local community functions. The algorithm then starts
expanding the node set C (lines 5–19). First, it evaluates nodes v belonging
to the current shell set S, and selects the vertex v∗ that corresponds to the
maximum value of objective function LC if the node would be added to C
(line 6). The choice of candidate node v∗ impacts on both S and B (lines
7–8): node v∗ is removed from S (since it has been examined), whereas all
nodes in B that have no other neighbors in S than v∗ are removed from B.
Since adding node v∗ to C might not increase the current value of the objec-
tive function, the algorithm checks if (i) v∗ actually increases the quality of
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Algorithm 1 Multilayer Local Community Detection (ML-LCD) scheme

Input: Multilayer graph GL = (VL, EL,V,L) (only partially known),
seed node v0 ∈ VL.

Output: Local community C for v0.
1: B ← {v0}, C ← B
2: S ← {v|(v, v0) ∈ EL ∀L ∈ L}
3: currLCint ← LCint(C), currLCext ← LCext(C) //using Def. 2, Def. 3, or Def. 4
4: currLC ← LC(C) = currLCint/currLCext

5: repeat
6: v∗ ← argmax

v∈S
LC(C ∪ {v}) //using update rules in Eq. 8–11

7: S ← S \ {v∗}
8: B ← B \ {u ∈ B|v∗ ∈ N(u) ∧ @(u, v) : v ∈ S}
9: if LC(C ∪ {v∗}) > currLC ∧ LCint(C ∪ {v∗}) > currLCint

10: C ← C ∪ {v∗}
11: N¬C ← N(v∗) \ C
12: if N¬C 6= ∅
13: B ← B ∪ {v∗}
14: S ← S ∪N¬C
15: B ← B ∪ {u ∈ C \B|N(u) ⊆ S}
16: currLCint ← LCint(C), currLCext ← LCext(C),

currLC ← currLCint/currLCext

17: else
18: currLCext ← LCext(C)
19: until LC(C) cannot be further maximized
20: return C

C (i.e., LC(C ∪ {v∗}) > currLC) and (ii) v∗ helps to strength the internal
connectivity of the community (i.e., LCint(C ∪ {v∗}) > currLCint). If both
conditions are satisfied (line 9), node v∗ is added to C and the following ac-
tions are taken: (i) v∗ is added to B as long as it has neighbors that are not in
C (line 13) , and the shell set is updated to contain these nodes (line 14); (ii)
a further update to B might be requested in case there are nodes in C that
now have neighbors in S (line 15); (iii) LC(C ∪ {v∗}) becomes the new value
of currLC. Otherwise, if node v∗ is not added to C, only LCext(C) is updated
according to the changes in S and B (performed at lines 7-8). The algorithm
terminates when no further improvement in LC(C) is possible.

LCint and LCext update formulas. Testing a candidate node v ∈ S
for possible insertion into C (line 6) requires evaluation of LC for an updated
community C ∪ {v}. To do this, we can avoid computing LCint and LCext

from scratch by using the incremental update formulas reported next; in this
regard, we use symbols Bv and Sv, where Bv ⊆ B contains neighbors of v in
B that have no other neighbors in S, and Sv = N(v) \ C contains neighbors
of v that are not in C.

– ML-LCD-lw and ML-LCD-wlsim:

LCint
v = |C|LCint +

∑
u∈C

∑
Li∈L

∧(u,v)∈EC
i

Γ (8)
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LCext
v = |B|LCext +

∑
u∈Sv

∑
Li∈L

∧((u,Li),(v,Li))∈EL

Γ−
∑
u∈Bv

∑
Li∈L

∧(u,v)∈EB
i

Γ (9)

where Γ is a reference such that Γ ≡ ωi in the case of ML-LCD-lw and
Γ ≡ simi(u, v) in the case of ML-LCD-wlsim.

– ML-LCD-clsim:

LCint
v = |C|LCint +

∑
u∈C

∑
Li,Lj∈L

∧((u,Li),(v,Lj))∈EL

simi,j(u, v) (10)

LCext
v = |B|LCext +

∑
u∈Sv

∑
s∈S

∑
Li,Lj∈L

∧((u,i),(s,j))∈EL

simi,j(u, s) +

−
∑
u∈Bv

∑
s∈S

∑
Li,Lj∈L

∧((u,i),(s,j))∈EL

simi,j(u, s) (11)

3.5 Computational complexity aspects

We discuss here computational complexity aspects of ML-LCD. We introduce
symbol Φ to denote the computational cost of any of the proposed local com-
munity functions, and symbol d to indicate the maximum degree of a node
in the network. We recall that ` = |L| denotes the number of layers and |C|
denotes the size of the community being discovered.

In Algorithm 1, at each iteration the community size increases by one node
until it reaches a certain size |C|, whereas the shell set S size may vary over the
iterations. In this regard, we introduce the quantity (k×d) as an upper bound
of the size of S at the current iteration, where k corresponds to the size of
the current community (proportional to the number of the current iteration).
Note that this upper bound corresponds to the worst case in which all nodes
in the current community are assumed to belong to the boundary set B and
all of the neighbor sets are disjoint.

Since the algorithm terminates in a number of iterations which is propor-
tional to the size of the generated community, we state the following upper
bound of the overall computational complexity of Algorithm 1: O(d × Φ ×∑|C|

k=1 k), which can be rewritten as O(|C|2 × d× Φ).
Considering ML-LCD-lw , the characteristic operation has a cost propor-

tional to the neighbors of any node v in C and the number of layers `, since
the weights ω are known at constant time. Therefore, Φ = O(` × d), which
leads to the cost of O(|C|2 × d2 × `) for ML-LCD-lw .

While following the same strategy as ML-LCD-lw , method ML-LCD-wlsim
also requires the computation of similarity between any node v and its neigh-
bors. This implies at least comparison between the set of (direct) neighbors of
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Table 1 Main characteristics of the multilayer network datasets

Dataset # Nodes # Edges #Layers Density Adeg Alayer

Airlines 417 3588 37 0.056 17.21 4.88
AUCS 61 620 5 0.114 20.33 3.67
Biogrid 38936 342599 7 4.8e-4 17.6 1.9
DBLP 83901 159302 50 8.9e-4 3.8 1.35
RealityMining 88 355 3 0.047 8.07 2.42
RemoteSensing 642 4341 5 0.006 13.52 4.19
TW-YT-FF 6407 74862 3 2.35e-3 23.37 1.86

v and the set of (direct) neighbors of u. If we assume that the neighborhood
lists are always ordered (based on their identifiers), the cost of set compari-
son becomes O(d log d) — checking if an element is present in an ordered list
costs O(log d) and this basic operation is repeated d times. In this case, Φ =
O(`×d2 log d). Therefore, the cost for ML-LCD-wlsim is O(|C|2×d3 log d× `).

The topology-unawareness of ML-LCD-clsim leads to an increase in the
cost Φ. Specifically, the cost becomes proportional to |C|2 multiplied by the
sum of the costs of functions LCint and LCext. The latter is expressed in
terms of size of S, which, in turn, is expressed in terms of size of the current
community; therefore, in the worst case the cost of LCext is predominant over
LCint, thus we focus on LCext. At each iteration of Algorithm 1, we might
compare each node in the boundary B (in the worst case, the whole C), to
each node in the shell set S. Therefore, for ML-LCD-clsim, the overall cost is

given by: O(
∑|C|

k=1 k× d× k× d× `2 × d log d), where the first term (k× d) is
related to the basic cost, while the second term (k × d) refers to the specific
topology-unawareness characteristic of ML-LCD-clsim. Rearranging the terms
in the previous formula results in O(|C|3 × d3 log d× `2).

4 Experimental Evaluation

In the following, Section 4.1 summarizes the evaluation datasets, Section 4.2
introduces competing methods, and Section 4.3 describes the experimental
settings.

4.1 Data

We used seven real-world multilayer network datasets, namely Airlines (Cardillo
et al. 2013), AUCS (Dickison et al. 2016), BIOGRID (Bonchi et al. 2014),
DBLP (Boden et al. 2012), Reality Mining (Kim and Lee 2015; Bourqui et al.
2016), RemoteSensing, and TW-YT-FF (Dickison et al. 2016). Airlines de-
scribes airline companies operating in Europe. Nodes and edges represent
airport locations and routes, respectively, and each layer corresponds to a
different airline company. AUCS models relationships between employees of
a University department considering five different aspects: coworking, having
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lunch together, Facebook friendship, offline friendship, and coauthorship. Bi-
ogrid is a protein-protein interaction network, where layers correspond to seven
different types of interactions between proteins. In DBLP, nodes correspond
to authors and layers represent the top-50 Computer Science conferences. Two
authors are connected on a layer if they co-authored at least two papers to-
gether in a particular conference. Reality Mining contains human interaction
data collected by the MIT Media Lab, where layers represent different media
employed to communicate: subjects calling each other, friendship claims, and
text message exchanges. RemoteSensing is a network derived from a remote
sensing satellite image obtained from the SWH website.1 Nodes correspond
to segments of the image and edges of a certain type exists between two seg-
ments if they are adjacent and have the same value for a certain radiometric
attribute (layer). TW-YT-FF is a cross-platform network built by exploiting
the feature of FriendFeed as social media aggregator to align registered users
who were also members of Twitter and YouTube. Nodes correspond to users
and edges to friendships over the three different platforms as layers.

Table 1 summarizes main characteristics of our evaluation datasets. Node
relations in all datasets are treated as symmetric. We denote with Adeg the av-
erage degree of a node considering multiple edges, and with Alayer the average
number of layers in which a node is present. Note that Airlines and DBLP are
rich in number of layers (resp. 37 and 50), and that Airlines, RemoteSensing,
AUCS and RealityMining have nodes, on average, involved in more than two
layers (resp. 4.88, 4.19, 3.67 and 2.42).

4.2 Competing methods

Our evaluation focus is on understanding how the proposed local community
detection methods perform on multilayer networks. Nevertheless, given the un-
availability of competing methods for local community detection in multilayer
networks, we devised two stages of comparative evaluation: (1) comparison
with single-layer, local community detection, and (2) comparison with multi-
layer, global community detection approaches.

For the first stage of comparative evaluation, we resorted to the methods
LCD (Chen et al. 2009) and Lemon (Li et al. 2015). The LCD approach is
chosen since its strategy of identification of a local community is close to ours,
while Lemon is a more recent, state-of-the-art method for local community
detection. Since the methods are designed to deal with single-layer graphs, we
applied each of them on the aggregate graph derived from the input multilayer
network GL, i.e., a graph with set of nodes V and such that an edge exists
between any two nodes that are connected in at least one layer in GL. While
LCD is completely parameter free, for Lemon we used the default setting,2 also

1 https://www.theia-land.fr/en/products/spot-world-heritage
2 As specified in the publicly available implementation from the repository at https:

//github.com/YixuanLi/LEMON

https://www.theia-land.fr/en/products/spot-world-heritage
https://github.com/YixuanLi/LEMON
https://github.com/YixuanLi/LEMON
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disabling the ground-truth option and the sampling for graphs with less than
1k nodes.

For the second stage of comparative evaluation, we used Locally Adap-
tive Random Transitions (LART) (Kuncheva and Montana 2015), Principal
Modularity Maximization (PMM) (Tang et al. 2009) and Generalized Louvain
(GL) (Mucha et al. 2010). Note that all such methods produce non-overlapping
global community structures, while the local communities produced by ML-
LCD for various seed nodes can of course overlap to each other. Note also that
LART and GL deal with node-layer pairs, thus allowing different instances of
the same node to belong to more communities; to make the two methods com-
parable with all the other approaches, we apply a majority voting mechanism,
so that a node is assigned to the community containing the majority of its
instances.

Inferring Multilayer Global Community Structure. In order to
compare our ML-LCD methods with global community detection methods, we
propose a heuristic, hereinafter referred to as LocToGlob, to infer a global
non-overlapping community structure from local solutions produced by our
methods.

LocToGlob takes as input the multilayer graph GL and yields a set of non-
overlapping communities. The algorithm works by iteratively performing a
covering phase, which first computes the local community for a selected seed
node, then updates the global community structure and the portion of graph
that has not been processed yet. For the selection of seed node at each iteration
of ML-LCD, we employ the simple heuristic (Fagnan et al. 2014), which first
samples at random a node v then selects the node with maximum degree
among v and its neighbors. The covering phase terminates when all nodes
have been processed. Since this phase may produce singleton communities, a
post-processing phase is performed to re-assign each of the nodes belonging
to a singleton community to the (non-singleton) community for which adding
the singleton produces the highest increase in the local community function.

4.3 Experimental settings

Each of our ML-LCD methods was carried out over all nodes in a network,
by selecting one node at a time as seed. ML-LCD-wlsim and ML-LCD-clsim
require the definition of a node similarity measure for a given layer (simi(·, ·))
or couple of layers (simi,j(·, ·)), respectively (cf. Section 3.3). We considered
three alternative measures, as listed below:

– Jaccard similarity, i.e., simi,j(u, v) =
|Ni(u)∩Nj(v)|
|Ni(u)∪Nj(v)| , where Ni(u) = {v ∈

V|(v, u) ∈ Ei} denotes the set of neighbors of a node u in layer Li (with
i = j for ML-LCD-wlsim).

– Cosine similarity, whereby the proportionality of shared neighborhood is
smoothed to favor unbalanced neighborhoods to be compared: simi,j(u, v) =
|Ni(u)∩Nj(v)|√
|Ni(u)||Nj(v)|

(with i = j for ML-LCD-wlsim).
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– Triad-based similarity, which we define as a Jaccard similarity calculated
on the set of 3-cliques to which any two nodes u, v belong to: simi,j(u, v) =
|Ni(u)∩Nj(v)|
|Ti(u)∪Tj(v)| , where Ti(u) indicates the set of 3-cliques (or triads) to which

node u belongs to on layer i (i = j for ML-LCD-wlsim). Please note that,
since we take into account undirected graphs, the number of triads in com-
mon between two adjacent nodes is equivalent to the number of neighbors
in common.

We will use notations jac, cos, and triads to refer to the above instantiations
of function sim. For the layer weighting scheme in ML-LCD-lw , we assume
uniform weights.

As concerns the evaluation of global community detection, we averaged
performance results of LocToGlob and PMM over a relatively large number of
runs (50), in order to reduce the bias due to their non-deterministic behav-
ior. The number of desired communities, which is a further input in PMM,
was set equal to the number of communities extracted by each of our Loc-
ToGlob variants based on ML-LCD. Performance results by LocToGlob variants
and competing ones are assessed by means of the multilayer (or multislice)
modularity measure proposed in (Mucha et al. 2010).3

5 Results

We organize the presentation of experimental results in three subsections: Sec-
tion 5.1 provides an in-depth analysis of the communities identified by our ML-
LCD methods, whereas the subsequent two subsections contain comparative
evaluation of ML-LCD with local community detection methods on aggregate
graphs (Section 5.2) and with global, multilayer community detection methods
(Section 5.3).

5.1 Evaluation of ML-LCD methods

We assessed the behavior of the proposed ML-LCD methods in terms of: (1) size
of extracted local communities, (2) structural characteristics of the commu-
nities, (3) similarity between communities, (4) distribution of layers involved
in each of the local communities, (5) community distribution over number of
edges, (6) impact of similarity measures on ML-LCD-wlsim and ML-LCD-clsim,
(7) overlap of communities generated by each of the methods, (8) efficiency
analysis. In the following we will present results concerning each of the above
evaluation aspects.

3 Experiments were carried out on an Intel Core i7-3960X CPU @3.30GHz, 64GB RAM
machine. All our algorithms are written in Python. Original codes of competing methods
are in Python (LART) and Matlab (PMM and GL).
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Table 2 Mean and standard deviation of the size of the communities identified by ML-LCD
methods and by LCD and Lemon. Bold and underlined values correspond to the maximum
(mean) size obtained by a ML-LCD method and all selected methods, respectively.

Dataset ML-LCD-lw ML-LCD-wlsim ML-LCD-clsim LCD Lemon

Airlines 33.62 ± 33.57 11.48 ± 15.04 20.42 ± 21.38 9.69 ± 11.29 73.34 ± 15.83
AUCS 11.23 ± 3.40 7.90 ± 2.74 9.10 ± 3.30 11.48 ± 4.28 55.52 ± 11.48
Biogrid 17.65 ± 53.27 4.87 ± 9.14 8.80 ± 38.71 6.45 ± 11.43 61.88 ± 23.99
DBLP 4.52 ± 2.74 3.67 ± 2.16 3.72 ± 2.90 3.53 ± 2.43 36.45 ± 24.71
RealityMining 8.05 ± 7.08 3.37 ± 1.77 7.02 ± 5.28 5.23 ± 4.31 49.55 ± 21.36
RemoteSensing 7.46 ± 3.30 5.66 ± 2.53 5.47 ± 2.82 7.98 ± 3.44 37.83 ± 18.88
TW-YT-FF 15.54 ± 29.14 17.53 ± 34.01 17.98 ± 21.05 9.88 ± 17.71 70.75 ± 21.00

Table 3 Per-layer average path length and clustering coefficient of the communities iden-
tified by ML-LCD methods. Bold values correspond to the minimum per-dataset (mean)
average path length and to the maximum per-dataset (mean) clustering coefficient.

Dataset average path length clustering coefficient
mean sd max mean sd max

ML-LCD-lw
Airlines 0.881 ± 0.143 2.259 ± 0.365 0.077 ± 0.088 0.488 ± 0.374
AUCS 1.479 ± 0.201 1.978 ± 0.207 0.560 ± 0.180 0.801 ± 0.138
Biogrid 0.656 ± 0.430 6.049 ± 0.767 0.095 ± 0.102 1.000 ± 0.000
DBLP 0.041 ± 0.029 2.306 ± 0.284 0.016 ± 0.011 1.000 ± 0.000
RealityMining 1.409 ± 0.108 2.545 ± 0.621 0.276 ± 0.112 0.889 ± 0.192
RemoteSensing 1.474 ± 0.048 2.786 ± 0.145 0.471 ± 0.082 1.000 ± 0.000
TW-YT-FF 1.368 ± 1.107 4.515 ± 2.250 0.128 ± 0.118 1.000 ± 0.000

ML-LCD-wlsim
Airlines 0.222 ± 0.168 1.872 ± 0.397 0.022 ± 0.027 0.508 ± 0.398
AUCS 1.182 ± 0.237 1.880 ± 0.364 0.533 ± 0.238 0.938 ± 0.087
Biogrid 0.314 ± 0.247 3.839 ± 0.655 0.079 ± 0.091 1.000 ± 0.000
DBLP 0.030 ± 0.021 1.875 ± 0.202 0.015 ± 0.011 1.000 ± 0.000
RealityMining 0.778 ± 0.111 1.833 ± 0.153 0.295 ± 0.126 1.000 ± 0.000
RemoteSensing 1.201 ± 0.053 2.541 ± 0.265 0.529 ± 0.094 1.000 ± 0.000
TW-YT-FF 1.091 ± 0.473 2.660 ± 0.121 0.301 ± 0.233 0.917 ± 0.144

ML-LCD-clsim
Airlines 0.557 ± 0.180 2.208 ± 0.485 0.035 ± 0.052 0.277 ± 0.252
AUCS 1.249 ± 0.221 2.022 ± 0.269 0.447 ± 0.237 0.824 ± 0.176
Biogrid 0.336 ± 0.332 6.593 ± 2.439 0.037 ± 0.044 1.000 ± 0.000
DBLP 0.028 ± 0.020 2.306 ± 0.324 0.010 ± 0.008 1.000 ± 0.000
RealityMining 1.165 ± 0.276 2.743 ± 0.287 0.113 ± 0.083 0.719 ± 0.286
RemoteSensing 1.244 ± 0.183 3.073 ± 0.379 0.232 ± 0.043 1.000 ± 0.000
TW-YT-FF 1.211 ± 0.955 3.771 ± 1.440 0.062 ± 0.058 0.546 ± 0.506

5.1.1 Size of local communities

Table 2 compares our ML-LCD methods in terms of size of the local commu-
nities produced. (We refer here only to ML-LCD methods, while results corre-
sponding to LCD and Lemon will be discussed later in Sect. 5.2). On average,
ML-LCD-lw yields the largest communities on all datasets, except TW-YT-FF ;
on this dataset, which has a unique combination of highest Adeg and lowest
Alayer (cf. Table 1), ML-LCD-clsim communities slightly prevail in size w.r.t.
ML-LCD-wlsim, though the latter shows the largest variation. In general, ML-
LCD-wlsim yields the smallest communities on all datasets (with the exception
of RemoteSensing on which however it shows the smallest variation). Note also
that, on DBLP, all methods tend to identify quite small communities, which
can be explained due to the nature of the node relation (i.e., co-authorship).
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Table 4 Pairwise comparison of communities produced by ML-LCD methods: mean and
standard deviation of Jaccard similarity. Bold values correspond to the highest per-dataset
(mean) similarities.

Dataset ML-LCD-lw vs. ML-LCD-wlsim vs. ML-LCD-lw vs.
ML-LCD-wlsim ML-LCD-clsim ML-LCD-clsim

Airlines 0.345 ± 0.351 0.389 ± 0.397 0.391 ± 0.349
AUCS 0.641 ± 0.314 0.688 ± 0.288 0.638 ± 0.364
Biogrid 0.44 ± 0.40 0.722 ± 0.376 0.425 ± 0.395
DBLP 0.753 ± 0.306 0.807 ± 0.258 0.674 ± 0.317
RealityMining 0.536 ± 0.361 0.542 ± 0.319 0.458 ± 0.308
RemoteSensing 0.536 ± 0.305 0.531 ± 0.234 0.444 ± 0.265
TW-YT-FF 0.254 ± 0.300 0.328 ± 0.325 0.237 ± 0.251

5.1.2 Structure of the communities

Table 3 reports the per-layer average path length and clustering coefficient of
the identified communities. For each of the datasets, ML-LCD methods, and
measures, we report mean and standard deviation over the layers, of the mean
and maximum values found over all communities. ML-LCD-lw communities
tend to have the highest mean and maximum values of average path length,
followed by ML-LCD-clsim. This is likely to be related to the different sizes of
communities produced by the methods. Moreover, all methods’ communities
show very low average path length on DBLP, which again depends on the
co-authorship type of relations.

Considering the clustering coefficient values, the three methods behave
quite similarly to each other on AUCS, DBLP, and RealityMining. Some clique
communities are identified on Biogrid, DBLP and RealityMining (all methods),
TW-YT-FF (ML-LCD-lw), and RealityMining (ML-LCD-wlsim). Also, by cou-
pling with average path length results, roughly small-world communities are
observed on AUCS, RealityMining, RemoteSensing and (for ML-LCD-wlsim)
TW-YT-FF. The lowest values of average path length and clustering coeffi-
cient is achieved by all methods on DBLP, which might be explained due to
the very sparse connectivity in this dataset (cf. Table 1).

5.1.3 Community similarity

We also compared our methods in terms of Jaccard similarity between the
sets of nodes belonging to the local communities respectively extracted for
the same seed node. Table 4 summarizes the mean and standard deviation
similarities aggregated over all local communities.

The highest average similarity is generally achieved by ML-LCD-wlsim vs.
ML-LCD-clsim, with marginal exceptions for Airlines (ML-LCD-lw vs. ML-
LCD-clsim) and RemoteSensing (ML-LCD-lw vs. ML-LCD-wlsim). Also, the
comparison between ML-LCD-lw and ML-LCD-clsim always results in the low-
est average similarity with the exception of Airlines where ML-LCD-lw and
ML-LCD-wlsim behave more differently from each other.
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(a) Airlines (b) Biogrid (c) DBLP

Fig. 2 Distribution of number of layers over communities. (Best viewed in color version,
available in electronic format)

5.1.4 Layer coverage over communities

We analyzed the number of layers covered by each particular community, for
each of the ML-LCD methods. Figure 2 reports results for the datasets with
higher number of layers, i.e., Airlines, Biogrid and DBLP. (Communities are
sorted by decreasing number of layers.) On DBLP, all methods show a stairs-
like behavior on the various layers, with a tendency of ML-LCD-clsim to pro-
duce more communities that cover a lower number of layers. A less regular form
of stairs-like trend is observed for Biogrid, with a long tail (more evident for
ML-LCD-clsim) of single-layer communities. More interestingly, on Airlines, a
large fraction of communities (above 50%) by ML-LCD-lw cover all or most
of the layers; ML-LCD-clsim here also produces communities that lie on most
layers, although for a much smaller fraction of them (about 12%), whereas
ML-LCD-wlsim produces about 25% of the communities covering 50-70% of
layers.

Moreover, considering the datasets with the highest network-specific aver-
age ratio of layers per node (i.e., AUCS, RealityMining and RemoteSensing),
we observe that all methods are able to produce most of the communities
that cover all layers (results not shown). On TW-YT-FF, at least two of three
layers are always covered by a community.

5.1.5 Distributions of communities for number of edges

In addition to the previous analysis, we also studied the per-layer distribution
of communities for number of edges. Due to space limitation, we report here
details on AUCS and Airlines, which can be regarded as representatives of
our evaluation datasets in terms of layer coverage and sparseness. Figures 3–4
show the kernel density estimate of the community distribution for number of
edges, over each layer in a network.

On AUCS (Fig. 3), when using ML-LCD-lw , layers #3 and #4 characterize
most of the communities with number of edges less than 10 and around 20,
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(a) ML-LCD-lw (b) ML-LCD-wlsim (c) ML-LCD-clsim

Fig. 3 Kernel density estimates of per-layer community distributions for number of edges,
on AUCS. (Best viewed in color version, available in electronic format)
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(a) ML-LCD-lw (b) ML-LCD-wlsim (c) ML-LCD-clsim

Fig. 4 Kernel density estimates of per-layer community distributions for number of edges,
on Airlines. (Best viewed in color version, available in electronic format)

Table 5 Mean and standard deviation of the size of the communities identified by ML-LCD-
wlsim and ML-LCD-clsim using Cosine and triad-based similarity measures. Bold values
correspond to the highest per-dataset (mean) size.

Dataset ML-LCD-wlsim ML-LCD-clsim
cos triads cos triads

Airlines 13.348 ± 17.023 8.127 ± 11.968 21.362 ± 22.197 19.273 ± 21.324
AUCS 8.869 ± 3.032 8.328 ± 2.274 12.230 ± 8.538 8.689 ± 4.298
Biogrid 5.383 ± 11.748 4.953 ± 3.919 20.419 ± 57.634 7.338 ± 16.300
DBLP 3.266 ± 2.466 3.642 ± 2.108 3.706 ± 3.930 3.764 ± 2.843
RealityMining 3.523 ± 2.276 3.333 ± 1.805 10.273 ± 10.441 7.632 ± 5.859
RemoteSensing 5.865 ± 2.620 5.926 ± 2.714 7.945 ± 4.276 7.006 ± 3.844
TW-YT-FF 25.785 ± 42.462 16.700 ± 29.853 18.209 ± 17.020 9.080 ± 5.656

respectively. For the other layers there is instead a tendency to be covered
by communities of varying size (in the full x-axis, for layer #1). Consider-
ing ML-LCD-wlsim and ML-LCD-clsim, layer #3 characterizes the majority of
communities with smaller number of edges, while peaks of layer #5 and #4,
respectively, correspond to less than 20 edges per community.

On Airlines (Fig. 4), distributions appear very right-skewed w.r.t. the num-
ber of edges. For ML-LCD-lw , the highest density corresponds to a small group
of layers (being #34 the dominant one), in the regime around 25 edges. Much
more diversified is the situation for ML-LCD-wlsim and ML-LCD-clsim, where
more layers are characteristic for a relatively large number of edges; in par-
ticular, ML-LCD-clsim is able to produce communities where more than five
layers correspond to high density for a number of edges between ten and forty.

5.1.6 Impact of similarity measures on ML-LCD-wlsim and ML-LCD-clsim

We investigated the effect of using measures alternative to Jaccard similarity
(jac), which is chosen as default in ML-LCD-wlsim and ML-LCD-clsim (cf.
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Table 6 Average Jaccard similarity of the node sets corresponding to the communities
obtained by ML-LCD-wlsim and ML-LCD-clsim using Jaccard, Cosine and triad-based sim-
ilarity measures. Mean and standard deviation values are reported. Bold values correspond
to the highest per-dataset (mean) similarities.

Dataset ML-LCD-wlsim ML-LCD-clsim
jac vs. cos jac vs. triads cos vs. triads jac vs. cos jac vs. triads cos vs. triads

Airlines 0.712 ± 0.286 0.680 ± 0.359 0.554 ± 0.328 0.776 ± 0.274 0.836 ± 0.291 0.717 ± 0.308
AUCS 0.914 ± 0.155 0.861 ± 0.227 0.818 ± 0.235 0.804 ± 0.237 0.802 ± 0.258 0.716 ± 0.246
Biogrid 0.769 ± 0.274 0.680 ± 0.349 0.669 ± 0.366 0.664 ± 0.345 0.905 ± 0.234 0.650 ± 0.229
DBLP 0.774 ± 0.221 0.900 ± 0.213 0.725 ± 0.239 0.739 ± 0.221 0.899 ± 0.214 0.714 ± 0.229
RealityMining 0.873 ± 0.218 0.946 ± 0.136 0.839 ± 0.237 0.682 ± 0.251 0.745 ± 0.255 0.659 ± 0.248
RemoteSensing 0.872 ± 0.219 0.810 ± 0.251 0.809 ± 0.246 0.661 ± 0.256 0.660 ± 0.301 0.671 ± 0.279
TW-YT-FF 0.734 ± 0.333 0.824 ± 0.231 0.701 ± 0.294 0.683 ± 0.272 0.728 ± 0.276 0.625 ± 0.292

Table 7 Percentage of identical communities obtained by ML-LCD-wlsim and ML-LCD-
clsim using Jaccard, Cosine and triad-based similarity measures. Bold values correspond to
the highest per-dataset percentages.

Dataset ML-LCD-wlsim ML-LCD-clsim
jac vs. cos jac vs. triads cos vs. triads jac vs. cos jac vs. triads cos vs. triads

Airlines 32.80% 46.50% 24.60% 28.40% 48.90% 23.90%
AUCS 59.00% 55.70% 34.40% 36.10% 52.50% 26.20%
Biogrid 50.70% 47.88% 29.57% 30.98% 45.07% 22.53%
DBLP 41.50% 76.10% 33.60% 32.00% 76.60% 28.50%
RealityMining 70.10% 81.60% 63.20% 23.00% 39.10% 21.80%
RemoteSensing 65.10% 49.00% 49.00% 22.50% 31.50% 26.30%
TW-YT-FF 27.31% 38.76% 25.10% 23.69% 40.76% 22.00%

Section 4.3). Specifically, we discuss results concerning the size, similarity and
matching of communities produced by the two methods when equipped with
each of the similarity measures.

Looking at Table 5, we observe that the average size of the communities
obtained using cosine similarity or triad-based similarity is, in many cases,
higher than the one obtained using Jaccard (cf. Table 2), for both ML-LCD
methods. One exception is represented by DBLP, where all the methods obtain
comparable average sizes. This is probably due to the low connectivity and the
high number of cliques this dataset contains; moreover, in DBLP, almost the
same average community size is obtained by using triads and jac. As a side
remark, the method used (i.e., ML-LCD-wlsim or ML-LCD-clsim) does not
seem to have a strong bias on the relative differences among the behaviors of
the different similarity measures, for what concerns the size of the communities.

Table 6 reports the average Jaccard similarities between the node sets of
the communities obtained by ML-LCD-wlsim and ML-LCD-clsim, by varying
the similarity measures. It can be noted that the most different communi-
ties (i.e., the lowest Jaccard similarity values) are obtained when comparing
communities detected by cos and triads, for both ML-LCD-wlsim and ML-
LCD-clsim (with the only exception of ML-LCD-clsim on RemoteSensing). As
regards the most similar communities, on ML-LCD-clsim higher similarity val-
ues are generally achieved comparing jac and triads measures. Even when this
comparison does not correspond to the highest similarity of community, i.e.,
on AUCS and RemoteSensing, it is very close to the maximum value, which
is therein obtained by comparing jac and cos. This is not surprising since jac
and triads are both Jaccard-based measures, and on some specific networks
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Table 8 Community structure overlap: mean and standard deviation of the Jaccard coeffi-
cients of the node sets over all pairs of local communities generated by each of the ML-LCD
methods. Bold values correspond to the highest per-dataset (mean) community overlaps.

Dataset Airlines AUCS Biogrid DBLP RealityMining RemoteSensing TW-YT-FF

lw 0.136 ± 0.252 0.184 ± 0.347 0.001 ± 0.018 0 ± 0.002 0.080 ± 0.203 0.011 ± 0.081 0.003 ± 0.030
wlsim jac 0.037 ± 0.155 0.122 ± 0.310 0.000 ± 0.012 0 ± 0.002 0.040 ± 0.176 0.008 ± 0.077 0.004 ± 0.050
wlsim cos 0.040 ± 0.153 0.142 ± 0.323 0.000 ± 0.012 0 ± 0 0.039 ± 0.175 0.009 ± 0.080 0.004 ± 0.055
wlsim triads 0.019 ± 0.102 0.131 ± 0.321 0.009 ± 0.079 0 ± 0.002 0.035 ± 0.160 0.009 ± 0.079 0.003 ± 0.056
clsim jac 0.090 ± 0.260 0.135 ± 0.307 0.000 ± 0.010 0 ± 0.002 0.058 ± 0.167 0.007 ± 0.064 0.008 ± 0.071
clsim cos 0.092 ± 0.268 0.158 ± 0.317 0.001 ± 0.025 0 ± 0 0.087 ± 0.207 0.010 ± 0.077 0.008 ± 0.066
clsim triads 0.091 ± 0.261 0.125 ± 0.301 0.014 ± 0.084 0 ± 0.002 0.066 ± 0.173 0.009 ± 0.071 0.012 ± 0.089

the number of shared 3-cliques can be very similar to the number of shared
neighbors, making the effects due to these two measures close to each other.
As regards ML-LCD-wlsim, the highest similarity is achieved again when com-
paring jac and triads on DBLP, RemoteSensing and TW-YT-FF, and when
comparing jac and cos on the other datasets. The latter would indicate that
in the rest of the datasets the neighborhood of nodes to be compared tend to
be of comparable sizes.

We further studied the effect of alternative measures by observing the per-
centage of identical communities obtained by ML-LCD-wlsim and ML-LCD-
clsim. Looking at Table 7, this ranges from 24.60% to 81.60% for ML-LCD-
wlsim, and from 21.80% to 76.60% for ML-LCD-clsim. Generally, high per-
centages are achieved on DBLP, which again is explained by the particular
structure of this network. Considering ML-LCD-clsim, this appears to be more
sensitive to the choice of similarity measure since the percentage of identi-
cal communities is general lower that the corresponding values obtained by
ML-LCD-wlsim. In both cases, highest values are achieved considering the
comparison between jac and triads measures. As regards ML-LCD-wlsim, rel-
atively high percentages are obtained on RemoteSensing and RealityMining,
i.e., datasets which are relatively small in size and number of layers. Con-
versely, the fraction of identical communities decreases considering networks
with more layers and higher connectivity (e.g., on Airlines).

5.1.7 Community structure overlap

In this analysis we evaluated the amount of overlap among the communities
identified by each of the ML-LCD methods on the various networks. To this
purpose, we computed the Jaccard coefficients of the node sets over all pairs
of local communities identified by any particular ML-LCD method. Results,
shown in Table 8, indicate that each of the methods, on all datasets, produces
local communities sharing, on average, relatively few nodes with the other
communities in the network. In all cases, with the exception of all methods
on AUCS and ML-LCD-lw on Airlines, the mean Jaccard coefficient is below
0.1, while the standard deviations are generally higher than the corresponding
means, up to 0.3 on AUCS.

This might be explained considering the network characteristics reported in
Table 1, and the semantics of our evaluation data (as described in Section 4.1).
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From a structural point of view, networks on which ML-LCD methods gener-
ate communities with more overlap are relatively smaller in terms of nodes
(AUCS, Airlines and RealityMining), while less overlapping communities are
identified for sparser and larger networks (RemoteSensing, Biogrid and TW-
YT-FF ). The extreme case is represented by the DBLP network where the
extracted communities roughly form a partition of the network. We remind
that this network contains many small connected components and it is charac-
terized by high sparsity and the lowest average degree per node (Adeg equals to
3.8). The slightly higher overlap of community structure observed on smaller
datasets (i.e., AUCS, Airlines and RealityMining) also finds an intuitive expla-
nation in the nature of the multilayer data, and in particular in the presence
of hubs or bridges in the network. For instance, in the flight routing scenario
corresponding to Airlines, some nodes may represent airport locations that are
main hubs in a certain geographical area (e.g., major European capital cities).
These hubs would be connected to the majority of smaller airports in the area,
and with other main hubs, for almost all airline companies flying in that area,
therefore they will be more likely to be included in several local communities.
As concerns AUCS and RealityMining, since these networks represent different
online/offline interactions between (relatively) small sets of individuals, some
highly popular individuals may act as “bridges” across layers, causing a certain
overlap in the local communities built around them and their neighbors. For
instance, the chief of the department represented in AUCS is likely to appear,
together with full professors, in several local communities. A similar scenario
can be figured out for RealityMining where members of the MIT Media Labo-
ratory and members of the MIT Sloan business school can belong to different
communities since they attend the same master classes and/or sport activities
in the campus.

5.1.8 Efficiency analysis

We discuss here the time performances of ML-LCD. Table 9 shows, for each
dataset and method, the average, standard deviation and maximum execution
times, over all nodes in the network. Note that minimum time values are not
reported, since they are of the order of magnitude of 1.0e-4 in all cases, except
for TW-YT-FF where they correspond to few seconds for all methods.

Considering first ML-LCD-lw and the default versions of ML-LCD-wlsim
and ML-LCD-clsim (jac option), it can be noted that, when the methods
produce communities of comparable size (like in AUCS, DBLP and Remote-
Sensing ; cf. Table 2), ML-LCD-lw and ML-LCD-wlsim have similar time per-
formance while ML-LCD-clsim tends to be slower; in particular, on DBLP, this
behavior appears to be more evident considering the maximum time, since the
average time is biased by the very sparse connectivity of this network and
the presence of many, small, connected components in which the size of the
shell set plays a minor role than in the other networks. Conversely, on Biogrid
and RealityMining, ML-LCD-lw tends to run more slowly than the other two,
whereas on Airlines the time performances of ML-LCD-lw are between those of
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Table 9 Time performance (in seconds) of ML-LCD-lw , ML-LCD-wlsim and ML-LCD-clsim
using different similarity measures. Mean, standard deviation and maximum values are com-
puted over the execution times of each ML-LCD method over all nodes in each network, by
selecting one node at a time as seed. Bold values and underlined values correspond to the
lowest and the highest mean time, respectively.

Dataset lw wlsim jac wlsim cos wlsim triads clsim jac clsim cos clsim triads
mean

max
mean

max
mean

max
mean

max
mean

max
mean

max
mean

max
sd sd sd sd sd sd sd

Airlines
3.872

18.220
1.351

11.759
2.184

15.578
51.101

607
7.252

31.335
20.649

92.297
236

824
4.342 2.393 3.479 107.456 10.182 28.082 319

AUCS
0.042

0.198
0.042

0.194
0.065

0.232
0.638

1.258
0.115

0.430
0.359

2.832
1.451

7.952
0.042 0.036 0.052 0.295 0.097 0.613 1.676

Biogrid
68.8

61789
13.5

5188
10.2

598
1670

62780
43.2

38884
42.1

8378
1073

63307
1196 106 65.9 7840 637 490 5348

DBLP
0.005

0.339
0.004

0.185
0.006

0.341
0.115

13.329
0.005

1.179
0.016

3.826
0.137

39.538
0.020 0.011 0.022 0.607 0.037 0.139 1.504

RealityMining
0.049

0.317
0.010

0.045
0.011

0.039
0.467

1.800
0.040

0.214
0.090

0.845
0.678

3.395
0.087 0.010 0.011 0.406 0.052 0.163 0.832

RemoteSensing
0.019

0.133
0.021

0.265
0.022

0.098
0.064

0.480
0.038

0.364
0.094

0.776
0.213

2.632
0.024 0.028 0.018 0.059 0.058 0.126 0.337

TW-YT-FF
601

9065
123

3651
1493

6266
133514

158704
13493

163299
100

856
11952

32250
1682 578 2270 105151 38922 239 13190

ML-LCD-wlsim and ML-LCD-clsim; also, on TW-YT-FF, ML-LCD-clsim can
perform better than ML-LCD-wlsim. The above findings are clearly related to
both the computational complexity of each of the ML-LCD methods as well
as to the size of the communities extracted by the methods; for instance,
on Airlines, Biogrid and RealityMining, ML-LCD-lw communities are bigger
(from two to four times) than those extracted by the other methods; also, on
TW-YT-FF, the size obtained by ML-LCD-wlsim with triads option is nearly
double the size of ML-LCD-clsim communities (Table 5).

It should be noted that the time performance of the various methods on
TW-YT-FF is several orders of magnitude higher than in the other datasets
(up to an average execution time of 133 514 seconds for wlsim triads and
absolute maximum time for clsim jac). This is explained since, as reported
in Table 1, TW-YT-FF is the dataset having the highest average degree of
node and, among the largest datasets, is also the densest one (one order of
magnitude denser than Biogrid and DBLP). These characteristics make TW-
YT-FF our hardest benchmark in terms of time performance obtained by our
methods.

Concerning the impact of the different similarity measures on the time
performances, the execution time of the methods tend to become much slower
when triads is used, given the generally higher cost of computing all the 3-
cliques in which a node is involved than analyzing its neighbors. Moreover,
options jac and cos generally lead ML-LCD-wlsim and ML-LCD-clsim to be-
have similarly (which is quite expected since the two similarity measures have
the same cost), in all cases with the exception of TW-YT-FF — for the char-
acteristics of this dataset above discussed, the Jaccard measure could lead to
particularly slow performance, as it may yield high values (i.e., the nodes may
share a large portion of their neighborhood), thus being quite inclusive when
building a local community.
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5.1.9 Discussion

We summarize here the main results from the evaluation of our ML-LCD
methods. First, ML-LCD-lw followed by ML-LCD-clsim have shown to pro-
duce larger communities on all datasets. This indicates that in general the ap-
proach underlying ML-LCD-lw (i.e., fixed layer-based weighting scheme) tends
to be less “xenophobic” than ML-LCD-clsim, and this in turn less than ML-
LCD-wlsim. This is actually explained since the impact of the LCext term is
generally smaller for the ML-LCD-lw formulation allowing it to grow more the
local community for a particular seed node. A different situation corresponds
to ML-LCD-clsim where the LCext function is computed between the bound-
ary nodes and all their neighbors without considering the layers in which they
lie.

Related to the above aspect is that ML-LCD-lw followed by ML-LCD-clsim
provide communities having the highest mean and maximum values of average
path length. Moreover, all methods are able to produce roughly small-world
communities (on AUCS, RealityMining, and ML-LCD-wlsim on TW-YT-FF ).

ML-LCD-wlsim and ML-LCD-clsim are more likely to behave similarly, in
terms of Jaccard similarity between the extracted communities for the same
node. This is not surprising, since these two formulations are based on a similar
notion of node similarity, while differing in how layer features are considered.
Moreover, for both methods, cosine similarity and triad-based similarity show
a generally more aggregating behavior than the default Jaccard similarity in
most cases.

ML-LCD-lw and ML-LCD-clsim generally produce communities that cover
all or most of the layers. This holds consistently with various distributions
of the number of layers per node; when the latter is quite high (e.g., above
80%), all ML-LCD methods are equally able to mostly produce communities
that cover all or most of the layers.

Each of the ML-LCD methods produces local communities sharing, on av-
erage, relatively few nodes with the other communities identified in the same
network dataset.

As concerns the efficiency of the proposed ML-LCD methods, the best per-
formance is obtained by ML-LCD-wlsim (with Jaccard or cosine similarity) in
most cases. Yet, this can be explained since, despite the ML-LCD-lw has the
lowest computational complexity, it tends to discover larger local communities
than the other methods, thus affecting the number of iterations to terminate.
This efficiency result would make ML-LCD-wlsim a preferred choice for the
ML-LCD problem, supporting our initial intuition on beneficial effects that
might be obtained by incorporating node similarity over the layers into the
objective function of the ML-LCD problem.
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Table 10 Comparison of ML-LCD methods with LCD: mean and standard deviation of
Jaccard similarity of communities and percentage of identical communities (%idc). Bold
values correspond to the highest per-dataset (mean) similarities and percentages.

Dataset lw wlsim jac wlsim cos wlsim triads clsim jac clsim cos clsim triads
mean

%idc
mean

%idc
mean

%idc
mean

%idc
mean

%idc
mean

%idc
mean

%idc
sd sd sd sd sd sd sd

Airlines
0.28 2.17% 0.27 0.24% 0.36 17.59% 0.29 1.45% 0.26 0.00% 0.34 17.11% 0.26 0.00%
0.25 0.22 0.35 0.23 0.23 0.36 0.23

AUCS
0.46 4.92% 0.41 4.92% 0.42 4.92% 0.43 4.92% 0.41 0.00% 0.42 0.00% 0.39 0.00%
0.32 0.31 0.32 0.31 0.30 0.30 0.29

Biogrid
0.34 3.34% 0.31 0.58% 0.44 26.14% 0.23 0.00% 0.29 0.11% 0.26 11.07% 0.36 0.00%
0.25 0.20 0.37 0.17 0.19 0.30 0.18

DBLP
0.59 10.72% 0.55 6.08% 0.69 41.20% 0.55 6.04% 0.53 3.70% 0.65 36.40% 0.53 3.80%
0.23 0.23 0.32 0.22 0.21 0.31 0.21

RealityMining
0.41 2.30% 0.40 1.15% 0.46 14.94% 0.40 1.15% 0.35 0.00% 0.40 14.94% 0.34 0.00%
0.24 0.22 0.30 0.21 0.19 0.30 0.18

RemoteSensing
0.39 1.10% 0.39 1.25% 0.41 5.79% 0.38 0.16% 0.34 0.00% 0.38 4.85% 0.33 0.00%
0.21 0.22 0.25 0.20 0.17 0.22 0.16

TW-YT-FF
0.19 0.55% 0.20 0.63% 0.24 3.59% 0.16 0.00% 0.21 1.30% 0.25 6.09% 0.31 12.00%
0.20 0.20 0.21 0.34 0.20 0.22 0.32

Table 11 Comparison of ML-LCD methods with Lemon: mean and standard deviation of
Jaccard similarity of communities and percentage of identical communities (%idc). Bold
values correspond to the highest per-dataset (mean) similarities and percentages.

Dataset lw wlsim jac wlsim cos wlsim triads clsim jac clsim cos clsim triads
mean

%idc
mean

%idc
mean

%idc
mean

%idc
mean

%idc
mean

%idc
mean

%idc
sd sd sd sd sd sd sd

Airlines
0.27 0.00% 0.12 0.00% 0.14 0.00% 0.09 0.00% 0.18 0.00% 0.18 0.00% 0.17 0.00%
0.23 0.14 0.16 0.11 0.18 0.18 0.18

AUCS
0.21 0.00% 0.15 0.00% 0.42 0.17% 0.16 0.00% 0.17 0.00% 0.22 0.00% 0.16 0.00%
0.08 0.06 0.07 0.06 0.08 0.13 0.10

Biogrid
0.09 0.00% 0.07 0.00% 0.07 0.00% 0.09 0.00% 0.07 0.00% 0.09 0.00% 0.06 0.00%
0.10 0.08 0.09 0.11 0.09 0.12 0.06

DBLP
0.21 4.25% 0.20 5.18% 0.19 4.23% 0.20 5.19% 0.20 5.08% 0.21 4.46% 0.20 5.01%
0.22 0.24 0.24 0.24 0.24 0.24 0.24

RealityMining
0.16 0.00% 0.08 0.00% 0.09 0.00% 0.08 0.00% 0.16 0.00% 0.21 0.00% 0.18 0.00%
0.14 0.06 0.07 0.06 0.14 0.18 0.16

RemoteSensing
0.22 0.00% 0.18 0.00% 0.18 0.00% 0.18 0.00% 0.17 0.00% 0.23 0.00% 0.20 0.00%
0.11 0.09 0.10 0.10 0.10 0.13 0.12

TW-YT-FF
0.07 0.03% 0.08 0.08% 0.08 0.11% 0.04 0.00% 0.11 0.00% 0.11 0.00% 0.07 0.00%
0.09 0.12 0.13 0.04 0.12 0.13 0.09

5.2 Comparison with local community detection methods on the aggregate
graphs

In this evaluation stage, our goal was to assess the difference in size and in
composition between the local communities produced by ML-LCD and the ones
(corresponding to the same seeds) produced by the LCD and Lemon methods
(cf. Section 4.2).

Size values of the communities identified by LCD and Lemon are reported
in Table 2, along with values corresponding to the ML-LCD methods. From
the comparison, we observe that the mean size of communities by LCD are
generally lower than the size of at least one of the ML-LCD methods; on AUCS
and RemoteSensing, where LCD yields the largest communities on average,
the corresponding values are however very close to those by ML-LCD-lw , yet
with higher standard deviation. Different situation concerns Lemon, which in
absence of ground-truth information on the communities to be identified (as
in our case), tends to generate communities with significantly larger size than
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Table 12 Number of communities identified by LocToGlob (mean and standard deviation)
and competing methods. Results of LocToGlob are aggregated over fifty runs. Bold values
and underlined values correspond to the highest per-dataset community numbers considering
ML-LCD methods and all methods, respectively.

Dataset LocToGlob-lw LocToGlob-wlsim LocToGlob-clsim LART GL

Airlines 50.38 ± 4.28 67.36 ± 5.18 56.20 ± 6.14 381 12
AUCS 8.46 ± 1.17 10.24 ± 1.11 8.66 ± 1.05 27 6
Biogrid 5959.0 ± 105.53 7323.60 ± 229.32 6037.20 ± 272.1 NA 16151
RemoteSensing 116.44 ± 5.28 134.76 ± 5.10 152.62 ± 5.32 218 19
RealityMining 20.64 ± 2.30 23.82 ± 2.02 20.42 ± 2.55 62 13
TW-YT-FF 1076.44 ± 25.17 1255.71 ± 38.33 1230.71 ± 45.33 NA 761

approaches based on the optimization of the internal-to-external connection
density ratio.

Tables 10–11 summarize results relating to the comparison with LCD and
Lemon, respectively, in terms of Jaccard similarity (mean and standard devi-
ation values over all seed nodes) and fraction of identical communities (i.e.,
Jaccard similarity equal to one). Considering Table 10 and looking at the mean
similarity values w.r.t. LCD, it appears that on all datasets, but DBLP, they
are always below 0.5, with maximum values per dataset that are reached when
the cos option is used. Also, the percentage of identical communities w.r.t. LCD
is generally very low or even null (again, with the exception of DBLP where
ML-LCD-wlsim and ML-LCD-clsim equipped with cos obtain about 40% of
same communities as those by LCD); clearly, the situation observed for DBLP
depends on the presence of many small, highly-connected components in this
network. Concerning the comparison with Lemon (Table 11), it is evident and
even more significant the lack of similarity between ML-LCD and the com-
peting one: mean similarities are occasionally above 0.2, while percentages of
identical communities are zero in nearly all cases, again with the exception of
DBLP (in which case, they are around or below 5%).

Overall, not surprisingly, the above results confirm that accounting for the
multiple available layer information, as our ML-LCD methods do, brings to
the identification of local communities that are quite different from the ones
obtained by a single-layer LCD method applied on the aggregate graph derived
from the original multilayer network.

5.3 Comparison with global community detection methods

Table 12 summarizes statistics on the number of communities identified by
LocToGlob (with suffixes lw, wlsim, and clsim to distinguish among the dif-
ferent variants) and by the competing methods — please note that we do not
report results of PMM since, for this method, the number of communities is an
input parameter. We observe that, among our proposed methods, LocToGlob-
lw and LocToGlob-wlsim tend to produce the lowest and highest number of
communities, respectively (which is in line with results previously presented).
Considering also LART and GL, the former yields a number of communities
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Table 13 Multilayer modularity performance of global community detection methods. Bold
values and underlined values correspond to the highest per-dataset modularities considering
ML-LCD methods and all methods, respectively.

Dataset LocToGlob-lw LocToGlob-wlsim LocToGlob-clsim
mean max mean max mean max

Airlines 0.033 0.040 0.023 0.028 0.027 0.033
AUCS 0.225 0.252 0.212 0.233 0.214 0.239
Biogrid 0.113 0.135 0.074 0.076 0.085 0.088
RemoteSensing 0.196 0.201 0.185 0.190 0.151 0.157
RealityMining 0.243 0.281 0.209 0.226 0.187 0.225
TW-YT-FF 0.167 0.185 0.118 0.121 0.117 0.122

Dataset LART GL PMM-1 PMM-2 PMM-3

mean max mean max mean max
Airlines 0.013 0.037 0.014 0.018 0.014 0.016 0.014 0.015
AUCS 0.154 0.249 0.167 0.222 0.157 0.187 0.166 0.218
Biogrid NA 0.225 0.038 0.039 0.037 0.039 0.038 0.039
RemoteSensing 0.069 0.269 0.159 0.167 0.152 0.161 0.143 0.150
RealityMining 0.101 0.288 0.175 0.217 0.165 0.200 0.171 0.237
TW-YT-FF NA 0.022 0.053 0.580 0.060 0.069 0.053 0.053

that is significantly higher than that of other methods; however, on Biogrid
and TW-YT-FF, it was not able to terminated as it incurred an out-of-memory
issue.4 Note also that on Biogrid, all the methods produced the largest number
of communities, which might be explained since this network is characterized
by the highest sparsity among all the employed datasets (cf. Table 1).

Table 13 reports multilayer modularity values corresponding to the global,
non-overlapping community structures obtained by LocToGlob and competing
methods. Notation PMM-i, with i = {1, 2, 3}, refers to the setting of number of
communities corresponding to each of the LocToGlob methods (cf. Sect. 4.3).5

A first important remark is that, on all network datasets, LocToGlob-
lw always leads to better modularities than the other two approaches, with
LocToGlob-wlsim and LocToGlob-clsim showing similar behaviors. Compared
to the competitors, all LocToGlob methods outperform, in terms of both aver-
age and maximum modularity, LART and the three variants of PMM. In the
case of GL, LocToGlob-lw obtains comparable average modularity; moreover,
LocToGlob-lw achieves higher maximum modularity on AUCS, Airlines and
TW-YT-FF with respect to GL.

The obtained results highlight that our proposed framework is able to reach
comparable or even better modularity results against state-of-the-art global
community detection methods. We stress here that this evaluation setting is
actually a severe comparison for our approach since: all the competitors exploit
a complete knowledge of the graph to optimize their internal objective function
and, the multilayer modularity we employ as evaluation criterion is also the
function internally optimized by GL.

4 We do not include DBLP in this evaluation because the competitors incurred out-of-
memory issues, though our methods did not.

5 For LART and GL we report only one performance score since they have a deterministic
behavior.
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6 Conclusion

We addressed the novel problem of local community detection in multilayer
networks, and presented the first algorithmic framework to solve it. Our ML-
LCD formulation relies on the optimization of a function based on internal
and external connectivity of a multilayer local community, and is instantiated
into three methods that differ in the way within- and across-layer features are
taken into account to discover a local community for a given seed node. An
extensive analysis over seven real-world multilayer networks has shown signif-
icance and ability of our methods in detecting multilayer local communities.
In addition, by inferring a global non-overlapping community structure from
the local communities identified for a given set of seed nodes in the network,
we demonstrated that our ML-LCD methods can produce higher-modularity
communities than state-of-the-art methods designed for multilayer global com-
munity detection.

Our future research directions would move along paths involving both the-
oretical and experimental aspects. On the former, we would like to study alter-
native objective functions for the ML-LCD problem and theoretical guarantees
on the sub-optimality of the solutions. Also, an interesting aspect to under-
stand is how outlier and hub nodes can be efficiently detected and handled
during the construction of a local community. Considering the experimental
evaluation, it would be an important addiction the construction of a ground-
truth for the local communities to be identified in a multilayer network. Finally,
we envisage a number of application problems for which ML-LCD methods can
profitably be used, such as friendship prediction, targeted influence propaga-
tion, and more in general, mining in incomplete networks.
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B. Boden, S. Günnemann, H. Hoffmann, T. Seidl, Mining Coherent Subgraphs in Multi-layer
Graphs with Edge Labels, in Proc. ACM SIGKDD Int. Conf. on Knowledge Discovery
and Data Mining (KDD), 2012, pp. 1258–1266

F. Bonchi, A. Gionis, F. Gullo, A. Ukkonen, Distance oracles in edge-labeled graphs, in
Proc. Int. Conf. on Extending Database Technology (EDBT), 2014, pp. 547–558

R. Bourqui, D. Ienco, A. Sallaberry, P. Poncelet, Multilayer Graph Edge Bundling, in Proc.
IEEE Pacific Visualization Symposium (PacificVis), 2016, pp. 184–188

K. Branting, Context-sensitive detection of local community structure. Social Netw. Analys.
Mining 2(3), 279–289 (2012)



31

D. Cai, Z. Shao, X. He, X. Yan, J. Han, Community Mining from Multi-relational Net-
works, in Proc. European Conf. on Principles and Practice of Knowledge Discovery in
Databases (PKDD), 2005, pp. 445–452

V. Carchiolo, A. Longheu, M. Malgeri, G. Mangioni, Communities Unfolding in Multislice
Networks, in Proc. Complex Networks, 2010, pp. 187–195

A. Cardillo, J. Gomez-Gardenes, M. Zanin, M. Romance, D. Papo, F. del Pozo, S. Boccaletti,
Emergence of network features from multiplexity. Scientific Reports 3:1344 (2013)
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