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Abstract—Building on the framework introduced by Xu and
Raginksy [1] for supervised learning problems, we study the best
achievable performance for model-based Bayesian reinforcement
learning problems. With this purpose, we define minimum
Bayesian regret (MBR) as the difference between the maximum
expected cumulative reward obtainable either by learning from
the collected data or by knowing the environment and its dynam-
ics. We specialize this definition to reinforcement learning prob-
lems modeled as Markov decision processes (MDPs) whose kernel
parameters are unknown to the agent and whose uncertainty is
expressed by a prior distribution. One method for deriving upper
bounds on the MBR is presented and specific bounds based on the
relative entropy and the Wasserstein distance are given. We then
focus on two particular cases of MDPs, the multi-armed bandit
problem (MAB) and the online optimization with partial feedback
problem. For the latter problem, we show that our bounds can
recover from below the current information-theoretic bounds by
Russo and Van Roy [2].

Index Terms—information-theoretic bounds, Markov decision
process, multi-armed bandit problem, reinforcement learning,
Bayesian regret, mutual information, Wasserstein distance

I. INTRODUCTION

In model-based reinforcement learning problems [3], [4],

an agent interacts sequentially with a dynamic environment by

taking actions in order to maximize its long-term performance.

This paper, as most related work in this field, focuses

on systems and control objectives that are modeled as finite

time horizon Markov decision processes (MDPs). At each

time t = 1, . . . , T , the agent observes the environment

state St and takes an action At following a decision policy

ϕt. Independently of the action, the environment produces

a random outcome Yt. The reward is obtained as a deter-

ministic function of the system’s outcome and the chosen

action, Rt = r(Yt, At). The data is collected in a history

Ht+1 = (S1, A1, R1, . . . , St, At, Rt) and the system evolves

to a state St+1. The procedure then repeats until the end of

the time horizon, t = T .

In the Bayesian setting, the MDP model Φ is treated as

a random element of some parametric model family, which

is drawn according to a prior distribution of the environ-

ment parameters Θ. The goal of the agent is to identify

a policy that yields the highest expected cumulative reward

E[
∑T

t=1 r(Yt, At)] under the uncertainty of these parameters.
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The decision-making process in Bayesian reinforcement

learning is typically more computationally demanding than

the frequentist approach, however this setting presents various

advantages as it facilitates regularization, handles parame-

ter uncertainty naturally, and provides ways to solve the

exploration-exploitation trade-off [5].

Following the work from Xu and Raginsky on Bayesian

supervised learning [1], we put aside the computational aspect

to study the best achievable performance for model-based

Bayesian reinforcement learning. We define the minimum

Bayesian regret as the difference between the Bayesian cu-

mulative reward Rφ(κH), defined as the maximum expected

cumulative reward attainable by learning from the sequen-

tially collected data, and Rφ(κΘ), the maximum expected

cumulative reward that could be reached if the environment

parameters were known. We develop information-theoretic

upper bounds on the minimum Bayesian regret under various

assumptions for the reward function using the relative entropy

and the Wasserstein distance.

Structure of the paper: Section II summarizes the con-

tributions of this paper. The notations are introduced in Sec-

tion III. Section IV presents the different models of decision

processes studied and gives the definition of the Bayesian cu-

mulative reward and the minimum Bayesian regret. Section V

and VI are devoted to information-theoretic upper bounds on

the MBR. Finally, conclusions are presented in Section VII.

II. CONTRIBUTIONS

In this work, inspired by Xu and Raginsky’s [1] framework

on the study of the best achievable performance of supervised

learning problems, we propose an analogous framework for the

study of model-based reinforcement learning problems. Our

contributions in this regard can be summarized as:

1) Developing a theoretical framework of model-based

Bayesian MDPs suited for information-theoretic studies.

2) Proposing a definition of the minimum Bayesian regret

(MBR) for reinforcement learning problems modeled as

Markov decision processes.

3) Presenting a data processing inequality for the Bayesian

cumulative reward in Lemma 1.

4) Formulating upper bounds on the MBR for general MDPs

based on the relative entropy (Proposition 1) and the

Wasserstein distance (Proposition 2). We present particu-

lar cases of these bounds for the case of bounded reward
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functions in Corollaries 1 and 2, and the tightness of these

results are compared in Remark 3.

5) Deriving MBR bounds for the multi-armed bandit and for

the online optimization with partial feedback problems.

In this last setting, we show how our bound recovers from

below results from Russo and Van Roy [2].

III. NOTATIONS AND PRELIMINARIES

Throughout the paper, random variables X are written in

capital letters, their realizations x in lower-case letters, and

their set of outcomes X in calligraphic letters. The probability

distributions of a random variable X is denoted as PX . When

more than one random variable is considered, e.g., X and Y ,

we use PX,Y to denote their joint distribution and PXPY for

their product distribution1. We write the conditional probabil-

ity distribution of Y given X as PY |X , defining a probability

distribution PY |X=x over Y for each element x ∈ X .

We use the underscore notation Xt to represent a random

variable at time t = 1, . . . , T and the exponent notation Xt

to denote a sequence of random variables Xt ≡ (X1, . . . , Xt)
for t = 2, . . . , T . For consistency we let X1 ≡ X1.

The relative entropy between two probability distributions

P and Q is defined as DKL(P ‖ Q) :=
∫

log
(

dP
dQ

)

dP if P is

absolutely continuous with respect to Q and DKL(P ‖ Q) →
∞ otherwise. The notation dP/dQ is the Radon-Nikodym

derivative. Similarly, the mutual information between X and

Y is defined as I(X ;Y ) := DKL(PX,Y ‖ PXPY ), and the

conditional mutual information between X and Y , given Z ,

as I(X ;Y |Z) := E[I(X ;Y |Z = z)], where I(X ;Y |Z = z) :=
DKL(PX,Y |Z=z ‖ PX|Z=zPY |Z=z).

Finally, if two probability distributions P and Q are de-

fined in a Polish space X with respect to a metric ρ, then

their Wasserstein distance of order p ≥ 1 is Wp(P,Q) :=
(

infD∈Π(P,Q)

∫

ρdD
)1/p

, where Π(P,Q) is the set of all

couplings of P and Q; i.e., all joint distributions on X × X
with marginals P and Q. As this work is focused on upper

bounds and since by Hölder’s inequality Wp ≤ Wq for all

p ≤ q [6, Remark 6.6], in what follows, we will only be

using the Wasserstein distance of order 1, W := W1. For a

discrete random variable X , the Shannon entropy is defined

as H(X) := E[− log(PX(X))].

IV. MODEL AND DEFINITIONS

In this section we first introduce formally Markov decision

processes. We then present the multi-armed bandit and the

online optimization with partial feedback problems two special

cases of MDPs. After that, we describe Bayesian cumulative

reward and prove that it respects a data-processing inequality.

Finally, we define minimum Bayesian regret.

A. Markov Decision Process

In a Markov decision process (MDP), at each time step

1, . . . , T , an agent interacts with the environment by observing

1Note that this slight abuse of notation does not mean that the product
distribution is the product of the distributions.

the system’s state St ∈ S and selecting accordingly an action

At ∈ A. The system then produces an outcome Yt ∈ Y which

the agent associates with a scalar reward Rt ∈ R.

In Bayesian reinforcement learning, the environment is

completely characterized by a random variable Θ ∈ O with

probability distribution PΘ. Therefore, an MDP Φ is defined

by a transition kernel κtrans : S×(S×A×O) → [0, 1] such that

PSt+1|St,At,Θ = κtrans(·, (St, At,Θ)), an outcome kernel κout :
Y× (S×O) → [0, 1] such that PYt|St,Θ = κout(·, (St,Θ)), an

initial state prior distribution PS|Θ such that S1 ∼ PS|Θ, and a

reward function r : Y×A → R. The reward is a deterministic

function of the system’s outcome and the chosen action, hence

there is a reward’s kernel κreward : B(R)× (S,A,O) → [0, 1]
such that PRt|St,At,Θ = κreward(·, (St, At,Θ)).

The task in Bayesian reinforcement learning is to learn a

policy ϕ = {ϕt : S ×Ht → A}Tt=1 taking an action At based

on the current observation St and the past collected data Ht,

where Ht+1 = (St, At, Rt) that maximizes the cumulative

expected reward rΦ(ϕ) := E
[
∑T

t=1 r
(

Yt, ϕt(St, H
t)
)]

.

B. Static state MDP and multi-armed bandit problem

A static state MDP is an MDP whose transition kernel κtrans

is such that the system’s state remains constant, i.e. St = S
for all t. We will use the notation Π to refer to such MDP.

A multi-armed bandit (MAB) problem can be formalized as

a static state MDP whose environment parameters Θ and out-

comes Yt are independent of S. Similarly to an MDP, the task

in a MAB problem is to learn a policy ϕ = {ϕt : S × Ht →
A}Tt=1 taking an action At based on the past collected data

Ht, where Ht+1 = (At, Rt) that maximizes the cumulative

expected reward rΠ(ϕ) := E
[
∑T
t=1 r

(

Yt, ϕt(S,H
t)
)]

.

A variant of that problem is the online optimization problem

with partial feedback studied by Russo and Van Roy [2].

This problem can also be modeled as a static MDP Π with

a finite action space A where at each time t = 1, . . . , T ,

the agent selects an action At and observes a “per-action

outcome” Yt,At
∈ Y ′ giving rise to past collected data Ht

with Ht+1 = (At, Yt,At
). The agent associates the “per-action

outcome” with a reward Rt = r′(Yt,At
) through a preference

function r′ : Y ′ → R. In this setting, the random outcome

Yt ∈ Y is the vector formed with all the possible outcomes,

Yt ≡ {Yt,a}a∈A and the reward function r : Y × A → R

is a function such that for all Yt ∈ Y and At ∈ A, we

have r(Yt, At) = r′(Yt,At
). In this problem, as well, the

environment parameters Θ and outcomes Yt are independent

of S.

C. The Bayesian Cumulative Reward

A decision policy that maximizes the expected cumulative

reward among all policies is called a Bayesian decision policy.

The corresponding maximum expected cumulative reward is

defined as the Bayesian cumulative reward.

Definition 1. The Bayesian cumulative reward (BCR) of a

Markov decision process Φ is defined as RΦ := supϕ rΦ(ϕ),
where the supremum is taken over the collection ϕ of all



decision rules ϕt : S × Ht → A such that the expectation

is defined.

The notion of Bayesian cumulative reward can be general-

ized to allow the agent to select an action using some knowl-

edge Xt such that each Xt+1 is obtained from (St, At, Yt,Θ).
In this generalized model, the knowledge Xt is obtained

through a knowledge kernel κknow : X× (S ×A×Y ×O) →
[0, 1] such that PXt+1|St,At,Yt,Θ = κknow(·, (St, At, Yt,Θ)).
Now, let ϕ = {ϕt : S × X t → A}Tt=1 be a policy in this

relaxed setting. Then, the generalized Bayesian cumulative

reward (also written as BCR when no confusion is possible)

of an MDP Φ with knowledge kernel κknow is RΦ(κknow) :=
supϕ rΦ(κknow, ϕ), where

rΦ(κknow, ϕ) := E

[ T
∑

t=1

r
(

Yt, ϕt(St, X
t)
)

]

and again the supremum is taken over the collection ϕ of all

decision rules ϕt : S × X t → A such that the expectation

above is defined.

Remark 1. Given an MDP Φ, let X = S ×A×R and κknow

be a kernel such that Xt+1 = (St, At, Rt) and denote this

kernel κH. Note that Xt = Ht and RΦ(κH) = RΦ.

After defining the generalized Bayesian cumulative reward,

one can study the case where the agent has access to some

processed information Zt obtained from the knowledge Xt.

Let κprocess denote a collection of processing kernels {κprocess,t :
Z× (X t) → [0, 1]}Tt=1 such that PZt|Xt = κprocess,t

(

·, (Xt)
)

for each t = 1, . . . , T . Then the processed Bayesian cumula-

tive reward with knowledge kernel κknow and process kernels

κprocess is RΦ(κknow, κprocess) := supψ rΦ(κknow, κprocess, ψ),
where

rΦ(κknow, κprocess, ψ) := E

[ T
∑

t=1

r
(

Yt, ψt(St, Zt)
)

]

and the supremum is taken over the collection ψ of all decision

rules ψ = {ψt : S × Z → A}Tt=1 such that the expectation

above is defined.

D. Data processing inequality for the BCR

An important property of the Bayesian cumulative reward is

the data processing inequality (DPI), stating that no amount of

processing of the knowledge random variables can increase the

cumulative reward. This is formalized in the following lemma.

Lemma 1. Let κU be a knowledge kernel associated with an

MDP Φ and κV|U a collection of processing kernels. Then, the

cumulative Bayesian reward using the knowledge from U is

at least as large as the processed Bayesian cumulative reward

using the processed knowledge from V . More precisely,

RΦ(κU) ≥ RΦ(κU, κV|U)

Intuition of the proof. The proof follows by iteratively em-

ploying [7, Lemma 3.22] in a similar fashion to [1, Lemma 1]

and taking care that the random objects in the definitions of

RΦ(κU ) and RΦ(κU , κV |U ) follow the distributions described

by the dynamics of the MDP Φ and their respective actions

ϕt and ψt. The complete proof is in appendix A.

E. The Minimum Bayesian Regret (MBR)

We define the fundamental limit of the Bayesian cumulative

reward as the Bayesian cumulative reward for a knowledge

kernel such that Xt = Θ, that is when the environment

parameters are known to the agent. We denote such a kernel

as κΘ.

Definition 2. The fundamental limit of the Bayesian cumula-

tive reward of a Markov decision process Φ is defined as

RΦ(κΘ) := sup
{ψt}T

t=1

E

[ T
∑

t=1

r
(

Yt, ψt(St,Θ)
)

]

,

where the kernel κΘ is such that Xt = Θ for all t = 1, . . . , T .

Assumption 1. For the rest of the paper, we will assume that

the supremum from Definition 2 exists and we will denote by

ψ⋆ = {ψ⋆t }
T
t=1 a policy that achieves it.

We define the gap between this limit and the Bayesian

cumulative reward as the minimum Bayesian regret.

Definition 3. The minimum Bayesian regret (MBR) of a

Markov decision process Φ is defined as

MBRΦ := RΦ(κΘ)−RΦ(κH).

The MBR characterizes the regret of the optimal decision

policy that has access to the collected data, but not to environ-

ment parameters, and is therefore an algorithm-independent

quantity. It can be interpreted as the inherent difficulty of

the reinforcement learning problem resulting from the lack

of knowledge about the environment parameters Θ.

V. UPPER BOUNDS ON THE MINIMUM BAYESIAN REGRET

In this section, we start by giving an upper bound of the

minimum Bayesian regret in terms of the difference of the

fundamental limit of the BCR, RΦ(κΘ), and the processed

BCR with the optimal Bayes parameters’ estimator PΘ|Ht as

the processing kernel and the optimal policy of RΦ(κΘ). That

is, the difference between the best obtainable risk knowing

the environment parameters Θ, and the best obtainable risk

inferring the parameters with an optimal estimator. This bound,

in turn, can be developed into a bound that compares the sum

of the individual terms in the optimal trajectory of RΦ(κΘ) and

those obtained with the processing kernels PΘ|Ht . This way,

we can employ similar techniques to those in the literature

(e.g., [8], [9]) and bound the MBR in terms of the sum

of terms depending on the statistical difference between the

distributions of those two trajectories.



A. The Thompson sampling regret

Consider the fundamental limit of BCR, RΦ(κΘ), and its

optimal trajectory ψ⋆. A natural algorithm to try to solve

an MDP Φ when environment Θ is unknown is to estimate

the environment parameters with some processing kernel of

the history κΘ|H and select an optimal action based on such

processing. An elegant scenario would be to have the addi-

tional information of knowing which is the optimal trajectory

ψ⋆ and to be able to calculate the Bayes optimal estimator

PΘ|Ht to process the history. In fact, for a static MDP Π,

this algorithm is studied in the literature and is known as the

Thompson’s sampling algorithm [2], [10]–[14]. Therefore, the

next lemma shows that the MBR is bounded from above by

the difference of RΦ(κΘ) and the BCR of such an algorithm,

rΦ(κH, κΘ|H,ψ⋆).

Lemma 2. For any MDP Φ, the MBR can be upper bounded

as follows,

MBRΦ ≤ RΦ(κΘ)− rΦ(κH, κΘ|H, ψ
⋆).

Proof. The proof starts by using Lemma 1 to lower bound

RΦ(κH) with RΦ(κH, κΘ|H). The last inequality follows from

the definition of RΦ(κH, κΘ|H) being the supremum over ψ of

rΦ(κH, κΘ|H, ψ). More precisely,

MBRΦ = RΦ(κΘ)−RΦ(κH)

≤ RΦ(κΘ)−RΦ(κH, κΘ|H)

≤ RΦ(κΘ)− rΦ(κH, κΘ|H, ψ
⋆).

In what follows, we will use the notations Y ⋆t and S⋆t for the

outcomes and states obtained from the actions derived from

ψ⋆, the kernels that describe the MDP Φ, and the knowledge

kernel κΘ. Similarly we will let Ŷt, Ŝt and Ĥt be the out-

comes, states, and histories obtained from the actions derived

from ψ⋆, the kernels that describe the MDP Φ with knowledge

kernel κH, and processing kernels κΘ|H. The following lemma

builds on Lemma 2 and shows how the MBR can be written as

the sum of the individual differences of the expected rewards

obtained following the optimal trajectory (Y ⋆t , S
⋆
t )
T
t=1 and the

trajectory of the aforementioned algorithm (Ŷt, Ŝt)
T
t=1 given

the history Ĥt.

Unrolling RΦ(κΘ) and rΦ(κH, κH|Θ, ψ
⋆) and using the

linearity of the expectation and the law of total expectation

reveals that the right-hand side term from Lemma 2 can be

written as

T
∑

t=1

E

[

E

[

r
(

Y ⋆t , ψ
⋆
t (S

⋆
t ,Θ)

)

−r
(

Ŷt, ψ
⋆
t (Ŝt, Θ̂t)

)

∣

∣

∣
Θ, Θ̂t, Ĥ

t
]

]

.

(1)

Remark 2. The importance of this re-formulation lays in the

fact that the first term inside the conditional expectation is

distributed according to PY ⋆,S⋆|Θ since (Y ⋆, S⋆) are inde-

pendent of the history Ĥt when the environment parameters Θ
are known. Similarly, the second term is distributed according

to PŶt,Ŝt|Ĥt since (Ŷt, Ŝt) are independent of the sampled

parameters Θ̂t when the history is known. Both facts follow

from the Markov chain (Y ⋆t , S
⋆
t ) − Θ − (Ŷt, Ŝt) − Ĥt − Θ̂t.

Therefore, conditioned on the history Ĥt and the environment

parameters Θ, Θ̂t, the terms in the sum of (1) are a difference

of expectations of random objects which randomness comes

from distributions on the same space, which permits us to em-

ploy known decoupling techniques to bound these differences

in terms of such distributions.

In the sequel, we use this fact to bound the MBR as the

sum of terms depending on the statistical difference between

the distributions of the elements from the optimal trajectory

(Y ⋆t , S
⋆
t )|Θ and the trajectory described by the algorithm with

the Bayes optimal parameters’ estimator (Ŷt, Ŝt)|Ĥ
t. More

precisely, we use the techniques from e.g. [2], [8] when the

reward is sub-Gaussian, from e.g. [9], [15] when it is Lipschitz,

and from [9] to connect both settings when the reward is

bounded.

B. Sub-Gaussian reward functions

We consider arbitrary reward functions r : Y × A → R

mapping an outcome and an action to a scalar reward. Under

the assumption that the random reward r(Ŷt, ψ
⋆
t (Ŝt, θ)) is

σ2
t -sub-Gaussian under PŶt,Ŝt|Ĥt=ĥt for all θ ∈ O and all

ĥt ∈ Ht, the MBRΦ is bounded by a sum of terms related to

the relative entropy between the distribution of the elements

of each step of the optimal trajectory, i.e., Y ⋆t , S
⋆
t , and the

Thompson’s sampled trajectory, i.e., Ŷt, Ŝt. This is formalized

in the following Proposition.

Proposition 1. If for all t = 1, . . . , T , the random reward

r(Ŷt, ψ
⋆
t (Ŝt, θ)) is σ2

t -sub-Gaussian under PŶt,Ŝt|Ĥt=ĥt for

all θ ∈ O and all ĥt ∈ Ht, then,

MBRΦ ≤
T
∑

t=1

E

[√

2σ2
tDKL(PY ⋆

t ,S
⋆
t |Θ

‖ PŶt,Ŝt|Ĥt)
]

.

Proof. The proof follows from applying Donsker-Varadhan’s

inequality [16, Theorem 5.2.1] to (1) using Remark 2 in a

similar fashion to [2], [8].

C. Lipschitz reward functions

In this subsection, we suppose that the set of outcomes and

actions (Y,A) together with the metric ρ : (Y × A) × (Y ×
A) → R+, form a Polish metric space.

Assume that the reward function r : Y × A → R is L-

Lipschitz under the metric ρ, that is that |r(y, a)−r(y′, a′)| ≤
Lρ((y, a), (y′, a′)) for all y, y′ ∈ Y and a, a′ ∈ A. Under this

assumption, the Wasserstein distance can be used to upper

bound the minimum Bayesian regret.

Proposition 2. Suppose that (Y ×A) is a metric space with

metric ρ. If the reward function r : Y ×A → R is L-Lipschitz

under the metric ρ, then

MBRΦ ≤ L

T
∑

t=1

E
[

W(PY ⋆
t ,S

⋆
t |Θ

,PŶt,Ŝt|Ĥt)
]

.



Proof. The proof follows from applying Kan-

torovich–Rubinstein duality [6, Remark 6.5] to (1)

using Remark 2 analogously to [9], [15].

D. Bounded reward functions

We can obtain upper bounds on the minimum Bayesian

regret for bounded reward functions as particular cases of both

Proposition 1 and Proposition 2. We will consider without loss

of generality reward functions bounded in [0, 1].

First, from Hoeffding’s lemma [17, Theorem 1], we have

that if r : Y × A → [0, 1] then the reward is 1/4-sub-

Gaussian under any distribution of the arguments. This fact

and Proposition 1 leads to Corollary 1.

Corollary 1. If the reward function is bounded in [0, 1], then,

for any MDP Φ,

MBRΦ ≤

T
∑

t=1

E

[

√

1

2
DKL(PY ⋆

t ,S
⋆
t |Θ

‖ PŶt,Ŝt|Ĥt)

]

.

Second, we can note that a bounded [0, 1] function is 1-

Lispchitz under the discrete metric (or Hamming distortion)

ρ((y, a), (y′, a′)) := 1(y,a)=(y′,a′) where 1 is the indicator

function. Using this fact, we can obtain Corollary 2 from

Proposition 2.

Corollary 2. If the reward function is bounded in [0, 1], then,

for any MDP Φ,

MBRΦ ≤

T
∑

t=1

E
[

W(PY ⋆
t ,S

⋆
t |Θ

,PŶt,Ŝt|Ĥt)
]

.

Remark 3. Corollary 2 provides a tighter bound than Corol-

lary 1. Indeed, if the geometry is ignored (i.e., the discrete

metric is considered), then for all t = 1, . . . , T ,

E
[

W(PY ⋆
t ,S

⋆
t |Θ

,PŶt,Ŝt|Ĥt)
]

= E
[

TV(PY ⋆
t ,S

⋆
t |Θ

,PŶt,Ŝt|Ĥt)
]

≤ E

[

√

1

2
DKL(PY ⋆

t ,S
⋆
t |Θ

‖ PŶt,Ŝt|Ĥt)

]

,

where the equality follows from [6, Proof of Theorem 6.15]

and inequality follows from Pinsker’s [18, Theorem 6.5] and

Bretagnolle–Huber’s result [19, Proof of Lemma 2.1].

VI. UPPER BOUNDS FOR STATIC MDPS

In this section, we leverage the bound from Section V

to obtain bounds on the minimum Bayesian regret for static

Markov decision processes. We focus here on the case where

the reward function is bounded in [0, 1] and leave the sub-

Gaussian and Lipschitz cases to the Appendix B, since they

are analogous to the previous section. We first present upper

bounds on the MBR for the multi-armed bandit problem. We

then produce upper bounds to the online optimization with

partial feedback problem, and show how they can recover from

below the results from Russo and Van Roy [2].

Similarly to Section V, we can apply Lemma 2 to upper

bound the MBR for static MDPs. In the case of a static MDP,

the right-hand side of that bound can be written as

T
∑

t=1

E

[

E

[

r
(

Yt, ψ
⋆
t (S,Θ)

)

− r
(

Yt, ψ
⋆
t (S, Θ̂t)

)

∣

∣

∣
Θ, Θ̂t, Ĥ

t
]

]

.

This rewriting of the bound is obtained the same way as (1):

unrolling Rπ(κΘ) and rΠ(κH, κH|Θ, ψ
⋆), using the linearity of

the expectation, the law of total expectation and the fact that

the state S does not depend on the time t = 1, . . . , T .

In the case where the outcomes {Yt}t=1,...,T do not depend

on the state S, as in a MAB problem, it is possible to rewrite

the actions taken by optimal policy ψ⋆t (S,Θ) as γ⋆(Θ), where

the function γ⋆ : O → A is such that for all S ∈ S and all

Θ ∈ O, it holds that ψ⋆t (S,Θ) = γ⋆(Θ). In that case, it comes

that the right-hand side term from Lemma 2 can be written as

T
∑

t=1

E

[

E
[

r(Yt, A
⋆)− r(Yt, Ât)

]

|A⋆, Ât, Ĥ
t
]

. (2)

Remark 4. Under this reformulation, the outcome in the first

term inside the conditional expectation is distributed according

to PYt|A⋆,Ĥt and the second term is distributed according to

PYt|Ĥt . This happens since Yt is independent of the sampled

environment parameters Θ̂t, and therefore independent of the

sampled action Ât when the history Ĥt is known.

A. Multi-armed bandit problem

In this subsection, we propose minimum Bayesian regret

bounds for multi-armed bandit problems Π.

The tightest bound we obtain relates the MBRΠ to the

Wasserstein distance between the conditional probability of

the outcome given the optimal action and the history collected

following a Thompson sampling policy, and the conditional

probability of the outcome given only the history.

Proposition 3. If the reward function is bounded in [0, 1], then

for any static MDP Π,

MBRΠ ≤

T
∑

t=1

E
[

W(PYt|A⋆,Ĥt ,PYt|Ĥt)
]

.

Proof. The proof follows from applying Kan-

torovich–Rubinstein duality [6, Remark 6.5] to (2)

using Remark 4 in the same way as [9], [15].

Using the same arguments as in Remark 3, together with

Jensen’s inequality, one can relax the bound from Proposition 3

and relate the MBRΠ to the conditional mutual information

between the outcome Yt and the optimal action A⋆ given the

history Ĥt. This is formalized in the following corollary.

Corollary 3. If the reward function is bounded in [0, 1], then

for any static MDP Π,

MBRΠ ≤

T
∑

t=1

√

1

2
I(Yt;A⋆|Ĥt).



This conditional mutual information can be interpreted as

the remaining “amount of surprise about the output Yt” after

observing the history Ĥt that is removed when the optimal

action A⋆ is revealed.

B. Online optimization with partial feedback problem

In the special case of online optimization with partial

feedback, the right-hand-side term from Lemma 2 in (2) can

be formulated in a compact form using the preference function:

T
∑

t=1

E

[

E
[

r′(Yt,A⋆)
]

− E
[

r′(Yt,Ât
)
]

|A⋆, Ât, Ĥ
t
]

. (3)

Remark 5. In this last rewriting, the outcome in the first term

inside the conditional expectation is distributed according to

PYt,A⋆ |A⋆,Ĥt and the second term is distributed according to

PY
t,Ât

|Ĥt . This holds since Yt is independent of the sampled

environment parameters Θ̂t, and therefore independent of the

sampled action Ât when the history Ĥt is known.

As the terms in (3) are a difference of expectations of

random objects which randomness comes from distributions on

the same space, we can upper bound the minimum Bayesian

regret using the Wasserstein distance in terms of such dis-

tributions following the techniques from [9], [15]. This is

formalized in the following proposition.

Proposition 4. If the reward function is bounded in [0, 1], then

for any online optimization problem with partial feedback Π,

MBRΠ ≤

T
∑

t=1

E
[

W(PYt,A⋆ |A⋆,Ĥt ,PYt,A⋆ |Ĥt)
]

.

Proof. The proof follows from applying Kan-

torovich–Rubinstein duality [6, Remark 6.5] to (3)

using Remark 5.

This bound can also be relaxed following a similar proce-

dure as Remark 3 to relate the MBRΠ to the relative entropy

between the distribution of the “per-action outcome” Yt,A⋆

given the optimal action A⋆ and the history Ĥt and given the

history only.

Corollary 4. If the reward function is bounded in [0, 1], then

for any online optimization problem with partial feedback Π,

MBRΠ ≤

T
∑

t=1

E

[

√

1

2
DKL(PYt,A⋆ |A⋆,Ĥt ‖ PYt,A⋆ |Ĥt)

]

.

As the above stated Proposition 4 is derived using Lemma

2, its bound naturally holds for the regret of the Thompson

sampling algorithm, namely:

RΠ(κΘ)−rΠ(κH, κΘ|H, ψ
⋆) ≤

T
∑

t=1

E
[

W(PYt,A⋆ |A⋆,Ĥt ,PYt,A⋆ |Ĥt)
]

We can further relax this bound to recover results from

Russo and Van Roy [2]. More specifically, we can recover the

general bound combining [2, Propositions 1 and 3], and the

specific bound combining [2, Propositions 1 and 4], for which

it is assumed that the outcome Yt is perfectly revealed upon

observing Yt,a for any a ∈ A. These claims are formalized in

Corollary 5.

Corollary 5. If the reward function is bounded in [0, 1], then

for any online optimization problem with partial feedback

Π, we have the following inequality on the bound from

Proposition 4:

T
∑

t=1

E
[

W(PYt,A⋆ |A⋆,Ĥt ,PYt,A⋆ |Ĥt)
]

≤

√

1

2
|A|H(A⋆)T .

Under the additional assumption that the outcome Yt is

perfectly revealed upon observing Yt,a for any a ∈ A, one

can obtain a tighter result:

T
∑

t=1

E
[

W(PYt,A⋆ |A⋆,Ĥt ,PYt,A⋆ |Ĥt)
]

≤

√

1

2
H(A⋆)T .

Intuition of the proof. For both results, the proof starts from

using the same steps as Remark 3 to relax the bound from

Proposition 4. Then, both of the proofs rely on the application

of Cauchy-Schwartz’s and Jensen’s inequalities to obtain a

bound using the sum of the conditional mutual information

between the optimal action A⋆ and the “per-action outcome”

Yt,At
given the history Ĥt. One can then show that the

entropy of the optimal action H(A⋆) upper bounds this sum

of conditional mutual information I(A⋆;Yt,At
|Ĥt) to obtain

the desired results. The assumption that the outcome Yt is

perfectly revealed upon observing Yt,a for any a ∈ A averts

an extra use of the Cauchy-Schwartz inequality and thus allows

to avoid an explicit dependence on the the number of actions

through the multiplicative constant
√

|A|. The full proof can

be found in Appendix B-B.

VII. CONCLUSION

In this paper, building on the results from [1], we introduce

a framework to study the Bayesian cumulative reward and the

minimum Bayesian regret for reinforcement learning problems

in the form of Markov decision process. The latter, is an

algorithm-independent quantity and reflects the difficulty of

the reinforcement learning problem. We prove a data pro-

cessing inequality for the Bayesian cumulative reward and

present upper bounds on the minimum Bayesian regret using

the Wasserstein distance and the relative entropy. We leverage

these results to the particular cases of the multi-armed bandit

and the online optimization with partial feedback problems.

For this last problem, our bound can be relaxed to recover

from below the results presented in [2].
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APPENDIX A

LEMMAS AND EXTRA REMARKS

Lemma 1. Let κU be a knowledge kernel associated with an MDP Φ and κV|U a collection of processing kernels. Then, the

cumulative Bayesian reward using the knowledge from U is at least as large as the processed Bayesian cumulative reward

using the processed knowledge from V . More precisely,

RΦ(κU) ≥ RΦ(κU, κV|U)

Proof. The proof starts by writing explicitly the inequality to be proven, namely

RΦ(κU ) = sup
{ϕt}T

t=1

E

[ T
∑

t=1

r
(

Yt, ϕt(St, U
t)
)

]

≥ sup
{ψt}T

t=1

E

[ T
∑

t=1

r
(

Y ′
t , ψt(S

′
t, Vt)

)

]

= RΦ(κU , κV |U ),

where Yt and St are the outcomes and states obtained from the actions derived from ϕt, the kernels that describe the MDP Φ,

and κU ; where Y ′
t , S′

t, and Vt are the outcomes, the states, and processed knowledge obtained from the actions derived from

ψt and the kernels that describe the MDP Φ, and κU and κV |U .

Now, the proof follows by iteratively employing [7, Lemma 3.22] in a similar fashion to [1, Lemma 1]. To start, consider the

kernel κV |U,1 from U to V , which are assumed to be Borel spaces. Then, there exists a measurable function f1 : U× [0, 1] → V
such that if Ξ ∼ Uniform[0, 1] then f(u,Ξ) ∼ κV |U,1(·, u) for all u ∈ U [7, Lemma 3.22]. Then,

RΦ(κU ) = sup
{ϕt}T

t=1

E

[

r
(

Y ′
1 , ϕ1(S

′
1, U

1)) +

T
∑

t=2

r
(

Yt, ϕt(St, U
t)
)

]

(4)

≥ sup
ψ1,{ϕt}T

t=2

sup
ξ1∈[0,1]

E

[

r
(

Y ′
1 , ψ1(S

′
1, f1(U

1, ξ))) +

T
∑

t=2

r
(

Ȳt, ϕt(S̄t, Ū
t)
)

]

(5)

≥ sup
ψ1,{ϕt}T

t=2

E

[

r
(

Y ′
1 , ψ1(S

′
1, f1(U

1,Ξ))) +

T
∑

t=2

r
(

Ỹt, ϕt(S̃t, Ũ
t)
)

]

(6)

= sup
ψ1,{ϕt}T

t=2

E

[

r
(

Y ′
1 , ψ1(S

′
1, V1)) + r

(

Y ′
2 , ϕ2(S

′
2, U

′2)) +
T
∑

t=3

r
(

Ỹt, ϕt(S̃t, Ũ
t)
)

]

, (7)

where (4) follows since neither S1 and Y1 nor S′
1 and Y ′

1 depend on the actions derived from ϕ or ψ, and therefore S1, S
′
1 ∼ PS|Θ

and Y1, Y
′
1 ∼ PY1|S1,Θ. Then, (5) follows since the supremum of functions ϕ1 : S × U → A is restricted to the functions

supψ supξ ψ(·, f1(·, ξ)), and where Ȳt, S̄t, and Ū denote the outcomes, states, and knowledge obtained from the actions derived

from ψ1 and ϕt for t ≥ 2, the kernels that describe the MDP Φ, and κU . After that, (6) holds since Ξ is independent of all

random objects and supx f(x) ≥ E[f(X)]. Here, Ỹt, S̃t, and Ũ t denote the outcomes and states obtained from the actions

derived from ψ1 and ϕt for t ≥ 2, the kernels that describe the MDP Φ, and κU . Finally, in (7) it is used that V1 = f(U1,Ξ)
and therefore that S′

2 = S̃2 and Y ′
2 = Ỹ ′

2 . Similarly, U ′2 is the knowledge obtained from ψ1, the kernels that describe the

MDP Φ, and κU and κV |U,1.

Repeating the technique above focusing on r(Y ′
2 , ϕ2(S

′
2, U

′2)) and using [7, Lemma 3.22] with the kernel κV |U,2 from U2

to V one obtains that

RΨ(κU ) ≥ sup
{ψt}2

t=1
,{ϕt}T

t=3

E

[ 2
∑

t=1

r
(

Y ′
t , ψ1(S

′
t, Vt)) + r

(

Y ′
3 , ϕ3(S

′
3, U

′3)) +

T
∑

t=4

r
(

Ỹt, ϕt(S̃t, Ũ
t)
)

]

, (8)

where the notation is abused and Ỹt and S̃t denote the outcomes and states obtained from the actions derived from ψ1, ψ2,

and ϕt for t ≥ 3, the kernels that describe the MDP Φ, and κU and κV |U,1 for t < 3. Also as before, U ′3 is the knowledge

obtained from ψt for t < 3, the kernels that describe the MDP Φ, and κU and κV |U,t for t < 3.

Finally, iterating this technique results in

RΦ(κU ) ≥ sup
{ψt}T

t=1

E

[ T
∑

t=1

r
(

Y ′
t , ψt(S

′
t, Vt)

)

]

= RΦ(κU , κV |U ) (9)

and completes the proof.

Remark 6. In the proof, ψ1 may be different in both (7) and (8), since the supremum may vary. However, Y ′
2 , S′

2, and U ′2

still represent the outcome, the state, and the knowledge obtained from the action derived from ψ1, the kernels that describe

the MDP, and κU and κV |U,1. The same is true for all Y ′
t , S′

t, and U ′t along the proof, ensuring that the random objects

in (9) are distributed as in the definition of RΦ(κU , κV |U ).



APPENDIX B

UPPER BOUNDS FOR STATIC MDPS FOR SUB-GAUSSIAN AND LIPSCHITZ LOSSES

A. Multi-armed bandit problems

Proposition 5. If for all t = 1, . . . , T , the random reward r(Y,A⋆) is σ2
t -sub-Gaussian under PYt|Ĥt=ĥt for all θ ∈ O and

all ĥt ∈ Ht, then for any static MDP Π,

MBRΠ ≤

T
∑

t=1

√

2σ2
t I(Yt;A⋆|Ĥt).

Proof. The proof starts from applying Donsker-Varadhan’s inequality [16, Theorem 5.2.1] to (2) using Remark 4 in the same

way as [2], [8]. The last inequality is obtained using Jensen’s inequality and identifying the conditional mutual information

between the outcome Yt and the optimal action A⋆ given the history Ĥt. Namely,

MBRΠ ≤

T
∑

t=1

E

[

E
[

r(Yt, A
⋆)− r(Yt, Ât)

]

|A⋆, Ât, Ĥ
t
]

≤

T
∑

t=1

E

[√

2σ2
tDKL(PYt|A⋆,Ĥt ‖ PYt|Ĥt))

]

≤

T
∑

t=1

√

2σ2
t I(Yt;A⋆|Ĥt).

Proposition 6. Suppose that Y is a metric space with metric ρ. If the reward function r : Y × A → R is L-Lipschitz in Y
under the metric ρ, then

MBRΠ ≤ L

T
∑

t=1

E
[

W(PYt|A⋆ ,PYt|Ĥt)
]

.

Proof. The proof follows from applying Kantorovich–Rubinstein duality [6, Remark 6.5] to (2) using Remark 4 analogously

to [9], [15].

B. Online optimization with partial feedback problems

Proposition 7. If for all t = 1, . . . , T , the random reward r(Y, a⋆) is σ2
t -sub-Gaussian under PY |Ĥt=ĥt for all a⋆ ∈ A and

all ĥt ∈ Ht, then for any online optimization problem with partial feedback Π,

MBRΠ ≤

T
∑

t=1

E

[√

2σ2
tDKL(PYt,A⋆ |Θ ‖ PYt,A⋆ |Ĥt)

]

Proof. The proof follows from applying Donsker-Varadhan’s inequality [16, Theorem 5.2.1] to (3) using Remark 5 in a similar

fashion to [2], [8].

Proposition 8. Suppose that Y is a metric space with metric ρ. If the reward function r : Y × A → R is L-Lipschitz in Y
under the metric ρ, then for any online optimization problem with partial feedback Π

MBRΠ ≤ L

T
∑

t=1

E
[

W(PYt,A⋆ |A⋆ ,PYt,A⋆ |Ĥt)
]

.

Proof. The proof follows from applying Kantorovich–Rubinstein duality [6, Remark 6.5] to (3) using Remark 5 analogously

to [9], [15].

Remark 7. One can show that the entropy of the optimal action H(A⋆) upper bounds the sum of conditional mutual information

between the optimal action A⋆ and the “per-action outcome” Yt,At
given the history Ĥt. This result is obtained in the same

way as in [2] through the following chain of inequalities,

T
∑

t=1

I(A⋆;Yt,At
|Ĥt)

(a)

≤

T
∑

t=1

I(A⋆; (Yt,At
, At)|Ĥ

t)
(b)
= I(A⋆; {Yt,At

, At}
T
t=1)

(c)

≤ H(A⋆)

where (a) follows from [18, Theorem 2.3.5], equality (b) is given by the chain rule and (c) is obtained from [18, Theorem

2.4.4].

Corollary 5. If the reward function is bounded in [0, 1], then for any online optimization problem with partial feedback Π,

we have the following inequality on the bound from Proposition 4:

T
∑

t=1

E
[

W(PYt,A⋆ |A⋆,Ĥt ,PYt,A⋆ |Ĥt)
]

≤

√

1

2
|A|H(A⋆)T .



Under the additional assumption that the outcome Yt is perfectly revealed upon observing Yt,a for any a ∈ A, one can obtain

a tighter result:

T
∑

t=1

E
[

W(PYt,A⋆ |A⋆,Ĥt ,PYt,A⋆ |Ĥt)
]

≤

√

1

2
H(A⋆)T .

Proof. Under the assumption that the outcome Yt is perfectly revealed upon observing Yt,a for any a ∈ A, one can show the

following chain of inequalities:

T
∑

t=1

E
[

W(PYt,A⋆ |A⋆,Ĥt ,PYt,A⋆ |Ĥt)
]

≤

T
∑

t=1

E

[

√

1

2
DKL(PYt,At

|A⋆,Ĥt ‖ PYt,At
|Ĥt)

]

(10)

≤

T
∑

t=1

√

1

2
I(A⋆;Yt,At

|Ĥt) (11)

≤

√

√

√

√

1

2
T

T
∑

t=1

I(A⋆;Yt,At
|Ĥt) (12)

≤

√

1

2
TH(A⋆)

where (10) is obtained using the same arguments as in Remark 3 and, as Yt is perfectly revealed from observing Yt,a for any

a ∈ A, we have that DKL(PYt,a|A⋆,Ĥt ‖ PYt,a|Ĥt) = DKL(PYt|A⋆,Ĥt ‖ PYt|Ĥt) . Then Jensen’s inequality leads to (11) and

Cauchy-Schwartz inequality to (12). Finally, applying Remark 7 yields the desired result.

When no information structure is assumed among the outcome Yt ≡ {Yt,a} for all a ∈ A, inspired by the arguments used

to prove [2, Proposition 3], one can show a looser inequality, through a chain of inequalities :

T
∑

t=1

E
[

W(PYt,A⋆ |A⋆,Ĥt ,PYt,A⋆ |Ĥt)
]

≤

T
∑

t=1

E

[

∑

a∈A

P(A⋆ = a|Ĥt)

√

1

2
DKL(PYt,a|A⋆=a,Ĥt ‖ PYt,a|Ĥt)

]

(13)

≤

T
∑

t=1

E

[

√

1

2
|A|

∑

a∈A

P(A⋆ = a|Ĥt)2DKL(PYt,a|A⋆=a,Ĥt ‖ PYt,a|Ĥt)

]

(14)

≤

T
∑

t=1

E

[

√

1

2
|A|

∑

a,b∈A

P(A⋆ = a|Ĥt)P(A⋆ = b|Ĥt)DKL(PYt,a|A⋆=b,Ĥt ‖ PYt,a|Ĥt)

]

(15)

≤

T
∑

t=1

√

1

2
|A|I(A⋆;Yt,At

|Ĥt) (16)

≤

√

√

√

√

1

2
|A|T

T
∑

t=1

I(A⋆;Yt,At
|Ĥt) (17)

≤

√

1

2
|A|TH(A⋆)

where (13) follows from Remark 3, (14) is obtained using Cauchy-Schwartz inequality, and (15) by adding the non-negative

extra terms 1
2 |A|

∑

a∈A P(A⋆ = a|Ĥt)
∑

b∈A\a P(A
⋆ = b|Ĥt)DKL(PYt,a|A⋆=b,Ĥt ‖ PYt,a|Ĥt) in the square root in (14). Then,

(16) follows from using Jensen’s inequality and identifying the conditional mutual information between the optimal action A⋆

and the “per-action outcome” Yt,At
given the history Ĥt. Lastly, Cauchy-Schwartz inequality leads to (17) and Remark 7 gives

the claimed result.


