
HAL Id: ensl-00642157
https://ens-lyon.hal.science/ensl-00642157v1

Submitted on 17 Nov 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mixed-precision Fused Multiply and Add
Nicolas Brunie, Florent de Dinechin, Benoît de Dinechin

To cite this version:
Nicolas Brunie, Florent de Dinechin, Benoît de Dinechin. Mixed-precision Fused Multiply and Add.
45th Asilomar Conference on Signals, Systems & Computers, Nov 2011, United States. pp.165-169.
�ensl-00642157�

https://ens-lyon.hal.science/ensl-00642157v1
https://hal.archives-ouvertes.fr

1

Mixed-precision Fused Multiply and Add
Nicolas Brunie, Florent de Dinechin, and Benoit de Dinechin

florent.de.dinechin@ens-lyon.fr, {nicolas.brunie,benoit.dinechin}@kalray.eu

Abstract—The standard floating-point fused multiply and add
(FMA) computes R=AB+C with a single rounding. This article
investigates a variant of this operator where the addend C and
the result R are of a larger format, for instance binary64 (double
precision), while the multiplier inputs A and B are of a smaller
format, for instance binary32 (single precision). With minor
modifications, this operator is also able to perform the standard
FMA in the smaller format, and the standard addition in the
larger format.

For sum-of-product applications, the proposed mixed-precision
FMA provides the accumulation accuracy of the larger format,
at a cost that is close to that of a classical FMA in the smaller
format. Besides, it is fully compatible with existing arithmetic
and language standards.

The architectural cost of this operator is analysed in detail.
An implementation of a mixed binary32/binary64 operator fully
supporting subnormal numbers, binary64 addition and binary32
FMA is demonstrated and evaluated: its area overhead is one
third over the classical binary32 FMA. Similarly, in high-end
processors, a mixed binary64/binary128 FMA could provide an
adequate solution to the binary128 requirements of very large
scale computing applications.

I. INTRODUCTION

The fused multiply-add operator (FMA) is now an IEEE-

754-2008 standard operator. It combines improvements in

performance (two operations in a single instruction) and

improvements in accuracy (one single rounding). The latter

allows for many algorithmic improvements [16], for instance

efficient implementations of division and square root. As the

FMA can also be used as an adder or as a multiplier, most

recent instruction sets (including IBM Power/PowerPC and

Intel/HP IA64, but also recent graphical processing units [15])

build their floating-point unit (FPU) around the FMA. This

operator will come to the legacy IA32 instruction set with the

SSE5 and AVX extensions from AMD and Intel respectively.

Moore’s law, bringing more and more transistors per chip,

reduces the relative area of a floating-point unit. For instance,

one 64-bit FPU of the 8-core POWER7 processor consumes

only a quarter of a mm2 [2], a tiny fraction of the area

of a core. The mainstream way to exploit these transistors

for floating-point is to provide more parallel FPUs per core,

exploited through new vector (or SIMD) instructions. For

instance the POWER7 has 4 FPUs per cores. Recent graph-

ical processing units (GPUs) also include large numbers of

FMAs [15].

In this article, we consider a complimentary approach,

which is to design more functionality in a coarser FPUs. We

introduce a floating-point mixed-precision FMA, or MPFMA.

For k ∈ {16, 32, 64}, the MPFMAk computes R = ◦(A ×
B + C) where A and B are binaryk numbers, C and R are

binary2k numbers, and ◦ is one of the rounding modes to the

Name binary16 binary32 binary64 binary128

p 11 24 53 113

emax +15 +127 +1023 +16383

emin −14 −126 −1022 −16382

Table I
MAIN PARAMETERS OF THE BINARY INTERCHANGE FORMATS SPECIFIED

BY THE 754-2008 STANDARD [10].

binary2k format as defined by the IEEE-754-2008 standard

(and summarized in Table I).

We show that an FPU based on such an operator may also

take care of two operations that are somehow simpler: the

standard binaryk FMA, and the standard binary2k addition.

The MPFMA32 operator constitutes the basis of the

Floating-Point Unit (FPU) of the Kalray K1 processor, a many-

core architecture designed for the embedded, low-consumption

and DSP market. There, the primary focus is on binary32

support, with binary64 support being a secondary concern, and

the MPFMA32 is a versatile and cost-effective answer to these

needs. In a different context, we also see the MPFMA64 as a

cost-effective way to extend existing binary64 FPUs to provide

binary128 precision where large-scale applications need it.

This article is organized as follows. Section II motivates this

operator from an applicative point of view, considering the

pervasive sum-of-product kernels. This section also compares

this solution to previous hardware or software approaches.

The following sections study the construction of an

MPFMAk, complete with support of subnormals, of binaryk

FMA, and of binary2k addition. First, Section III explicits

the data alignment requirements for this operator, pointing

out where the datapath has to be extended with respect to a

standard FMA. This analysis intends to be fairly independent

of the constraints of an actual implementation.

Then, Section IV presents an actual implementation in

the context of the Kalray K1 processor. The MPFMA32 is

compared against classical FMA32, FMA64, and binary64

addition, all designed with comparable optimization effort. It

is found that the MPFMA32 area is only 1.3 the area than

the classical FMA32, whereas an FMA64 would consume 2.5

times this area and require more bandwidth from the register

file.

II. CONTEXT AND MOTIVATIONS

The MPFMAk is relevant for computing kernels based

on sums of products of binaryk numbers. Such kernels are

pervasive, from linear algebra to signal processing transforms.

They may return inaccurate results for at least two reasons.

The first is the accumulation of the rounding errors, whose

impact is proportional to the number of products to add. The

second, more dependent on the input data, is the occurence of

cancellations along the sum. The motivation of the MPFMAk

is to provide extra accuracy (and pay its price) for the

accumulation, and only for the accumulation.

A. Related work

This accuracy issue in sums and sums of products is

pervasive enough to have motivated a lot of techniques that

provide extended precision for the accumulation process.

On the hardware side, Digital Signal Processors (DSP)

have long offered mixed-precision operators for fixed-point:

A typical DSP operator is a multiply-accumulate that adds

the product of two 16-bit number to a 40-bit accumulator.

One initial motivation of the MPFMA operator, in the Kalray

processor context, was that is fitted neatly in a DSP-oriented

datapath already offering a fixed-point multiply-accumulate

with 32-bit multiplier operands and 64-bit accumulators.

For floating-point, Kulisch advocated augmenting the pro-

cessors with a long accumulator that would enable exact

accumulation and dot product [11]. So far, processor vendors

have not considered the benefits of this extension to be worth

its cost. The MPFMA approach is an intermediate trade-off

between accumulation using standard operators, and Kulisch’s

exact accumulation.

On the software side, many techniques have been suggested

to double (or more) the precision of accumulation and sums of

products, notably by Babuška [1], Pichat [18], Neumaier [17],

Priest [19], and Rump, Ogita, and Oishi [23]. They are

reviewed in [16, ch. 6]. These techniques cost at least 5

binaryk additions per accumulated term.

It has been suggested that these techniques should be

assisted by hardware [5], [7] for better performance. This is

what our MPFMAk does. Compared to these propositions, it

has the additional advantage of an extended exponent range,

not only extended precision. This reduces the risk of returning

∞ due to an intermediate overflow when the result should be

representable.

Operators managing several precisions have been proposed,

for instance an operator able to compute either one binary64,

or two binary32 FMA operations in parallel [9]. However,

in both cases, the operation uses the same format for all

inputs and output. The accumulation of binary32 product in a

binary64 register is possible by casting all the operands to

binary64 registers, but this solution uses 53-bit significand

multiplications to multiply 24-bit data. This is all the more

wasteful as the hardware is there to compute two 24-bit

multiplications in parallel instead.

Closer to our design is a recent FMA design based on

a floating-point multiplier with an extended output and a

floating-point adder with an extended operand [13]. This

choice of a split implementation is motivated only by per-

formance (we will review it in V-D) and, contrary to our

proposal, does not offer access to the extended precision in

the instruction set. Therefore, it cannot be used for accurate

accumulation or sum-of-product. The extended operand would

not be in a standard floating-point format anyway.

Indeed, a strong point of the MPFMA is that it is fully

standard-compliant, as we now detail.

B. Standard compliance

Consider the following C code, archetypal of many com-

puting kernels, including matrix operations, finite impulse

response (FIR) filters, fast Fourier transforms (FFT), etc.

float A[], B[]; /* binary32 */

double C; /* binary64 */

C=0;

for(i=0; i< N; i++)

C = C + A[i]*B[i];

We observe the following:

Using the MPFMA32 for computing the line

C = C + A[i]*B[i] is both C99-compliant and IEEE-754

compliant.

Proof: Assume we only have the standard addition and

multiplication operators. As we have a mix of precisions in

this code, there are two ways of implementing it in practice.

Either cast A[i] and B[i] to double, then perform a double-

precision operation, or perform a single-precision multiplica-

tion, then cast the product to a double. The C99 standard

encourages implementation to use wider precisions for inter-

mediate computations if it is not slower. On a processor only

offering double-precision hardware, the first approach, which

is more accurate and no slower, would therefore be preferred.

Now let us detail what happens in this first option. The

cast of a float/binary32 to a double/binary64 is errorless. The

product is also errorless, since its significant size is at most

48 bits, which fits in the 53 bits of a binary64 number.

In addition, no overflow nor underflow are possible: For

underflow, the smallest binary32 subnormal (of value 2−149)

is converted to a binary64 normal number, the square of

which (2−298) is well within the normal range of binary64.

Similarly, the square of the largest, non infinite binary32 values
(

2− 2−23
)

·2127 is well within the normal range of binary64.

To sum up, A[i]×B[i] is computed exactly and without over-

or underflow before being added to the binary64 number C.

This floating point binary64 addition performs one rounding,

so there is a single final rounding in the computation of

A[i]*B[i]+C. This is exactly the behaviour of the proposed

MPFMA.

In other words, in a processor offering an MPFMA, we

obtain a result that is bit-identical to a result compliant with

C99/IEEE-754.

This property holds for MPFMA16 and MPFMA64 as well,

as one can check from Table I. For each column from binary32

to binary128, the precision p in this column is larger than

twice the precision in the column to the left, which guarantees

errorless multiplication, and the same holds for emin and emax

values, which guarantees absence of underflow and overflow.

C. Hardware support of additions in the wider format

As we will see, an MPFMA also naturally supports addition

in the wider format, which requires the same amount of inputs

and outputs, and only marginal modifications to the datapath.

This operation is useful in its own right, but it is also useful

in the context of the extra accurate accumulation: to fill the

operator pipeline of depth l, it is desirable to split a large

accumulation into l smaller ones which can be computed in

parallel. Doing so eventually provides l partial sums in the

larger format, which can be summed thanks to the addition

operation in the larger format.

D. Hardware support of FormatOf operations

The IEEE 754-2008 standard mandates the implementation

(in hardware or software) of a large number of FormatOf

operations. These are operations that mix precisions, like

binary32 + binary32 → binary64 [10, Section 5.4]. Full

compliance with the standard requires to offer them all for

the supported formats, but a software implementation is both

tricky and costly [14]. The proposed operator provides hard-

ware implementations for most of the FormatOf operations

mixing binaryk and binary2k.

Let us now study the construction of this operator.

III. OPERAND ALIGNMENT

A. Notations

In an MPFMAk, what matters most in terms of delay and

silicon area is not k but the precision of the significands, which

we note p for the binaryk multiplier operand, and q for the

binary2k addend and result.

We note d the exponent difference between the addend and

the product.

B. Alignment cases

Figures 1, 2, and 3 describe the various cases of product and

addend alignment. In these figures, we use p = 5 and q = 12
for illustration, and we represent the significand product of AB

on 2p bits, and the significand of C on q bits. The purpose of

each figure is to determine the size in bits of the intermediate

sum required for each case. On each figure, we represent the

extreme cases of alignment. For instance, the third alignment

of Figure 1 illustrates that if d ≥ q+3, all the bits of AB will

only participate to the sticky bit, not to the sum.

These figures hold for any formats such that q ≥ 2p + 2,

which is the case for the standard precisions defined in Table I.

C. Subnormal support

As already mentioned, if either A, or B, or both are sub-

normals, the product AB nevertheless belongs in the normal

range of the result format, binary2k. Managing these cases

therefore resumes to normalizing this product, i.e. bringing its

leading one in the leftmost position. This corresponds to a

shift of up to 2p bits.

The shift distance is the sum of the leading zero counts

(LZC) on the significands of A and B. These LZCs can be

performed in parallel to the multiplication [13], which is why

we prefer to normalize the product, and not the inputs A and

B themselves.

Managing subnormal values of C has no overhead at all:

If C is subnormal, then either AB = 0 and the result is C,

*

* *

*

* *

*

* *

* *

*

** *

* *

* *

* * *

A.B

C+

A.B

C+/−

A.B

+ C

R

Addend−Anchored : Normal Operands

gap of 2 bits (Guard and Round bits)

sticky−bit

sticky bitq bits standard precision

q+2p+5 bits

d=3

d=−1 and addition

d=q+3 and addition

Figure 1. Operand alignment for the addend-anchored case of a mixed-
precision FMA. The stars denote the possible positions of the leading bit.

* * * * * * * ** *

q+3 Leading Zero Counter

* ****

* * * * * * * ** * ** * *

q bits precision

*

**A.B

C−

d=−1

* * * * * * * * * * * *

*C−

Cancellation : Normal Operands

* *A.B
q precision addend

2p precision product

 d=2

Figure 2. Operand alignment for the cancellation case of a mixed-precision
FMA.

or AB 6= 0 and it is very far from the subnormal range, so

the whole of C should only be taken into account as a sticky

(second case of figure 3).

D. Support of binary2k addition

One may remark in Figures 1, 2, and 3 that the product

AB may be replaced with a binary2k input D with very

little impact on the datapath width. Specifically, only Figure

1 would need to be modified, with the 2p replaced with a q

in the final sum size. Note that the maximum shift distance

*

sticky−bit

R

R

sticky−bit

* *A.B

C

* * * *

Product−Anchored : Normal Operands

* *

*

* * * *

A.B

C

d=−2

d=−(q+2)

q bits precision

2q+4

q bits precision

* * * *

Figure 3. Operand alignment for the product-anchored case of a mixed-
precision FMA.

is not modified (third case of Figure 1), only the amount of

bits to be shifted. We claim that this entails a minor overhead,

since q is only slightly larger than 2p: 53 versus 48 for the

MPFMA32, and 113 versus 106 for the MPFMA64.

However, we have to take care of the case when this second

binary2k input D is subnormal, since it replaces AB which

could never be so. However it turns out this case adds very

little logic. Specifically, the only new problem is the apparition

of a subnormal as the result of a cancellation. The additional

logic required only concerns the exponent datapath, to saturate

the shift value to the minimal binary2k exponent. This has a

very small overhead.

E. binaryk FMA support

To support a classical FMAk operation, there are again

a few multiplexers to add and constants to change on the

exponent datapath, and again this represents a minor overhead.

A more important modification is the addition of a rounding

module to the binaryk format at the end of the datapath in

addition to the module rounding to binary2k. The two formats

have different exponent bias and mantissa precisions. The

global latency is only slightly increased by the output muxing

between the two formats.

IV. ARCHITECTURE

A. Discussion on the alignment architecture

Figures 1, 2, and 3 defining the extremal alignment cases,

there are two main approaches to building an architecture able

to manage these cases:

1) distinguishing beween product-anchored and addend-

anchored cases, or

2) anchoring the datapath on one operand , and aligning the

second operand on it. In the standard FMA, the anchored

operand is typically the product, since it will be available

after the addend and it is larger than it. This allows

the alignment shift to be processed concurrently to the

significand multiplication.

The first solution implies that before entering the datapath

we swap the operands based on their exponent. It is also

possible to distinguish more cases (close/cancellation, far

addend anchored and far product anchored, corresponding

roughly to our three figures) in order to optimize a different

datapath for each case [21], [24].

The greater operand is always statically driven at the left of

the datapath, and the lower is shifted right for the alignment. In

this case, the alignment shift itself is about q at most, leading

to roughly 2q bits for the operands of the effective addition

(Figures 1 and 3). However, the normalisation of a subnormal

product may add 2p to this shift distance, as explained in

III-C. To sum up, the critical path of this solution, before

the effective addition, consists of a multiplier, a multiplexer

to swap operands according to their order, and a shifter with

(roughly) 2q + 2p output bits.

The second solution, also called statically product-anchored,

is motivated as follows [12]. The multiplier is the largest and

slowest unit, its latency is longer than that of the alignment

shifter. Therefore, once computed, the product should not be

shifted: instead, it is statically extended and driven to the

middle q bits of a (roughly) 3q register. In parallel to the

product computation, the addend operand is placed at the left

of a (roughly) 3q register, then right-shifted for alignment.

This is the solution we chose to explore further here for the

MPFMA, and it is illustrated on Figure 4. In this solution the

critical path consists of the multiplier alone, hiding the latency

of the (large) alignment shifter.

The datapath widths in this approach are obtained by

superimposing figures 1 to 3.

To deal correctly with subnormal A and B, we have once

again at least two solutions. The first one is to consider a

3q + 5 bits datapath for the effective addition with at least

a 2q LZA or LZC on its output. The second solution is to

introduce a 2p shifter after the multiplier output, renormalizing

the multiplication result. This second solution was prefered

since it reduces the adder size to 2q+6 bits and the LZC/LZA

to q + 3 bits.

Finally, in this MPFMA architecture, the effective addition

size is 2q + 6 bits (112 bits for the MPFMA32 with p = 24
and q = 53). This is larger than in the FMAk (3p+4, 76 bits

for p = 24) but much smaller than in the FMA2k (3q+4 bits,

163 bits for q = 53).

We remark again that this 2q + 6 addition is more than

enough to manage the binary2k addition. In practice, the over-

head of managing this operation is essentially in multiplexers

and exponent management.

B. Summary of overhead with respect to FMAk

This subsection focuses on comparing the overhead of a

MPFMA over a standard FMA, in terms of area and latency.

Energy could be a valued addition to this list and should be

addressed in a future work.

We first compare statically product-anchored implementa-

tions. The main differences are

AlignShifter

+/-sign

LZC LZC
Multiplier

q p p

2p
3q+6
q

2q+6 2pq+3 q+3-2p

sticky

'0..0'
'0..0'

q+3 2q+5

q+3

q

m m m

RenormShifter

LZC NormShifter

Rounding

+

c a b

Figure 4. Baseline architecture for significand processing in a mixed-
precision FMA

• the normalisation shifter of a standard product-anchored

FMA is about 4p bits large, with a 3p-bit maximal shift.

For the MPFMA this shifter need to be 3q-bit large with

a 2q-bit maximal shift. Comparing an MPFMA32 to a

standard FMA32, this is a 159-bit datapath for a 106-

bit maximal shift, versus a 96-bit datapath with a 72-bit

shifter.

• Rather than a 3p-bit adder datapath, we will need a 2q-bit

, this allow direct support of large precision addition. For

FMA32 and MPFMA32 that is 72 bits against 106 bits.

• Concerning the needed leading zero count, if we suppose

that both operators use an early normalization and that the

product is normalized before entering the adder datapath,

then a standard FMA needs a 2p-bit LZC, while an

MPFMA will need a q-bitLZC. These numbers are also

applicable if the operator use a Leading Zero Anticipator

on the adder entry, rather than an LZC on the adder

output.

• In the MPFMA, we have to add a second rounding

module for a q-bit result to the p-bit module of the

standard FMA.

In the case of multipath architecture like those used by [21]

or [24], the datapath widening would be repercuted on each

of the path. For the close path, this implies a q-bit path rather

than a 2p-bit path (adder and Leading Zero Count prediction,

plus new rounding module). For the far paths (both product-

anchored and addend-anchored), that would mean a 2q-bit

shifter with a q bit adder, rather than a 3p-bit shifter with

a 2p-bit adder.

V. IMPLEMENTATION AND EVALUATION

A. The Kalray processor context

The Kalray processor is a high-performance embedded

processor with primary support of binary32 and secondary

support of binary64.

It has a unified register file: the same 32-bit registers may

hold integer or FP data. Two consecutive 32-bit registers

may be paired and accessed as a single 64-bit register. For

instance, the same two registers may be used as two binary32

multiplicands for an MPFMA, or as a single binary64 register

for a binary64 addition.

It is important to notice that the MPFMA register footprint

is not very different from that of a standard FMA : they both

need 3 register read ports and 1 register write port. However

the total input length is 128 bits for the MPFMA versus 96

bits for the FMA, and the total output length is 64 versus

32. Energy consumption varies as the cube of the number of

ports [22], and is only linear in the width of the registers, so the

impact of the increase in input/output bandwidth is moderate.

B. Development and testing

The MPFMA32 has been designed using a derivative of

the FloPoco framework [4]. This framework strongly assists

the pipelining work, guaranteeing a correct-by-construction

pipeline out of a functional combinatorial operator.

This operator was submitted to extensive testing, using

FloPoCo facilities for test-bench generation. FloPoCo may

generate test vectors using a mixture of truly random inputs,

random inputs biased towards rare specific situations (for

instance cancellations and subnormals in the case of the

MPFMA), and specific corner cases and regression tests. The

generated test benches check the actual output of the operator

against its expected behaviour. This expected behaviour is

programmed at a very high level, in terms of exact operations

using MPFR [6] and rounding: this is as close as possible to

the specification of the operation in the IEEE-754 standard.

Our implementation also tests correct IEEE-754 exceptions

(with pre-rounding version of the IEEE underflow exception).

The standard operations provided by the MPFMA have also

been successfully submitted to IEEE 754 Compliance Checker

and TestFloat [8].

C. Synthesis results and comparisons

Here we compare an MPFMA32 to an FMA32, an Add64,

and an FMA64, all designed with the same design effort, and

in the same processor context and with the same constraints.

Synthesis results are provided in Table V-C. For each

operator, we performed iterative synthesis to approximate the

best reachable latency, but with a 28nm component library

optimized for area.

The MPFMA32 operator in this table is also capable of

standard binary32 FMA operation and binary64 addition.

Removing support for one of these options saves only a few

hundred µm2.

As this table shows, the MPFMA32 adds only one third to

the area of an binary32 FMA for the same frequency. The

additional area represents less than half the size of a binary64

addder. All this is consistent with the estimations of previous

section.

D. Related work with respect to FMA optimizations

We acknowledge that our implementations are not as opti-

mized as they could be.

Operator best latency (ns) area (µm2)

FMA32 3.5 10566

FMA64 3.5 24500

Add64 3.5 8800

MPFMA32 3.5 14000

Table II
SYNTHESIS RESULTS FOR 28NM TECHNOLOGY (HIGH DENSITY). ALL

OPERATORS ARE DIVIDED INTO 3 PIPELINE STAGES

We should point out that we didn’t even use one of the most

standard technique, the use of carry-save representation. This

is due to the context in which this work took place. We were

extending a fixed-point processor, and had the constraint of

using, for significand multiplication, the existing fixed-point

multiplier, for which it was not possible to obtain a carry save

result. In future revisions of this processor we hope to relax

this constraint.

Many architectural optimizations have been used for the

classical FMA that could be relevant for the FPFMA:

• It is possible to rearrange and fuses the addition, normal-

isation and rounding steps [12].

• We have already mentionned the triple path approaches

[20], [21].

• It may be better to split the implementation of the FMA

between multiplier and adder [13]. This leads to a larger

FMA latency than a monolithic FMA (in this article, 8

cycles, 4 by unit), but to a better overal performance:

as the author points out, when iteratively computing dot

product, the data dependency is only on the addition,

so we shouldn’t suffer any latency due to the multiplier,

which we do in a monolithic FMA.

• Similarly, it is possible to reduce the latency of the FMA

used as a floating-point adder [3].

• The floorplan of the FMA is critical for high-performance

implementations [2].

The relevance of such optimizations, which often trade off

area for latency, depends on a given processor context, and

studying them is beyond the scope of this article.

VI. CONCLUSION AND FUTURE WORK

In low-power, DSP-oriented embedded processors, an

MPFMA32 turns out to be a cost-effective alternative to a

full binary64 floating-point unit. In high-end processors, an

MPFMA64 could enable a low-cost transition towards the

quadruple precision (binary128) demanded by some large-

scale physics simulations.

Future work will include a thorough study of further pos-

sible optimizations and their relevance with respect to area,

speed, and power consumption.

The availability of the classical FMA has lead to a number

of clever algorithms to implement efficiently all sorts of low-

level operations, from the initial division and square root to

constant multiplication, complex operations, polynomial eval-

uation, range reductions for elementary functions, multiple-

precision operations, and others [16]. We could expect the

same with the proposed operators, and future work will be to

explore such algorithms.

REFERENCES

[1] I. Babuška. Numerical stability in mathematical analysis. In Proceedings

of the 1968 IFIP Congress, volume 1, pages 11–23, 1969.
[2] M. Boersma, M. Kröner, Ch. Layer, P. Leber, S. M. Müller, and

K. Schelm. The POWER7 binary floating-point unit. In Proceedings of

the 20th Symposium on Computer Arithmetic. IEEE, July 2011.
[3] Javier D. Bruguera and Lang Tomas. Floating-point fused multiply-add:

Reduced latency for floating-point addition. In Proceedings of the 17th

IEEE Symposium on Computer Arithmetic, ARITH ’05, pages 42–51.
IEEE Computer Society, 2005.

[4] Florent de Dinechin and Bogdan Pasca. Designing custom arithmetic
data paths with FloPoCo. IEEE Design & Test of Computers, August
2011.

[5] W. R. Dieter, A. Kaveti, and H. G. Dietz. Low-cost microarchitectural
support for improved floating-point accuracy. IEEE Computer Architec-

ture Letters, 6(1):13–16, January 2007.
[6] Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Patrick Pélissier,

and Paul Zimmermann. MPFR: A multiple-precision binary floating-
point library with correct rounding. ACM Transactions on Mathematical

Software, 33(2):13:1–13:15, June 2007.
[7] Guenter Gerwig, Eric M. Schwarz, and Ronald M. Smith. Fused multiply

add split for multiple precision arithmetic. US Patent 0061392 A1,
september 2005.

[8] John R. Hauser. TestFloat. http://www.jhauser.us/arithmetic/TestFloat.html.
[9] Libo Huang, Li Shen, Kui Dai, and Zhiying Wang. A new architecture

for multiple-precision floating-point multiply-add fused unit design. In
Proceedings of the 18th IEEE Symposium on Computer Arithmetic,
pages 69–76, Washington, DC, USA, 2007. IEEE Computer Society.

[10] IEEE Computer Society. IEEE Standard for Floating-Point Arithmetic.
IEEE Standard 754-2008, August 2008.

[11] Ulrich W. Kulisch. Advanced Arithmetic for the Digital Computer:

Design of Arithmetic Units. Springer-Verlag, 2002.
[12] T. Lang and J-D. Bruguera. Floating-point fused multiply-add with

reduced latency. Proceedings of the 2002 IEEE International Conference

on Computer Design : VLSI in Computers and Processors, 2002.
[13] David R. Lutz. Fused multiply-add microarchitecture comprising sepa-

rate early-normalizing multiply and add pipelines. In IEEE Symposium

on Computer Arithmetic, pages 123–128, 2011.
[14] David R. Lutz and Neil Burgess. Overcoming double-rounding errors

under IEEE 754-2008 using software. In Asilomar Conference on

Signals, Systems, and Computers, pages 1399–1401, November 2010.
[15] Michael J. Mantor, Jeffrey T. Brady, Daniel B. Clifton, and Christopher

Spencer. Method and system for multi-precision computation. US Patent
2011/0055308, March 2011.

[16] Jean-Michel Muller, Nicolas Brisebarre, Florent de Dinechin, Claude-
Pierre Jeannerod, Vincent Lefèvre, Guillaume Melquiond, Nathalie
Revol, Damien Stehlé, and Serge Torres. Handbook of Floating-Point

Arithmetic. Birkhauser Boston, 2009.
[17] A. Neumaier. Rundungsfehleranalyse einiger Verfahren zur Summation

endlicher Summen. ZAMM, 54:39–51, 1974. In German.
[18] M. Pichat. Correction d’une somme en arithmétique à virgule flottante.

Numerische Mathematik, 19:400–406, 1972. In French.
[19] D. M. Priest. Algorithms for arbitrary precision floating point arithmetic.

In 10th Symposium on Computer Arithmetic, pages 132–144. IEEE,
1991.

[20] Eric Charles Quinell. Floating-Point Fused Multiply-Add Architectures.
PhD thesis, The University of Texas at Austin, May 2007.

[21] Eric Quinnell, Earl E. Swartzlander, and Carl Lemonds. Three-path
fused multiply-adder circuit. US Patent 2008/0256150 A1, april 2008.

[22] Scott Rixner, William J. Dally, Brucek Khailany, Peter Mattson, Ujval J.
Kapasi, and John D. Owens. Register organization for media processing.
In HPCA6, pages 375–386, 2000.

[23] S. M. Rump, T. Ogita, and S. Oishi. Accurate floating-point summation
part I: Faithful rounding. SIAM Journal on Scientific Computing,
31(1):189–224, 2008.

[24] Peter-Michael Seidel. Multiple path ieee floating-point fused multiply-
add. In 46th Midwset Symposium on Circuits and Systems, december
2003.

