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Abstract— We propose a method to “create” a new mea-
surement output by exciting the system with a high-frequency
oscillation. This new “virtual” measurement may be useful to
facilitate the design of a suitable control law. The approach
is especially interesting when the observability from the actual
output degenerates at a steady-state regime of interest. The
proposed method is based on second-order averaging and is
illustrated by simulations on a simple third-order system.

I. INTRODUCTION

The difficulty in designing a control law is often largely
due to the properties of the (measured) output. For instance,
controlling a system around a point where observability
degenerates may be really challenging, even though the
dynamics itself may remain simple. In this paper, we in-
troduce and formalize a method able to produce an extra
“virtual” output by exciting the system with a high-frequency
oscillation. With the help of this new output, the design of
the control law is likely to be much easier.

More precisely, consider the Single-Input Single-Output
system

ẋ = f(x) + g(x)u (1a)
y = h(x), (1b)

where (x, u, y) belong to some compact subset of Rn×R×R;
f , g and h are smooth enough maps (e.g. at least C2). We
show that by superimposing to the control u a fast-varying
periodic signal with (small) period ε, we may consider that
the so-called virtual output

yv := Lgh(x) = h′(x)g(x) (2)

becomes available, and can therefore be used for designing
a control law; on the other hand, the overall effect of the
excitation on the original system (1) remains small and
can be ignored. Notice this a purely nonlinear phenomenon:
nothing is gained when both g and h are linear with respect
to x. Notice also the method is not restricted to affine SISO
systems; it can be generalized to general MIMO systems
along the same lines, at the cost of only added technicalities.

The idea of recovering some extra information through the
injection of a high-frequency signal is not completely new.
It has even become a standard method for the “sensorless”
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control of electrical motors at low velocity, since its intro-
duction by [1], [2] (“sensorless” here means that only the
currents are measured, but neither the rotor position nor its
velocity). Nevertheless the essence of the method is buried
under the many technicalities and peculiarities of control of
electrical motors, and its analysis is usually rather heuristic.
A more rigorous but still electrical-motor-oriented analysis
is proposed in [3], [4], based on second-order averaging; the
present paper is a conceptualization and generalization of
those ideas.

The paper is organized as follows: section II lays the basis
for the method; it analyzes by second-order averaging how
the virtual output is created. Section III shows that the virtual
output can effectively be recovered by a kind of heterodyning
procedure, and how it is debased by measurement noise.
Finally, section IV illustrates the interest of the method on a
simple academic example.

II. SIGNAL INJECTION AND SECOND-ORDER AVERAGING

Consider the system (1a) with the two outputs (1b)-(2).
Assume we have designed a suitable control law

u = α(η, y, yv, t) (3a)
η̇ = a(η, y, yv, t), (3b)

with η ∈ Rp. By “suitable”, we mean the closed-loop system

ẋ = f(x) + g
(
x)α(η, h(x), Lgh(x), t

)
(4a)

η̇ = a
(
η, h(x), Lgh(x), t

)
(4b)

has the desired exponentially stable equilibrium point (or
family of equilibrium points); we have changed the notation
of the state to (x, η), so as to distinguish between the
solutions of (4) and those of (6) below.

Consider now the modified control law

u = α(η, y, yv, t) + s
( t
ε

)
(5a)

η̇ = a(η, y, yv, t) (5b)

y = h(x) + εκ
(
x,
t

ε

)
+ O∞(ε2) (5c)

yv = Lgh(x) + εκv

(
x,
t

ε

)
+ O∞(ε2) (5d)

where s is a periodic function with period 1 and zero mean,
i.e.
∫ 1

0
s(σ)dσ = 0; κ and κv are periodic with period 1 with

respect to their second arguments and zero mean, i.e∫ 1

0

κ(x, σ)dσ =

∫ 1

0

κv(x, σ)dσ = 0;

ε is a “small” parameter, so that the signal superimposed to
the base control law is fast-varying; O∞ is the “uniform big
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O” symbol of analysis, i.e. we write k(z, ε) = O∞(ε) to
mean ‖k(z, ε)‖ ≤ Cε for some constant C independent of
z and ε. The closed-loop system then reads

ẋ = f(x) + g(x)α(η, y, yv, t) + g(x)s
( t
ε

)
(6a)

η̇ = a(η, y, yv, t) (6b)

y = h(x) + εκ
(
x,
t

ε

)
+ O∞(ε2) (6c)

yv = Lgh(x) + εκv

(
x,
t

ε

)
+ O∞(ε2). (6d)

The goal of injecting a fast-varying oscillation is to “create”
the virtual output yv . We will see in corollary 1 how to
choose κ and κv so that y and yv corresponds to actually
available signals.

The following theorem characterizes the effect of signal
injection by comparing the solutions of (4) and (6).

Theorem 1: Let
(
x(t), η(t)

)
and

(
x(t), η(t)

)
be the so-

lution of the closed-loop systems (4) and (6) respectively,
starting from the same initial condition. Then for all t ≥ 0,

x(t) = x(t) + εg
(
x(t)

)
S
( t
ε

)
+ O∞(ε2) (7a)

η(t) = η(t) + O∞(ε2) (7b)

y(t) = h
(
x(t)

)
+ εLgh

(
x(t)

)
S
( t
ε

)
+ O∞

(
ε2
)
, (7c)

where S is the (of course also 1-periodic) primitive of s with
zero mean, i.e.

S(σ) :=

∫ σ

0

s(τ)dτ −
∫ 1

0

∫ µ

0

s(τ)dτdµ.

In other words, signal injection
• has a small effect of order ε on the state variables

directly affected by the input
• has a very small effect of order ε2 on the state variables

not directly affected by the input. In many systems
of interest, the input affects directly only one state
variable whereas the control objective is a combination
of the other stable variables; the control objective is thus
hardly affected by the high-frequency excitation. This is
the case for instance in electrical motors: only the fluxes
(or currents) are directly affected by the inputs, while
the goal is to control the rotor velocity (or position)

• creates a small “ripple” of order ε in the measured out-
put. The amplitude of this ripple is precisely the virtual
output. A procedure to extract h

(
x(t)

)
and Lgh

(
x(t)

)
from y(t) is presented in section III; using these signals
in the control law (5) amounts to a particular choice of
κ and κv , see corollary 1.
Proof: The proof is a direct application of second-order

averaging for differential equations [5, section 2.9], with slow
time dependence [5, section 3.3]. We first recall the main
result of this theory, and then apply it to our case.

Consider the perturbed system

dX

dσ
= εF1(X, εσ, σ) + ε2F2(X, εσ, σ) + O∞(ε3)

with initial condition X(0) := X0+εW (X0, 0, 0), where F1

and F2 are T -periodic with respect to their third arguments,

and the averaged system

dX

dσ
= εG1(X, εσ) + ε2G2(X, εσ) (8)

with initial condition X(0) := X0; finally, G1, W and G2

are defined by

G1(X, εσ) :=
1

T

∫ T

0

F1(X, εσ, τ)dτ

w(X, εσ, σ) :=

∫ σ

0

[
F1(X, εσ, τ)−G1(X, εσ)

]
dτ

W (X, εσ, σ) := w(X, εσ, σ)− 1

T

∫ T

0

w(X, εσ, τ)dτ

K2(X, εσ, σ) := F2(X, εσ, σ)

+ ∂1F1(X, εσ, σ)W (X, εσ, σ)

− ∂1W (X, εσ, σ)G1(X, εσ, σ)

G2(X, εσ) :=
1

T

∫ T

0

K2(X, εσ, τ)dτ,

where ∂k denotes the partial derivative with respect to the
kth argument. The theory of second-order averaging then
asserts that the solution X(σ) of the perturbed system and
the solution X(σ) of the perturbed system are related by

X(σ) = X(σ) + εW (X, εσ, σ) + O∞(ε2)

on the timescale 1
ε . If moreover the averaged system has

an exponentially stable equilibrium point with region of
attraction D, and if the initial condition X0 belongs to a
compact subset of D, then this estimation can be continued
to infinity by lemma 2 in the appendix.

To apply this result to our case, we define X := (x, η)
and rewrite (6) in the fast time σ := t

ε . This yields

dX

dσ
= ε
(
F 1(X, εσ)+F̃1(X)s(σ)

)
+ε2F2(X, εσ, σ)+O∞(ε3),

where

F 1(X, εσ) :=

(
f(x) + g(x)α(·)

a(·)

)
F̃1(X) :=

(
g(x)

0

)
F2(X, εσ, σ) :=

(
g(x)

(
∂2α(·)κ(x, σ) + ∂3α(·)κv(x, σ)

)
∂2a(·)κ(x, σ) + ∂3a(·)κv(x, σ)

)
;

in the expressions above, (·) denotes
(
η, h(x), Lgh(x), εσ

)
.

We then find

G1(X, εσ) = F 1(X, εσ)

w(X, εσ, σ) = F̃1(X)

∫ σ

0

s(τ)dτ

W (X, εσ, σ) = F̃1(X)S(σ)

K2(X, εσ, σ) = F2(X, εσ, σ) + ∂1F 1(X, εσ)F̃1(X)S(σ)

− ∂1F̃1(X)F 1(X, εσ)S(σ)

+
1

2
∂1F̃1(X)F̃1(X)

dS2

dσ
(σ)

G2(X, εσ) = 0,



remembering that s, S, κ and κv have zero mean. We then
rewrite the averaged system (8) in the slow time t to find

Ẋ = G1(X, t) + εG2(X, t) = F 1(X, t),

which is exactly the closed-loop system (4). Moreover, X
and X are related by

X(t) = X(t) + εF̃1

(
X(t)

)
S
( t
ε

)
+ O∞(ε2),

which is (7a)-(7b). Finally, we get (7c) by injecting (7a) in
the expression of the output,

y(t) = h
(
x(t)

)
= h

(
x(t) + εg

(
x(t)

)
S
( t
ε

)
+ O∞(ε2)

)
= h

(
x(t)

)
+ εLgh

(
x(t)

)
S
( t
ε

)
+ O∞(ε2).

We have assumed without loss of generality that S(0) = 0,
which implies X(0) = X(0); this is always possible by
suitably shifting in time the signal s.

Corollary 1: Assume the signals h
(
x(t)

)
and Lgh

(
x(t)

)
in (7c) are available. Then the contol law (5) is actually
implementable by choosing

κ
(
x,
t

ε

)
:= −Lgh(x)S

( t
ε

)
κv

(
x,
t

ε

)
:= −L2

gh(x)S
( t
ε

)
.

Proof: Using (7a) we obviously have

h(x)− εLgh(x)S
( t
ε

)
= h

(
x+ εg

(
x
)
S
( t
ε

)
+ O∞(ε2)

)
− εLgh

(
x+ O∞(ε)

)
S
( t
ε

)
= h(x) + O∞(ε2)

Lgh(x)− εL2
gh(x)S

( t
ε

)
= Lgh(x) + O∞(ε2),

i.e. y = h(x) in (5c) and yv = Lgh(x) in (5d).

III. EXTRACTING THE OUTPUTS

We now turn to extracting the information contained
in (7c). In other words, given a signal of the form

y(t) = y(t) + εyv(t)S
( t
ε

)
+ ν(t),

and corrupted by the measurement noise ν, we would like
to recover its components y(t) and yv(t). We will show this
can be achieved by the estimators

ŷ(t) :=
1

nε

∫ t

t−nε
y(τ)dτ (9a)

ŷv(t) :=
1

ε

1
nε

∫ t
t−nε

(
y
(
τ − nε

2

)
− ŷ(τ)

)
S
(
τ−nε

2

ε

)
dτ

1
nε

∫ t
t−nε S

2( τε )dτ
, (9b)

with n ∈ N. We study the accuracy of these estimators
without noise in III-A, and their sensitivity to noise in III-B.
Indeed, since the noise is additive and enters the estimators
linearly, the two issues can be studied independently.

A. Accuracy of the estimators

Proposition 1: The accuracy of the estimators (9a) and
(9b) is as follows

ŷ(t) = y
(
t− nε

2

)
+ O∞

(
n2ε2

)
= y(t) + O∞(nε) (10a)

ŷv(t) = yv(t) + O∞(n2ε) (10b)
Proof: The signals y and yv are assumed sufficiently

smooth and well-behaved; more precisely, we assume they
can be written as Taylor series with integral remainder

y(t− σ) = y(t)− σẏ(t) + σ2R(t, σ)

yv(t− σ) = yv(t)− σẏv(t) + σ2R̃(t, σ),

with R(t, σ) and R̃(t, σ) uniformly (with respect to t)
bounded for σ ∈ [0, nε]. Using these expressions, we find

ŷ(t) =
1

nε

nε∫
0

y(t− σ)dσ + ε
1

nε

nε∫
0

yv(t− σ)S
( t− σ

ε

)
dσ

= y(t)
1

nε

∫ nε

0

dσ − ẏ(t)
1

nε

∫ nε

0

σdσ

+
1

nε

nε∫
0

σ2R(t, σ)dσ + εyv(t)
1

nε

nε∫
0

S
( t− σ

ε

)
dσ

−εẏv(t)
1

nε

∫ nε

0

σS
( t− σ

ε

)
dσ

+ε
1

nε

∫ nε

0

σ2R̃(t, σ)S
( t− σ

ε

)
dσ

= y(t)− nε

2
ẏ(t) +

(nε)2

3
O∞(1)

+ε2S(t)− n2ε3

3
sup

σ∈[0,nε]

(
|S(t− σ)|

)
O∞(1)

= y
(
t− nε

2

)
+ O∞

(
n2ε2

)
where S is the primitive of S with zero mean. Consequently,
we have

y
(
t− nε

2

)
− ŷ(t)

ε
= yv

(
t− nε

2

)
S

(
t− nε

2

ε

)
+ O∞

(
n2ε
)

which leads to

S2ŷv(t) =
1

nε

∫ t

t−nε
yv

(
τ − nε

2

)
S

(
τ − nε

2

ε

)2

+ O∞
(
n2ε
)

=
1

nε

∫ nε

0

yv

(
t− σ − nε

2

)
S

(
t− σ − nε

2

ε

)2

dσ

+O∞
(
n2ε
)

= yv

(
t− nε

2

) 1

nε

∫ nε

0

S

(
t− σ − nε

2

ε

)2

dσ

−ẏv
(
t− nε

2

) 1

nε

∫ nε

0

σS

(
t− σ − nε

2

ε

)2

dσ

+
1

nε

nε∫
0

σ2R̃
(
t− nε

2
, σ
)
S

(
t− σ − nε

2

ε

)2

dσ



+O∞
(
n2ε
)

= S2yv

(
t− nε

2

)
− εẏv

(
t− nε

2

)
S2

(
t− nε

2

)
+

(nε)2

3
sup

σ∈[0,nε]

(∣∣∣S2
(
t− σ − nε

2

)∣∣∣)O∞(1)

+O∞
(
n2ε
)

= S2yv(t) + O∞(n2ε)

where S2 is the primitive of S2 with zero mean.
Remark 1: The simpler formula

ŷv(t) =
1

ε

1
nε

∫ t
t−nε y(τ)S( τε )dτ

1
nε

∫ t
t−nε S( τε )2dτ

, (11)

proposed in [3], [4] by considering y and yv are constant
on one period ε of the high-frequency signal is less precise
than (9b), since valid only if y and yv vary very slowly.

B. Sensitivity to noise

As the virtual measurement estimate is scaled by a factor
ε it may be more sensitive to noise than the original mea-
surement. To study this issue, we assume the measurement
noise ν is white with Power Spectral Density PSD[ν]. For
simplicity, we moreover consider (11) instead of (9b); it is
nevertheless possible to conduct a similar analysis for (9b)
at the cost of added technicalities. The additive noise ν
obviously creates additive noises on the estimates ŷ and ŷv ,
denoted respectively ν and ν̃. Their PSDs are given by

PSD[ν](ω) = PSD[ν](ω) |H(ω)|2

PSD[ν̃](ω) =
1

ε2S2
2 PSD[Sν](ω) |H(ω)|2 ,

where H(ω) := 1−e−nεω

nεω = exp(−nε2 ω) sinc(nε2 ω) is the
transfer function of the sliding average. It remains to compute
PSD[Sν], i.e. the Fourier transform of the autocorrelation of
S
(
t
ε

)
ν(t) which is non-stationary. The autocorrelation is

R(τ) = lim
∆T→∞

1

2∆T

∆T∫
−∆T

S
( t
ε

)
S
( t+ τ

ε

)
ν(t)ν(t+ τ)dt

= lim
∆T→∞

1

2∆T

∫ ∆T

−∆T

S
( t
ε

)
S
( t+ τ

ε

)
dt

lim
∆T→∞

1

2∆T

∫ ∆T

−∆T

ν(t)ν(t+ τ)dt

=

(
1

ε

∫ ε

0

S
( t
ε

)
S
( t+ τ

ε

)
dt

)
PSD[ν]δ(τ)

= S2 PSD[ν]δ(τ),

since S and ν are independent. The signal ν(t)S
(
t
ε

)
thus

behaves in average as a white noise with a reduced PSD. As
the cardinal sine function is bounded by the inverse function
after one period, the gain of the sliding average over a time
range nε is bounded by the gain of a low-pass filter with
bandwidth 2 2π

nε . The estimators ŷ and ŷv thus have a built-
in filtering effect. To decrease the influence of measurement
noise, we can therefore

Time (s)
0 5 10 15 20

7u
a
n
d

u

-5

0

5

10

(a) Due to its high frequency, the injected signal looks like a thick
solid line.

Time (s)
8 8.002 8.004 8.006 8.008 8.01

7u
a
n
d

u

0.5

1

1.5

2

2.5

3

(b) Zoom on fig. 1a, showing the injected signal is indeed a square
wave.

Fig. 1: The control with (blue solid line) and without (red
solid line) high-frequency injection

• increase the amplitude of the high-frequency oscilla-
tion s, without exceeding O∞(1)

• average on a longer time by using a larger n, at the cost
of a larger delay.

IV. A WORKED EXAMPLE

As an example we consider the simple system

ẋ1 = x2 (12a)
ẋ2 = x3 (12b)
ẋ3 = u+ d (12c)
y = x2 + x1x3, (12d)

where d is an unknown disturbance. The goal is to control
the variable x1, while rejecting the disturbance, with time
responses of about a few seconds. Moreover, we would like
to operate around the equilibrium point

(
xeq1 , x

eq
2 , x

eq
3

)
=(

xref1 , 0, 0
)

determined by the reference constant xref1 ; by
definition, ueq + deq and all its derivatives are zero at
this equilibrium point. However the system is clearly not
observable at this point, since

∂y

∂x
=
(
0, 1, xref1

)
∂ẏ

∂x
= (0, 0, 1)

∂y(k)

∂x
= (0, 0, 0), k ≥ 2,

hence x1 can not be recovered from the output and its
derivatives.

The control objective can nevertheless be met rather easily
with the method proposed in this paper. Indeed, the virtual
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(a) The state variable x1 (green and blue lines), its estimate ŷv
(dashed magenta line) and its reference x1

ref (dashed red line).

Time (s)
0 5 10 15 20

x
2
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(b) The state variable x2.

Time (s)
0 5 10 15 20

x
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(c) The state variable x3.

Time (s)
8 8.002 8.004 8.006 8.008 8.01

x
3

-0.144

-0.143

-0.142

-0.141

-0.14

(d) Zoom on fig. (2c), showing the influence of high-frequency
injection on the state variable x3.

Fig. 2: The state of the system (12) controlled using the real
(solid green line) and the estimated (solid blue line) value
of the virtual measurement.

output is

yv =
(
x3 1 x1

)0
0
1

 = x1.

With this new measurement, the system is completely linear
and can be easily controlled, without using the original mea-
surement y. We use a classical controller-observer design,
with an estimation of the perturbation by the observer to
yield an implicit integral effect. The observer reads

˙̂x1 = x̂2 + l1(yv − x̂1)
˙̂x2 = x̂3 + l2(yv − x̂1)
˙̂x3 = u+ d̂+ l3(yv − x̂1)

˙̂
d = ld(yv − x̂1),

Time (s)
0 5 10 15 20

7̂y
a
n
d

y

-3

-2

-1

0

1

2

(a) The measurement y (blue line) and its average ŷ (red line)
extracted using the demodulation procedure of section III-A.

Time (s)
8 8.002 8.004 8.006 8.008 8.01

y

0.507

0.5075

0.508

0.5085

0.509

(b) Zoom on fig. 3a, showing the ripples caused by high-frequency
injection on the measurement y.

Fig. 3: Effect of injection on the measurement.

and the controller

u = −k1x̂1 − k2x̂2 − k3x̂3 − kdd̂+ kxref1 .

The gains are chosen such that the eigenvalues of the
observer are (−1.31,−0.80,−0.54 ± 0.63i) and those of
the controller are (−6.06,−3.03 ± 5.25i), which ensures
a time response in disturbance rejection of a few seconds
and a reasonable robustness; the controller is faster than the
observer, in accordance with dual Loop Transfer Recovery
(recovery at the plant output). Setting η := (x̂1, x̂2, x̂3, d̂)T ,
this controller-observer can obviously be written as

u = −Kη + kxref1 (13a)

η̇ = Mη +Nxref1 + Lyv, (13b)

which is indeed a particular form of (3). Following section II,
we now modify (13) into

u = −Kη + kxref1 + s
( t
ε

)
η̇ = Mη +Nxref1 + Lŷv,

where ŷv is obtained from the actual measurement (13)
thanks to the estimator (9b); this modified controller then has
the form (5). We choose for the injected signal s a square
wave of amplitude 1 and frequency 1kHz (i.e. ε := 10−3),
which ensures the oscillation is fast with respect to the time
constants of the closed-loop system; n := 10 is used in the
demodulating filter.

The test scenario is the following: at t = 0, the system
starts at rest at the origin; at t = 2, a disturbance d of
magnitude −2 is applied; at t = 14 the reference xref1 is
set to a ramp with slope 1, filtered by a low-pass filter with
a 1Hz bandwidth. Notice that the virtual output method
relies on a truly nonlinear effect, though everything appears
here to be linear. It is not possible to track fast and large
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Fig. 4: The state variable x1 controlled using the virtual
measurement or the real value of x1; its estimate ŷv (dashed
magenta line), and its reference x1

ref (dashed red line).

references, since the estimators (9a)-(9b) assume reasonably
slowly-varying signals. In fig. 2 we compare the performance
of the controller fed with the estimate ŷv of the virtual
output and fed with the (unavailable) true variable x1. It
is nearly impossible to distinguish the two situations on
the responses of x1 and x2, since the error is O∞(ε2); the
O∞(ε) ripples are only visible on x3. In fig. 1 the control
is shown; the frequency of the injection signal is so high
that it looks like a thick solid line, but by zooming see
that it is indeed a square wave. Finally, fig. 3 shows the
O∞(ε) ripples in the measurement, from which the virtual
measurement is obtained. To investigate the sensitivity of the
method to measurement noise, we now superimpose on the
measurement y a band-limited white noise with sample time
2×10−5 and power 2×10−11. Fig. 4 shows how this noise
affects the virtual measurement and the controlled output x1.
We check the results of section III-B by comparing them to
what would be obtained with the real value of x1 with an
equivalent noise. As can be seen in fig. 5, the ripples are
buried into the noise, yet the behavior remains satisfactory.

This example demonstrates the relevance of the virtual
output approach, and its good behavior even when operating
near the non-observability region.

APPENDIX: SECOND ORDER AVERAGING FOR
EXPONENTIALLY STABLE SYSTEMS

The approximations given by first- and second-order av-
eraging are a priori valid only on the timescale 1

ε . However,
with the additional assumption of exponential stability of the
averaged system, they can be continued to infinity. This is
well-known for first-order averaging, see e.g. [5, Theorem
5.5.1], recalled below.

Lemma 1: Consider the two systems

ẋ = εF1(x, t) (14a)
ż = εG1(z), (14b)

where F1 is T -periodic with respect to t and G1 is its
average on one period. We suppose that the origin is an
exponentially stable equilibrium for (14b). Then, there exists
a compact neighborhood V of the origin, such that ∀z0 ∈ V

the solution z(t) of (14b) with initial condition z0 at t0 is
valid on [t0,+∞[. Besides, there exists ε0 > 0 such that
∀ε ∈ [0, ε0[, the solution x(t) of (14a) with initial condition
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(a) The measurement y with (green line) and without (blue line)
noise, and its average ŷ (red line) extracted using the demodulation
procedure of III-A. The effects of noise and high-frequency
injection are barely visible at this scale.
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(b) Zoom on figure 5a, illustrating the approach works even though
the “useful” ripples are buried in the measurement noise.

Fig. 5: y, with (green line) and without (blue line) noise, and
the estimate ŷ (red line).

x0 = z0 at t0 is valid on [t0,+∞[ and ∃C ∈ R+ such that

sup
t∈[t0,+∞[

‖x(t)− z(t)‖ < Cε.

The following lemma, which does not seem to exist in
the literature, extends this result to the case of second-order
averaging.

Lemma 2: Consider the two systems

ẋ = εF1(x, t) + ε2F2(x, t) (15a)
ż = εG1(z) + ε2G2(z) (15b)

where F1 and F2 are T -periodic with respect to t and G1 and
G2 are obtained as in section II. We suppose that the origin
is an exponentially stable equilibrium for (14b). Then, there
exists a compact neighborhood V of the origin and ε0 > 0
such that ∀ε ∈ [0, ε0[ and ∀z0 ∈ V, the solution z(t) of (15b)
with initial condition z0 at t0 and the solution x(t) of (15a)
with initial condition x0 = z0 +εW (z0, 0) at t0 are valid on
[t0,+∞[ and ∃C ∈ R+ such that

sup
t∈[t0,+∞[

‖x(t)− z(t)− εW (z, t)‖ < Cε2,

where W is defined as in II.
Proof: V is chosen as a compact included in the domain

of attraction of the origin. Then, ∃ε1 > 0 such that ∀ε ∈
[0, ε1[ (15b) admits a solution on [t0,+∞[. Besides, we know
from [5, Lemma 2.9.1] that (15a) can be transformed into

ẏ = εG1(y) + ε2G2(y)

by the change of variables x = y+εW (y), and thus, ∃ε2 > 0
such that ∀ε ∈ [0, ε2[ (15a) admits a solution on [t0,+∞[.



We call ξ(t) = z(t) + εW (z, t). We know from [5,
Lemma 2.9.2] that ∃L ∈ R+ such that

∀t ∈
[
t0, t0 +

L

ε

[
‖x(t)− ξ(t)‖ < Cε2.

We partition the time into segments of length L
ε⋃

m∈N
Im =

⋃
m∈N

[
t0 +m

L

ε
, t0 + (m+ 1)

L

ε

]
.

On each segment Im we define zm as the solution of the
truncated averaged equation (15b) with initial condition such
that xm

(
t0 +mT

ε

)
= zm

(
t0 +mT

ε

)
+εW

(
zm
(
t0 +mT

ε

)
, t
)

and also ξm := zm+ εW (zm, t). We note ‖·‖Im = sup
t∈Im

‖·‖.
m ∈ N is now fixed. From the theorem of second-order

averaging [5, Theorem 2.9.2] ∃k such that

‖ξm − x‖Im ≤ kε
2

and form the definition of the truncated pseudo-identity
transformation W(z, t) := z + εW (z, t), ∃λ such that

‖ξ − ξm‖Im = ‖W(z, t)−W(zm, t)‖Im
≤ (1 + ελ) ‖z − zm‖Im

‖z − zm‖Im =
∥∥W−1(ξ, t)−W−1(ξm, t)

∥∥
Im

≤ (1 + ελ) ‖ξ − ξm‖Im .

Besides, [5, Lemma 5.2.7] implies

‖z − zm‖Im ≤ κ
∥∥∥∥z(t0 +m

L

ε

)
− zm

(
t0 +m

L

ε

)∥∥∥∥ ,
which can be rewritten by prolonging zm on Im−1

‖z − zm‖Im ≤ κ ‖z − zm‖Im−1
,

where κ can be made as small as desired by taking ε small
enough. By applying the triangle inequality, we find

‖ξ − x‖Im ≤ ‖ξ − ξm‖Im + ‖ξm − x‖Im
≤ (1 + ελ) ‖z − zm‖Im + kε2

≤ (1 + ελ)κ ‖z − zm‖Im−1
+ kε2

≤ (1 + ελ)κ(1 + ελ) ‖ξ − ξm‖Im−1
+ kε2

≤ κ′ ‖ξ − x‖Im−1
+ k(1 + κ′)ε2

where κ′ = (1 + ελ)κ(1 + ελ) < 1 for 0 ≤ ε < ε3.
Then with a simple recursion we obtain

‖ξ − x‖Im ≤ κ
′m ‖ξ(t0)− x(t0)‖+

(
m∑
n=0

κ′
n

)
(1 +κ′)kε2.

Using the fact that ξ(t0) = x(t0) and that the sum is
monotonically increasing, we obtain that

‖ξ − x‖Im ≤
1 + κ′

1− κ′
kε2.

Finally, as the previous equation is valid for all m ∈ N, we
find that ∀t ∈ [t0,∞[

‖ξ(t)− x(t)‖ ≤ 1 + κ′

1− κ′
kε2 =: Cε2.

Taking ε0 := min({ε1, ε2, ε3}), completes the proof.
Even though we do not prove it here, we suppose that

this result is still valid for higher-order averaging approxi-
mations.
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