Scalable High-Performance Parallel Design
for Network Intrusion Detection Systems
on Many-Core Processors

Haiyang Jiang,
Guangxing Zhang,
Gaogang Xie
Institute of Computing
Technology
Chinese Academy of
Sciences, China

{jianghaiyang,guangxing,xie}@ict.ac.cn

ABSTRACT

Network Intrusion Detection Systems (NIDSes) face signifi-
cant challenges coming from the relentless network link speed
growth and increasing complexity of threats. Both hard-
ware accelerated and parallel software-based NIDS solution-
s, based on commodity multi-core and GPU processors, have
been proposed to overcome these challenges. This work ex-
plores new parallel opportunities afforded by many-core pro-
cessors for high performance, scalable and inexpensive NID-
S. We exploit the huge many-core computational power by
adopting a hybrid parallel architecture combining data and
pipeline parallelism. We also design a hybrid load balancing
scheme, using both ruleset and flow space partitioning. Fur-
thermore, the proposed design leverages particular features
of the processor to break the bottlenecks. We have integrat-
ed the open source NIDS Suricata into our proposed design
and evaluated its performance with synthetic traffic. The
prototype exhibits almost linear speedup and can handle up
to 7.2 Gbps traffic with 100-bytes packets.

Keywords

many-core, network intrusion detection system, parallel, load
balancing

1. INTRODUCTION

Network Intrusion Detection Systems (NIDSes) have be-
come important components of modern network security in-
frastructures. Signature based NIDSes [1] that parse packet
headers and inspect payloads, checking against a large rule-
set, i.e., a collection of signatures of known attacks, viruses,
worms, spyware or malicious code [2], are the de-facto NIDS
standard. With increasing line speed and traffic complexity,
growing number of exploits and attacks that result in infla-
tion of the NIDS rulesets, signature based NIDS is becoming
more challenging [3].

Dedicated hardware-based ASIC/FPGA implementation-
s [4, 5] and software implementations on commodity multi-
core processors [6, 7] or GPU based solutions [8, 9], have
been proposed for high speed NIDS. Among all stages in
NIDSes’ packet processing, the payload signature match-
ing is the main performance bottleneck: e.g., in Snort [10]
approximately 70% to 80% of the processing time is con-

978-1-4799-1640-5/13/$31.00 ©2013 IEEE

Kavé Salamatian
University of Savoie, France
kave.salamatian@univ-

savoie.fr

137

Laurent Mathy
University of Liege, Belgium
laurent.mathy@ulg.ac.be

sumed by the signature matching engine [11]. Custom A-
SIC/FPGA hardware and GPU based solutions target this
particular stage for acceleration. However, both solution-
s generally leave flow level tasks like protocol analysis, 1P
defragmentation, TCP stream reassembly and application-
level parsing, to classical CPUs. While hardware compo-
nent or GPU can achieve signature-matching engine of ten-
s of gigabits per second, massive payload transfer between
components, flow level coordination and CPU-bound flow
management processes reduce overall system performance.
Besides, the low flexibility, low scalability and high cost of F-
PGA/ASIC based hardware solutions are serious issues that
hinder large-scale deployment of NIDSes. GPU solutions,
in addition to performance limitations, suffer also from high
power consumption.

The availability of generic many-core architectures with
tens to hundreds of cores per processor is offering new op-
portunities for high-speed NIDS. In this paper, we explore
the design and performance of NIDS systems on such proces-
sors. More precisely, we present a parallel and modular de-
sign for implementing NIDS on the TILERAGX36, a many-
core processor with 36 cores, developed by Tilera Inc.[12].
The design follows two strategies. We first designed a hy-
brid parallel architecture, combining data and pipeline par-
allelism. We also designed a hybrid load-balancing scheme,
using both ruleset and flow space partitioning. Further-
more, the proposed design leverages particular features of
the TILERAGX36 hardware to break the bottlenecks. By
using the mPIPE (multicore Programmable Intelligent Pack-
et Engine) [12] available on TILERA platforms, the lock con-
tention is reduced by 75%. In order to evaluate scalability
and performance, we have integrated the Suricata [14, 15]
NIDS into our proposed design. Our experimental result-
s show that the system achieves an almost linear speedup
with the number of core dedicated to NIDS. As an integrat-
ed NIDS solution, the prototype implementation can handle
up to 7.2 Gbps synthetic traffic with 100-bytes packets.

In section 2 we introduce background information on many-
core processors and describe related work on parallel NIDS.
Section 3 develops the proposed design on TILERAGX36
and discusses its strong and weak points. Section 4 intro-
duces optimizations applied on the initial design and de-
scribes in detail the proposed hybrid load-balancing scheme

Processor

\ Memory Controler |

Figure 1: High-level overview of the TILERAGX36 archi-
tecture [12]

that is used in the system. Section 5 describes the experi-
mental environment and presents the experimental results.
The paper is concluded in section 6.

2. BACKGROUND AND RELATED WORK
2.1 Overview of TILERAGX36 Processor

Many-core processors, which are usually equipped with
a larger number of cores per processor (tens to hundreds
of cores per processor compared to up to 6 or 8 in existing
commodity multi-core processors), have emerged in the past
years. In particular, each core in these processors can run
a full operating system, which provides high flexibility and
simplicity for software development.

The TILEGX36 processor is a typical many-core proces-
sor with 36 homogeneous, general-purpose computational
elements, named tiles, organised in a 6 x 6 grid intercon-
nected through a iMesh on-chip network [12, 16](see Fig.1).
Each tile element consists of a full-featured processor core
with both L1 and L2 cache and a non-blocking switch that
connects the core to five 2-dimensional mesh networks con-
necting all titles. Among these five Network-on-Chip (NoC)
interconnects, only one, the User Dynamic Network (UD-
N), is dedicated to the applications for communication a-
mong tiles, while the processor itself uses other networks to
improve efficiency and speed up data transfers among the
tiles, the I/O devices and the memory. The UDN is con-
nected directly to the Arithmetic Logical Unit (ALU) in the
tile, which allows very low communication latency between
tiles. Table.1 shows a comparison of communication among
tiles via UDN and shared memory: The UDN network ex-
hibits a very low transmission latency and meanwhile very
high bandwidth up to 60 Tbps, which provides a much bet-
ter performance than traditional shared memory. Each tile
of the TILERAGX36 chip has a 256 KB L2 cache. Each of
these L2 caches, in addition to be used locally, can be used
as a remote L3 cache for other tiles. This results in a big
distributed L3 cache accessible by all the tiles. This strategy
allows a page of virtual memory to be homed on a specif-
ic tile, then cached remotely by others. The processor also
integrates a packet capture engine (mPIPE) on the die [12].

2.2 Packet processing in NIDS

Fig.2 depicts the major packet processing steps in a NID-
S. Packets are captured from the wire in the Packet Capture

138

Table 1: Comparison of UDN and shared memory based
communication among tiles

Medium Bandwidth(bps) | latency(cycles)
UDN 60T 1 per tile hop
Shared Memory | 170G L1 cache hit: 2

L2 cache hit: 11
L2 cache miss: 80

)

]

< 3]

[] - Signature '

. Signature Set N

Packet Decoder | o Extraction '
. ’

. '

' '
.........] Verification 0
]

Units

Suspicious
packets
+Fingerprint

indices

Benign
packets

]

Figure 2: Packet processing in NIDS and detection engine

module and decoded in the Packet Decoder; the Preproces-
sor module processes the TCP/IP protocol, dealing with
IP fragments and TCP reassembly; the Detection Engine
module scans the payload for possible patterns and gener-
ates the logs to be recorded in the Output module. Among
all these stages, the Detection Engine module is the most
demanding computationally. The architecture of this stage
is represented on the right-hand side of the figure. It con-
tains two-stages: a pre-filtering stage [17] that searches in
the packet payload for occurrences of a set of fingerprints
extracted from the whole signature set, and a verification
stage that only receives packets that match at least one
fingerprint. The verification stage uses the indices of the
matched fingerprints in the pre-filtering and carries, over
the packets, in-depth checks for the rules associated with
these fingerprints. A match is returned if at least one of the
rules is matched. This process eliminates any potential false
positive in the pre-filtering stage. When the fingerprints are
wisely chosen to ensure that it has a full coverage of the rule-
set, i.e., each rule is at least represented by one fingerprint,
the above two-step architecture is very efficient.

2.3 Parallel Architectures in NIDS

Both data and pipeline parallelism have been used in the
context of NIDS. In pipeline parallelism, the whole packet
processing is divided into several sequential stages that each
run on a dedicated execution unit. A packet is transferred
sequentially from one execution unit in the pipeline to the
next. In addition to the parallelism gained, pipelining im-
proves reference locality and potentially increases the cache
hit ratio since each execution unit only deals with a sub-
set of the entire application memory [18]. In contrast, data
parallelism replicates the entire packet-processing loop on
separate cores, such that several packets can be processed
independently in parallel. Both forms of parallelism can on-
ly achieve a linear speedup when the memory space of each
execution unit is independent and isolated. When there is
an overlap in memory, costly locking mechanisms — result-
ing in performance loss caused by contention — are needed to
ensure consistency. The alternative of replicating the data-
structures in each execution unit results in linear increase of
the memory footprint. Load balancing is also critical in or-
der to achieve full parallel performance through full compute

Packet Queue

Pre-
Processor

Packet
Capture

Thread 1

Packet
Decoder

Thread 2

o
Scheme £

Packet Queue
< 3

Packet Queue

Detection Detection
Engine - Share e Engine
Data
Thread 4 Thread n
Figure 3: Suricata’s pipeline based architecture

resource usage. In the rest of this section, we will describe
how different software NIDS architectures have specifically
dealt with these issues.

Snort is often regarded as the reference for the evalua-
tion of parallel NIDS designs. As snort is essentially single-
threaded, data parallelism is the most direct applicable par-
allel strategy. A Round-Robin scheduling scheme is adopt-
ed for data parallelism in [19] and achieves a throughput of
29 Mbps with 4 threads concurrently running on a server
platform equipped with 2 Dual-Core Intel Xeon Processors.
The pipeline parallelism is implemented in this work too by
dividing the program into a two-stage pipeline where one
thread is responsible for packet capturing and dispatching
to the second stage where several packet-processing threads
process the traffic concurrently. To share the load among
the packet processing threads, a Flow Static Hash (FSH) is
used, i.e., the 5-tuples identifying a TCP/UDP flow in the IP
packet header is hashed modulo the number of parallel pack-
et processing threads. Experimental results showed that the
pipeline provides about six times better performance than
data parallelism alone, achieving a throughput of 188 Mbps,
by improving the cache hit ratio.

A follow-up of this work [20] proposed lock optimization

and attained 10% to 75% performance improvement. Nonethe-

less the proposed techniques still suffered from two issues: a
huge memory footprint due to the replication of the Snort
data structures in each concurrent thread, and residual im-
balance between packet processing threads. While FSH is
very easy to implement, it suffers from the fact that the load
induced by a flow depends on its duration and size and these
values are very difficult to predict a priori. This results in
poor load balancing performance [18] and further impact-
s the overall performance. To deal with these issues [21]
implemented a shared memory into the Intel pipeline and
achieved a throughput of 3.1 Gbps on a commodity 8-core
server platform.

Further, a dynamic flow based load balancing scheme,
called Join-the-Shortest-Queue(JSQ), was used in the Para-
Snort system in [22]. The reported highest performance in
this system is about 800Mbps with two quad-cores Xeon-
s E5335 at 2.00GHz. While adaptive flow-based load bal-
ancing schemes such as JSQ achieve a better equilibrium
between threads [23], it still cannot fully resolve the load
imbalance problem as the flows exhibit intrinsic large imbal-
ance [21] and short-term packet bursts which are common
in network traffic [24] are not managed well.

Suricata is another open source NIDS that adopts a pipeline
model. As shown in Fig.3, Suricata divides the overall pro-
cess of a NIDS into a larger number of fine-grained stages.

Each stage of the pipeline runs as a separate thread that is
connected to the next stage through a buffer. The traffic
is scanned in several parallel Detection Engine threads to
break the performance bottleneck, i.e. packets belonging to
different flows are dispatched by the load balancer among
the parallel detection engines. Suricata has a very modular
architecture that makes it very flexible, so that the modules
and their interconnection can be easily changed. This is
the reason why we adopted Suricata as our main evaluation
platform.

The latest version of Suricata uses FSH for the sake of ease
of implementation. In our previous work [25], we have pro-
posed Ruleset Partition Balancing (RPB) to optimize per-
formance. The approach consists of partitioning the NIDS
ruleset, rather than the traffic, across the execution unit-
s. Experiment results showed that the system performance
was improved by 42%, comparing with FSH. In this current
work, we have adopted RPB in conjunction with flow-based
load balancing in the hybrid load-balancing approach that
will be described later.

MIDeA [8] and Kargus [9] are two recent NIDSes that
are designed using Graphics Processing Unit (GPU). GPUs
are specialized and highly parallel hardware units designed
for graphical computation-intensive purpose. While the raw
performance of GPUs is much higher than multi-core based
solutions CPUs, they are dedicated to Single-Instruction,
Multiple-Thread (SIMT) operation mode where a same pro-
cess is applied in parallel to a large number of data instances.
In particular they are not well suited to implementing algo-
rithms with several branches, which are unfortunately com-
mon in protocol processing in NIDS. For this reason, in both
MIDeA and Kargus, the protocol processing is still done on
classical CPUs and the pattern recognition is deported to
GPUs. This means that large amount of data (packet pay-
loads) have to be exchanged between CPU and GPU over the
video card bus and in order to reduce the contention over
this bus, batching mechanisms must be implemented that
add relatively large delays in the packet processing pipeline.
Moreover, optimizing a GPU application requires leveraging
particular hardware primitives/structures meant for graph-
ics and this is more challenging than a many-core implemen-
tation [26]. And last but not least, GPUs often have very
large power consumption, e.g., Kargus uses two NVIDIA
GTX580 GPU card that consume up to 720W when pro-
cessing 10Gbps traffic.

3. MANY-CORE NIDS ARCHITECTURE

In this section, we present our many-core NIDS parallel
design. A high level description of the proposed architec-
ture is shown in Fig.4. Our approach consists of several
Packet Processing modules running in parallel (data paral-
lelism), each containing a fully functional NIDS running on
several cores (pipeline parallelism). Internally a Packet Pro-
cessing module is structured as three stages. The first stage
is the Packet Capture that receives packets and fills a mes-
sage data structure (MSG) obtained from a message pool
shared among all Packet Processing modules. This MSG
will be propagated through the packet processing pipeline.
The Packet Capture feeds several parallel Protocol Process-
ing components (a component is a thread exclusively as-
signed to a core) that parse protocol information and update
the MSG accordingly. Each Protocol Processing stage is fol-
lowed by several parallel Detection Engines that implement

Protocol
Processing

Detection
Engine

Packet Capture
module

L] L]]

Ple oo ase,

Packet
Processing
Module

Packet
{ Processing

Packet
Processing
Module

J
1%

o"mcccccccan’

Private Variables

)

MSG Queue Private Variables

)

) j g g g Detection
Private Variables 21313 Engine
\ MSG Queue
== Protocol | |
- 0|0 |
Private . {[alla] Processing | |
Variables MSG Queue
MSG Queue
S = Detection
Packet .’ 8 8 8 8 Engine
CaptureqN)| . bRl

M=
4]
@

==
0|
(0[]

=
1G]
(]

=
(0]

Protocol
Processing

Private Variables ‘

Public Variables sharing in the system

CMessage(MSG) Pool)

Raw Packets (Multi-Pattern Matching Engine)

C D

Figure 4: Proposed NIDS parallel design on TILERAGX36

the pattern matching algorithms, possibly generating alerts,
and release the MSG data structure when all scanning tasks
are finished.

The message propagation is a performance issue for each
Packet Processing module. As it shown in Fig.4, each Pro-
tocol Processing and Detection Engine component in the
module contains an MSG buffer to absorb temporary traffic
bursts. In order to eliminate overheads such as synchro-
nization, cache missing and false sharing in shared memory
based solution, we adopted UDN for the message propaga-
tion among stages. To use the UDN, the MSG descriptor is
written at the source (core) in special-purpose registers ac-
cessible by the ALU and retrieved at the destination (core)
from registers too. The overhead of reading and writing to
these special-purpose registers is much lower than writing
to memory. In addition MSGs are transferred between cores
without polluting local caches, so that processing steps can
be performed at the remote core immediately without check-
ing any condition variables.

The load balancing in the proposed architecture consist-
s of dispatching MSG data structures at each bifurcation
point in Fig.4(the dashed circles in the figure). We used d-
ifferent load balancing schemes for each one of these points.
First, load balancing must decide which Packet Processing
module should process the incoming packet. For this step,
we propose to use a dynamic load balancing scheme such
as JSQ [22], in order to reduce the impact of non unifor-
m flow sizes. In between the Packet Capture and Protocol
Processing threads, a simple FSH load balancer is used. For
the last stage of load balancing, towards Detection Engines,
a rule splitting load balancer [25] is used. With this load
balancer each Detection Engines only checks a subset of the
rules. Meanwhile if any signature matching is found in a
packet in one of Detection Engines, the others can skip over
the packet.

3.1 Discussions about the design

The above architecture exploits both data and pipeline
parallelism. However, the fine granularity of the internal
stages of each Packet Processing module enables a more
flexible core allocation. Moreover as the Packet Processing
modules are independent and identical, a linearly increase in
performance can be achieved by replicating them as long as
processing cores are available. Another benefit of fine mod-

140

ules granularity is improved reference locality and cache hit
ratio. This is because each execution unit only deals with
a subset of the entire application memory. In particular,
the flow management in Protocol Processing threads ben-
efits from caching recent flow data for subsequent packets
belonging to the same flow. Finally, the design benefit-
s from reduced memory footprint by sharing, between all
modules, common data structures like MSG pool, packets
buffers and memory containing intrusion/attacks signatures
that are used by the Detection Engine threads.

This memory sharing has a cost: contention resulting from
shared data structures. More precisely, there are three type-
s of public variables that are shared among all threads and
are encircled by a green dashed rectangle in the lower-right
corner of Fig.4. The intrusion/attack signatures used by the
signature matching engine, and the memory used for storing
raw packets can be freely shared among all threads because
they are read-only. However, the shared MSG pool can cause
frequent contention, as costly lock mechanisms are needed
to manage concurrent accesses. In addition when contention
builds up, the lock variables in the caches are invalidated
frequently, and the cache miss rate increases. This indeed
has a negative effect on scalability, since the contention will
increase with the number of cores [27]. The load balanc-
ing is another source of performance loss. As mentioned,
we have used, for each Protocol Processing thread, an F-
SH balancing scheme that is simple to implement, but can
result in load imbalance because of non-uniform flow size
distribution. In order to overcome the above issues, we have
optimized the proposed architecture with some features of
the TILERAGX36 hardware.

4. NIDS OPTIMIZATION ON TILERAGX36

4.1 Contention reduction

As explained above, the contention in our proposed de-
sign comes mainly from concurrent accesses to the MSG
pool containing MSG data structures that are propagated
through the whole pipeline. To avoid the per-packet allo-
cation and deallocation costs of MSG data structures, we
preallocate a number of these data structures in the initial-
isation phase of the NIDS and store them into the MSG
pool. For each incoming packet, Packet Capture thread gets
an unoccupied MSG data structure from the pool and erases

Packet
Pr i

Module

MSG
MSG
MSG
MSG
MSG
MSG
MSG
MSG
MSG
MSG

MSG Pool shared among
all the modules

Release

Packet
Processing
Module

OO NOOAWN—=O

Packet
Processing
Module

Packet Descriptors
in mPIPE

Figure 5: Elimination of the contention for MSG Pool

the previous information recorded in it, then the last Detec-
tion Engine thread to finish processing the packet needs to
return the MSG to the pool. And sometimes the Protocol
Processing threads also need to fetch and release MSG da-
ta structures from the pool to do fragment reassembly of
TCP/IP packets. The MSG pool is thus a multi-reader,
multi-writer data structure, and any operation on it should
be protected by locking mechanisms.

In order to keep the parallel system busy and avoid pipeline
stalls, the MSG pool must contain thousands of MSG data
structures. But protecting the whole MSG pool with a single
lock would result in coarse-grained locking that significantly
increases access contention and reduces performance. Fortu-
nately, the mPIPE hardware packet capture component in
the TILERAGX36 provides an alternative solution to avoid
this coarse-grain lock. The mPIPE preallocates fixed size
buffers, in a packet capture ring, that record packet meta-
data and are accessed through DMA (Direct Memory Ac-
cess). Each buffer position in the ring is indexed, tracked
and managed by mPIPE. This capture buffer index is ex-
posed by the mPIPE and sent along with the packet de-
scriptors to a thread managing the packet. To reduce con-
tention, we allocate an MSG data structure for each buffer
in the packet capture ring. As shown in Fig.5, each MSG
data structure in the MSG pool is associated with a buffer
in mPIPE. When a packet is captured, the mPIPE provides
a packet descriptor as well as the index of the packet buffer
to one of our Packet Capture threads which uses this index
to get the corresponding MSG data structure from the MSG
pool. Therefore, locking is no longer required for the man-
agement of the MSG pool as each MSG data structure is
associated with a specific packet buffer. However, as several
threads can scan a packet simultaneously, a fine grain lock
is still needed to detect when all Detection Engine have fin-
ished their work. For this purpose, two atomic variables are
added in each MSG data structure rather than the whole
MSG pool. The first variable represents the number of De-
tection Engines that have not yet finished their activity. The
counter is initialized to the number of concurrent Detection
Engines in the third stage, which is known at initialization
time. When a Detection Engine finishes its processing, it
calls an atomic __sync_sub_and_fetch (provided by the hard-
ware) to decrease the counter and check its value. If the
operation returns zero, the corresponding Detection Engine
is the last to finish the scanning and the MSG data structure
can be released to the pool. The second variable represents
if any signature matching is found in a packet. A Detection
Engine will check the variable before processing a packet. If
the variable has been set yet, the thread will skip over the
packet. This highly reduces lock contention as getting the

141

MSG will not cause any contention, and the contention to
release a MSG is simply some fine grained atomic operations.

4.2 Hybrid load balancing scheme

Load balancing is a particularly important element con-
trolling the performance of parallel systems. As explained
in the architecture description, there are three levels of load
balancing. A first level is load balancing between Packet
Processing modules. For this level we benefit from the dy-
namic load balancing scheme similar to the JSQ that is im-
plemented in the mPIPE hardware. This dynamic load bal-
ancing alleviates partially the issues of imbalance resulting
from different flow sizes.

The second level of load balancing dispatches incoming
flows in a Packet Processing module (actually in the Packet
Capture thread of the Packet Processing module) among the
attached concurrent Protocol Processing threads. We used a
simplistic FSH scheme to ensure that all packet of the same
flow are managed by the same Protocol Processing thread.
This is likely to generate some imbalance between Protocol
Processing engines. However the impact should be reduced
by the mPIPE dynamic load balancing scheme used in level 1
that already strongly reduces the imbalance between Packet
Processing module.

The third level of load balancing is among Detection En-
gines after a Protocol Processing thread. As explained ear-
lier, a Ruleset Partition Balancing (RPB) scheme is used in
this level, rather than a Flow Balancing (FB) one. The main
idea consists of dividing offline the whole ruleset into several
smaller signature subsets that have approximately the same
computational load and to assign each subset to a partic-
ular Detection Engine. Thereafter packets coming out of a
Protocol Processing thread are forwarded to all concurrent
Detection Engines attached to it. If one signature matching
is found in a packet in one Detection Engine, the packet will
be labeled and the other Detection Engines will skip over
the packet then. As reported in [25], RPB achieves very
good load balancing, better cache locality and decreased the
cache miss ratio, thanks to the smaller memory footprint of
the smaller rule subsets. Indeed, the balancing performance
depends on the way the rules are split among the threads.
In [25], an algorithm to achieve this aim is proposed. The
main rational of this algorithm is that it evenly distributes
rules with the same protocol information in different sub-
sets, i.e., a packet is likely to either make several parallel
Detection Engines to check or to not need any processing at
all.

S. PERFORMANCE EVALUATION

In this section, we give details of the evaluation platform
we have built to evaluate the performance of the proposed
parallel NIDS design. We will evaluate the performance us-
ing a theoretical optimistic model. First we analyse the per-
formance of a single Packet Processing module and optimize
its resource allocation. Thereafter, we extend the analysis
to several Packet Processing modules, each with the opti-
mal resource allocation, and get the overall throughput for
our parallel design. We also compare the design with other
proposed parallel NIDS platforms.

5.1 Experimental Setup

We build an evaluation platform using a TILERAGX36
PCle card installed in a x86 server platform. Each tile pro-

cessor runs at 1.2GHZ clock rate, with 64 KBytes L1-cache
and 256 KBytes L2-cache. The Tilera processor accesses 8
GBytes DDR3 memory and four 10GE ports, all installed
on the processor card. The TILERAGX36 card is managed
by the Tile-monitor [12] program running on the server.

The TILERAGX36 processor runs the Linux operating
system. We use the Multicore Development Environment
(MDE) provided by Tilera corporation [12] to compile, u-
pload and manage our prototype programmes on the PCle
card. The components running in each Packet Processing
module are obtained from Suricata 1.3’s architecture thanks
to its modular design. In the evaluation experiments, we
have used the Snort official ruleset containing 7571 rules.
We use a version of OProfile [28] utility customized by Tiler-
a that uses the hardware performance counters built in the
processor to collect performance data.

We evaluate the performance of the NIDS under a variety
of workloads generated by a custom synthetic traffic gener-
ator that can generate variable-size packets with speed up
to 10 Gbps.

5.2 Performance evaluation model

Assuming a perfect data level parallelism with complete
isolation and perfect load balancing among the Packet Pro-
cessing modules, the cumulative processing performance of
the system is

Psys = (1)

where Nmod is the number of parallel Packet Processing
modules in the system, and Pyoq is the throughput per-
formance of each Packet Processing module. As the Packet
Processing module is pipelined, the throughput of the mod-
ule is at most the throughput in the slowest stage. The
highest throughput of each stage is attained when it reaches
saturation. We represent this by stating that

Pmod = min {PlyNPI'Ot * P27NProt * NDet * P5}7

mod * Pmod

(2)

where P; is the throughput of a thread in the i*® stage of the
pipeline, Npyot is the number of parallel Protocol Processing
threads and Npet is the number of Detection Engine threads
attached to each Protocol Processing thread. However, the
throughput can even be less because of contention and cache
misses in downstream levels.

The performance of a thread in the last stage, the Detec-
tion Engine stage, can be evaluated as P3 = aPpet, where
Ppet is the throughput performance of a single Detection
Engine thread in isolation, and 0 < a < 1 is a coefficient
representing the negative effects of residual contention and
cache misses induced by the parallel execution of Detection
Engine threads. « decreases as the number of Detection
Engine threads increases.

The performance of a Protocol Processing thread can be
estimated as P> = min {8 Pprot, NDet * P3}, where Pprot is
the throughput performance of a single Protocol Processing
thread in isolation, and 0 < 8 < 1 represents the negative
effects of residual contention and cache misses on the Proto-
col Processing thread from downstream Detection Engines.
Saturation can occur when 8 Pprot < Npet * Ps, i.e., the Pro-
tocol Processing becomes the bottleneck. 3 keeps decreasing
with more Detection Engine threads. In other words, after
saturation of Protocol Processing, one can expect the overall
throughput to decrease with the addition of more Detection
Engine threads.

142

1 2 3 4

Threa'd countin Dete'crion Engine s!'age

1E22223 N 4 I 5

14

2

51.0 - RS T . 2%
5 0/ 7 0l | &
g / v g
iEo.s- @l 7 , E’ 1
Z =7 87
s EE E
9 R NE2 W&

1 2 3 4
Thread count in Protocol Processing stage

Figure 6: Performance of a single non-optimized Packet Pro-
cessing module. The speedup curve shows the improvement
when increasing the number of Protocol Processing elements
and choosing the best thread number in each pipeline stage.

The performance of the Packet Capture stage can be es-
timated as Pi = min {7yPcap, Nprot * P2}, where Pcap is the
throughput performance of a single Packet Capture thread
in isolation, Npyot is the number of attached parallel Pro-
tocol Processing threads and 0 < v < 1 represents the neg-
ative effects of residual contention and cache misses on the
Packet Capture engine from downstream Protocol Processing
threads and attached Detection Engines threads. Increasing
the number of Protocol Processing threads and the attached
Detection Engines threads will also decrease the value of ~,
decreasing further the overall performance when the Packet
Capture module is saturated. The above analysis shows that
one has to choose carefully the number of cores dedicated
to a Packet Processing module in order to ensure that max-
imal throughput is achieved without wasting downstream
resources because of saturation of upstream levels.

5.3 Performance of the Packet Processing pipeline

Backed by the analysis in previous section we analyse the
throughput performance of a Packet Processing module and
find the optimal number of core to dedicate to each level of
the pipeline. We have implemented each thread on a single
and dedicated tile core, i.e., the number of core used for a
Packet Processing module is equal to the number of threads.
In this evaluation we use the traffic generator to send 256
Bytes packets at a 10 Gbps rate.

5.3.1 Performance without optimization

In Fig.6, we plot the measured throughput for a single
Packet Processing module when we increase the number of
tile cores allocated to the Protocol Processing and the De-
tection Engines stages. We see that the simplest case with
a single Protocol Processing and a single Detection Engines
achieves a throughput around 0.15 Mpps. By increasing the
number of attached Detection Engine threads, we observe
a gradual increase in throughput and saturation, at 0.47
Mpps, when the Protocol Processing component has four
attached Detection Engine threads. As predicted by the
model, increasing the number of Detection Engine threads
after saturation only decreases global throughput (for 5 De-
tection Engine threads the throughput drops to 0.44 Mpps).
The throughput in the module increases when augmenting
the number of Protocol Processing threads. We achieve a
quasi-linear improvement that, as predicted by the perfor-
mance model flatten when the number of parallel threads

o
3
e
o

Thréad count in Detection Engine stage Thréad count if Detection'Engine stage

S==plrzklsty B 15222203 1SS 4 1 5.

°
B
e
>
T
i

bl
o
&

Lock contention count per packet
°
a

Lock contention count per packet

ESSSSSSSSSSSISSN]
masnmnnsnnsnnnnnnunnnnsnnn
AU SSSNSSISI Y

é
é
4

o

.00 0.00

1 2 4 1 2 4
Thread count in Protocol Processing stage Thread count in Protocol Processing stage

Figure 7: lock contention count per packet during the pro-
cessing before and after the lock contention optimization

increases the overhead due to threads interaction. Fig.6 en-
ables us to derive the saturation throughput of each level
of the pipeline. With a single Protocol Processing thread
we observe saturation at 0.47 Mpps corresponding to 4 at-
tached Detection Engine threads. The highest performance
in the figure is achieved on the rightmost part, with 1 Packet
Capture thread, 4 Protocol Processing threads and 3 Detec-
tion Engine threads for each, i.e., 17 cores dedicated to the
Packet Processing module, and is 1.3 Mpps.

5.3.2 Lock contention avoidance

The previous evaluation was done without applying any of
the optimizations we described in section 4. In this section
we will add the first optimization trick and see its impact
on the performance. A first level of optimization used the
mPIPE capture buffer to alleviate the need for locking the
MSG data structure until the Detection Engine phase. In
the original Suricata implementation, a coarse-grained lock
is used for protecting the MSG pool, causing a lot of con-
tention. We proposed to replace the lock by atomic oper-
ations with much smaller overhead. We show in Fig.7 the
average number of locking attemps per packet, with and
without the optimization, and observe a major drop of the
contention probability by up to 75%.

We now show in Fig. 8 the throughput of a single Packet
Processing module after adding the lock contention avoid-
ance optimization. A comparison with Fig.6 shows that the
performance of the optimized system improves. The pro-
cessing ability of threads in the three stages are enhanced
correspondingly. The highest performance obtained in the
module with 3 Protocol Processing threads and 4 Detec-
tion Engine threads for each, improving from 1.3 Mpps to
1.6 Mpps (a 23% improvement). Moreover the saturation
throughput of the Protocol Processing thread is now 0.78
Mpps that is an improvement of 66% over the 0.47 Mpps
with optimisation.

5.3.3 RPB scheme optimization

The second part of the optimization was related to load
balancing. The original Suricata implementation was using
a static flow based load balancing scheme that can be unbal-
anced due to the non-uniform distribution of flow sizes. We
proposed earlier to use the hybrid load balancing scheme
consisting of the mPIPE provided dynamic adaptive load
balancing for the first stage, a simple FSH at the second
stage and the RPB scheme for the last stage. We argued
that this combination achieves a better load balancing and
has a better space locality.

143

1 2 3 4
2.0

T T T
Thread count in Detection Engine stage

1392223 N 4 1 s Il

w

~
Speedup

Throughput with lock
contention elimination(Mpps)

0.5

AANANARRNNARNANRRY
ANNNEENNNN NN NN

AN

0.0

1 2 3 4
Thread count in Protocol Processing stage

Figure 8: Performance in one Packet Processing module

with lock contention elimination
1 2

2.0

4
T

T T T
Thread count in Detection Engine stage

1E3922223 222 4 Il 5 I

b
~
Speedup

and RPB(Mpps)
o

b
o

Throughput with contention elimination

7
?
2
?
¢
¢
¢
)
)

14
°

1 2 3 4
Thread count in Protocol Processing stage

Figure 9: Performance in one Packet Processing module
with lock contention elimination and RPB scheme

We show in Fig.9 the attained throughput when using this
hybrid load balancing. As we observed in previous sections,
the performance is now governed by the Packet Capture sat-
uration, meaning that one cannot expect that the load bal-
ancing will improve a lot the overall performance. Nonethe-
less, when there are several concurrent Detection Engines
in the module, the load balancing improves the through-
put in the third stage. Take the module with one Protocol
Processing and two Detection Engines for example, the per-
formance in the third stage is improved from 0.42 Mpps (see
Fig. 8)to 0.48 Mpps (a 14% improvement). The improve-
ment enables to achieve almost the best throughput of 1.6
Mpps with only 2 Protocol Processing threads, each attached
with 3 Detection Engine threads. This similar performance
was happening with 2 Protocol Processing threads, each is
attached with 4 Detection Engine threads without the opti-
mization i.e., best performance can almost be achieved with
9 cores in place of 11 cores. This last point will become very
valuable in next section.

5.4 Full system Performance

In previous sections, we described the performance of a
single Packet Processing module and saw that the satura-
tion throughput of the Packet Capture module happens at
around 1.6 Mpps, meaning that we cannot go beyond this
throughput for a single Packet Processing module. Fig.9
shows that this performance can be attained with 11 cores
(2 Protocol Processing, each attached to 4 Detection Engine
threads), but 9 cores almost achieve a throughput of 1.5
Mpps (2 Protocol Processing, each attached to 3 Detection
Engine threads, when load-balancing is optimized). Because
the TILERAGX36 contains 36 cores, choosing the second

byte's/packet
‘bytes/packet.................................
bytes/packet
-bytes/packet. ...

100
l..~@=200

—A— 256
L —-0O-512

° @

Throughput (Gbps)

o

L]

1 4

2 3
Optimal Packet Processing module count

Figure 10: Overall performance of an NIDS with 4 Packet
Processing optimized engines

configuration enables to run 4 Packet Processing modules
concurrently, instead of 3 with the first configuration. As we
can expect that the throughput of parallel Packet Processing
modules increases linearly, a more frugal Packet Processing
in terms of cores is a more attractive option. Also, as al-
most all data-structures are shared, each additional Packet
Processing module results in relatively small memory con-
sumption increase.

We show in Fig.10 the performance obtained for a syn-
thetic traffic with different packet sizes ranging from 100 to
512 Bytes over a 10 Gbps interface. As can be seen the over-
all system can handle traffic with 100 Bytes packet size at
7.2 Gbps (9 Mpps) speed rate. This is almost the maximum
rate that can be send over a 10 GE interface considering the
padding added by MAC layer. The NIDS was able to handle
more than 10 GE bandwidth when connected to two 10 GE
interfaces for tests with larger packet sizes. By increasing
the packet size to respectively 200 Bytes, 256 Bytes and 512
Bytes, the throughput grows to resp. 11.04 Gbps (6.9 Mpp-
s), 12 Gbps (6 Mpps), 13.5 Gbps (3.3 Mpps). The decreasing
gain in packets per second is due to the larger overhead asso-
ciated to larger packets. In particular the achieved through-
put for 256-bytes packets validates the linear improvement
with concurrent execution of optimized Packet Processing
modules. For example, the system achieves a speedup al-
most 4 with 4 concurrent modules. As the optimal configu-
ration for the module is gained under traffic with 256-bytes
packet, the speedups for traffic with 100-bytes and 512-bytes
packet are less linear in Fig.10, comparing with the other two
curves. For example, the system achieves a speedup about
3.5 with 4 concurrent modules, when processing traffic with
512-bytes packet. Thus we need to get different optimal
configurations for different traffic scenario in practice. As it
shown in the last paragraph, the optimal configuration for a
scenario should be selected carefully and may not occur at
the point in one module with the best performance.

5.5 Comparison with existing systems

In order to show the gain obtained with our architecture,
we have also implemented raw Suricata and Snort on the
TILEARGX36 processor. Porting Suricata on Tilera is easy
as it is designed as a pipeline and can be compiled and run
directly on the TILERAGX36 processor. For Snort, which
is designed as a single thread, we ran several instances and
bound each instance through the load balancing offered in
hardware by mPIPE. The evaluation is done with 256-bytes
packets generated at 10 Gbps.

144

36

T T T T T

—l— Performance (Mpps) 20
=@~ Speedup

Throughput (Mpps)
on
>
Speedup

1 1 1 1 0
0 6 12 18 24 30 36

Snort Instance Count

Figure 11: Performance of non-modified Snort on TILER-
AGX36 processor with data parallelism

The performance of a single instance of non-modified Suri-
cata running a pipeline has already be shown in the leftmost
side of Fig.6. We see that with a single Packet Process-
ing module, the pipeline saturates with around 4 Detection
Engine threads and the performance decreases with more
threads. The highest throughput achieved is only around
0.47 Mpps when using 6 tile-cores.

We then evaluated the non-modified Snort running as par-
allel independent threads. We bound each instance of non-
modified Snort on a single tile in TILERAGX36. The perfor-
mance results are shown in Fig.11. As all the instances are
isolated, the performance exhibits an almost linear speedup
up to 6 instances and saturates thereafter. This is due to
the huge memory consumption resulting from independent
data. The highest achieved throughput in Fig.11 is around
3.4 Mpps.

We wanted to compare our design with GPU based so-
lutions [8, 9], however we do not have the access to their
source code to be able to execute it on the same ruleset and
experimental setting we used. However we compared our ob-
tained performance with the reported performance of these
two systems with 200 bytes packets. We show the compar-
ison in Table 2. Our achieved throughput is about 6 times
larger than that of MIDeA’s[8]. Comparing with Kargus [9]
that was proposed in 2012, we achieve 60% of their perfor-
mance. Nonetheless, the Kargus NIDS is using two GPU’s
and it will be fair to compare its performance with an imple-
mentation using two TILERAGX36 processor that would be
able to achieve 15% more throughput that the one achieved
by Kargus. We added two other elements of comparison
the price of the processor and the achieved throughput per
dollar spend. We observe that TILERAGX36 based design
achieves a throughput per dollar cost of 17.40 Mbps/$ that
is 8 times larger than MIDeA’s, and almost 3 times larger
than Kargus’s. As our proposed design is more cost effec-
tive, we can easily consider improving the performance by
just adding more TILLERAGX36 processors and running
them in parallel.

6. CONCLUSION

In this paper, we have proposed a parallel design for high
performance, flexible, scalable and inexpensively NIDS on
TILERAGX36 many-core processor. We optimized the ar-
chitecture by exploiting existing features of TILERAGX36
to break the bottlenecks in the parallel design. The sys-
tem with optimal configuration exhibits linear speedup on
TILERAGX36 and can deal with traffic over 13.5 Gbps for

Table 2: Comparison of our parallel design with existing systems(200 Bytes/packet)

name publication | ruleset size | throughput(Gbps) | processor cost($) | through per dollar(Mbps/$)
MIDeA CCS’2011 8192 3.2 1138 2.81
Kargus CCS2012 ~ 3000 19 3164 6.01
Proposed design ~ 7571 11.04 650 17.4

512-bytes packets and 7.2 Gbps for 100-bytes packets. Com-
paring with current proposed NIDS systems on GPU, our
parallel design on TILERAGX36 achieve a throughput per
dollar that is three fold. The obtained performance looks
very promising. As it is possible to have on the same board
up to 2 TILERAGX36 many-core processor, we can expec-
t to almost double the attained performance in practice.
Moreover as the power consumption of TILERA processor
is 50 W at 1.2 Ghz (compare with 750 W for GPU based
design), one can even think of several processor cards. In
the context of the evolution of the PEARL programmable
router platform presented in [29], we are precisely working
on that. Another promising aspect of our design is related
to the usage of rule based partition that enable our design to
easily absorb greater attack complexity and a larger ruleset,
especially as future processors will have increasing number
of cores. This means that basically we can ”scale” our design
along two axes: more traffic with more TILERA processor
implementing more packet processing modules a more rules
with more Detection Engines per packet processing. In our
future work, we also plan to mitigate load variation resulting
from different rulesets and traffic variation by doing on the
fly dynamic tile allocation to accommodate more realistic
real scenario.

7. ACKNOWLEDGE
This work was supported in part by the National High-

Tech R&D Program of China under Grant No.2013 AA013501,

the National Science and Technology Major Project of China
under Grant No.20127ZX03002016, the Instrument Develop-
ing Project of CAS under Grant No.YZ201229, the National
Natural Science Foundation of China (NSFC) with Grants
61202411 and the NSFC-ANR pFlower project with grant
No0.61061130562.

8. REFERENCES

[1] V. Paxson. Bro: A System for Detecting Network
Intruders in Real-time. In Proceedings of the 7th
Conference on USENIX Security Symposium, 1998
Zachary K. Baker and Viktor K. Prasanna,
"High-throughput Linked-Pattern Matching for
Intrusion Detection Systems”, In ANCS 2005, Oct
26-28, 2005, Princeton, New Jersey, USA

V. Paxson, R. Sommer, and N. Weaver, ”An
architecture for exploiting multi-core processors to
parallelize network intrusion prevention” In
Proceedings IEEE Sarnoff Symposium, May 2007

J. Lee, S. H. Hwang, N. Park, S.-W. Lee, S. Jun, and
Y. S. Kim. A High Performance NIDS Using
FPGA-based Regular Expression Matching. In
Proceedings of the 22nd ACM Symposium on Applied
computing (SAC), 2007

Mitra, W. Najjar, and L. Bhuyan. Compiling PCRE
to FPGA for accelerating SNORT IDS. In Proceedings
of the 3rd ACM/IEEE Symposium on Architecture for

2]

145

[6]

[7]

8]

[9]

(10]
(11]

(13]

(14]
(15]
(16]

(17]

(18]

Networking and Communications Systems, ANCS,
2007

M. Colajanni and M. Marchetti, A parallel
architecture for stateful intrusion detection in high
traffic networks”, IEEE IST Workshop on Monitoring,
Attack Detection and Mitigation, Tuebingen,
Germany, Sept. 2006

Kim, Sunil, and Jun-yong Lee. ”A system architecture
for high-speed deep packet inspection in
signature-based network intrusion prevention.” Journal
of Systems Architecture 53.5 (2007): 310-320.

G. Vasiliadis, M. Polychronakis, and S. Ioannidis.
"MIDeA: A Multi-Parallel Intrusion Detection
Architecture”, In Proceedings of the ACM Conference
on Computer and Communications Security (CCS),
2011.

M. Jamshed, J. Lee, S. Moon, I. Yun, D. Kim, S. Lee,
Y. Yi, and K. Park. ”Kargus: a highly-scalable
software-based intrusion detection system”, In
Proceedings of the ACM Conference on Computer and
Communications Security (CCS), 2012
http://vrt-blog.snort.org/

J. Cabrera, J. Gosar, W. Lee, and R. Mehra, afOn the
statistical distribution of processing times in network
intrusion detectionas In 43rd IEEE Conference on
Decision and Control, Dec 2004, pp. 751C80.
TILE-Gx8036 product brief
http://www.tilera.com/sites/default/files/
productbriefs/ TILE-Gx8036_PB033-02_web.pdf
Salminen, Erno, Ari Kulmala, and Timo D.
Hamalainen. "Survey of network-on-chip proposals.”
white paper, OCP-IP (2008): 1-13.
www.suricata-ids.org

www.openinfosecfoundation.org

Wentzlaff, David, et al. ?On-chip interconnection
architecture of the tile processor.” Micro, IEEE 27.5
(2007): 15-31.

Sourdis, Ioannis, et al. "Packet pre-filtering for
network intrusion detection.” ACM/IEEE Symposium
on Architecture for Networking and Communications
systems, 2006

Suleman, M. Aater, Moinuddin K. Qureshi, and Yale
N. Patt. "Feedback-directed pipeline parallelism.”
Proceedings of the 19th international conference on
Parallel architectures and compilation techniques.
ACM, 2010.

Supra-linear packet processing performance with intel
multi-core processors white paper. Intel Corporation,
2006.

Removing System Bottlenecks in Multi-threaded
Applications white paper. Intel Corporation, 2008.
Schuff, Derek L., Yung Ryn Choe, and Vijay S. Pai.
”Conservative vs. optimistic parallelization of stateful
network intrusion detection.” IEEE International

[24]

[25]

Symposium on Performance Analysis of Systems and
software, 2008

Chen, Xinming, et al. "Para-snort: A multi-thread
snort on multi-core ia platform.” Proceedings of
Parallel and Distributed Computing and Systems
(PDCS) (2009).

Martin, Ruediger, Michael Menth, and Michael
Hemmkeppler. ”Accuracy and dynamics of hash-based
load balancing algorithms for multipath Internet
routing.” Broadband Communications, IEEE
International Conference on Networks and Systems,
2006

Weiguang Shi, Lukas Kencl, Sequence-preserving
adaptive load balancers, Proceedings of the 2006
ACM/IEEE symposium on Architecture for
networking and communications systems, December
03-05, 2006, San Jose, California, USA

Haiyang Jiang, Gaogang Xie, Kavé Salamatian, Load
Balancing by Ruleset Partition for Parallel IDS on
Multi-Core Processors, International Conference on
Computer Communications and Networks, ICCCN
2013

C. Grozea, Z. Bankovic, and P. Laskov, FPGA wvs.
multi-core cpus vs. gpus: Hands-on experience with a
sorting application, In Conference Facing the
Multicore-Challenge, pp.105-117, 2010

P. P. C. Lee, T. Bu, and G. P. Chandranmenon, A
Lock-free, Cache efficient Multi-core Synchronization
Mechanism for Line-rate Network Traffic Monitoring,
in IEEE International Symposium on Parallel and
Distributed Processing (IPDPS 2010), Atlanta, GA,
April 2010, pp.1012

http://oprofile.sourceforge.net /download/

Xie, Gaogang, et al. "PEARL: a programmable virtual
router platform.” Communications Magazine, IEEE
49.7 (2011): 71-77.

146

