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A Coupled Pair of Luenberger Observers for Linear Systems to
Improve Rate of Convergence and Robustness to Measurement Noise

Yuchun Li and Ricardo G. Sanfelice

Abstract— Motivated by the need of observers that are both
robust to disturbances and guarantee fast convergence to zero
of the estimation error, we propose an observer for linear
time-invariant systems that consists of the combination oftwo
coupled Luenberger observers. The output of the proposed
observer is defined as the average between the estimates of
the individual ones. The convergence rate and the robustness
to measurement noise of the proposed observer’s output are
characterized in terms of ISS estimates. Conditions guaran-
teeing that these estimates outperform those obtained witha
standard Luenberger observer are given. The conditions are
exercised in a stable scalar plant, for which a design procedure
and numerical analysis are provided, and in a second order
plant, numerically.

I. I NTRODUCTION

We consider linear time-invariant systems of the form

ẋ = Ax, y = Cx+m(t), (1)

wherex ∈ R
n, y ∈ R

p, andt 7→ m(t) denotes measurement
noise, for which there exists a Luenberger observer

˙̂x0 = Ax̂0 − K̃0(ŷ0 − y), ŷ0 = Cx̂0 (2)

leading to the exponentially stable estimation error system

ė0 = (A− K̃0C)e0 + K̃0m(t) =: Ã0e0 + K̃0m(t) (3)

with estimation error given bye0 := x̂0−x. It is well-known
that, under observability conditions of (1), the matrix gain K̃0

can be chosen to make the convergence rate of (3) arbitrarily
fast. However, due to fast convergence speed requiring large
gain, the price to pay is that the effect of measurement noise
m is amplified. Indeed, the design of observers, such as those
in the form (2), involves a trade off between convergence rate
and robustness to measurement noise [1], [2].

Several observer architectures and design methods with
the goal of conferring good performance and robustness to
the error system have been proposed in the literature. In
particular,H∞ tools have been employed to formulate sets
of Linear Matrix Inequalities (LMIs) that, when feasible,
guarantee that theL2 gain from disturbance to the estimation
error is below a pre-established upper bound; see, e.g., [3],
[4], [5], to just list a few. Following ideas from adaptive
control [6], [7], observers with a gain that adapts to the
plant measurements have been proposed in [8], [9], though
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the presence of measurement noise can lead to large values
of the gains. Such issues also emerge in the design of high-
gain observers, where the use of high gain can significantly
amplify the effect of measurement noise. Indeed, in [1], [2],
it is shown that measurement noise introduces an upper limit
for the gain of a (constant) high-gain observer when good
performance is desired.

More recently, observers using essentially two set of gains,
one set optimized for convergence and the other for robust-
ness, have been found successful in certain settings. Such
approaches include the piecewise-linear gain approach in
[10] for simultaneously satisfying steady-state and transient
bounds, the high gain observer with nonlinear adaptive gain
in [11], and the high gain observer with on-line gain tuning
in [12].

In this paper, we propose a linear time-invariant observ-
er and design conditions for both robustness to measure-
ment noise and fast convergence of the estimation error.
The proposed observer consists of two coupled Luenberger
observers. We establish that, under certain conditions involv-
ing its parameters, and when compared to the Luenberger
observer, the proposed observer improves the convergence
rate and the effect of measurement noise. The main properties
of the proposed observer, namely, convergence rate and the
robustness to measurement noise, are characterized in terms
of ISS estimates and compared with those of a standard
Luenberger observer. A design procedure is formulated in
terms of optimization problems. While general conditions
for which this problem can be solved are not known at this
time, a design procedure for the case of a stable scalar plant
is provided. The design procedure is exercised in the scalar
plant and, also for a second order plant, numerical results
indicate improvement of performance and robustness.

The organization of the remainder of this paper is as
follows. In Section II, a motivational example is presented.
Section III establishes the main results. Finally, SectionIV
shows a complete design for the motivational example and
simulations. Complete proofs of presented results will be
published elsewhere.

II. M OTIVATIONAL EXAMPLE

Consider the scalar plant

ẋ = ax, y = x+m, (4)

wherem denotes constant measurement noise (e.g., a bias)
anda < 0. A standard Luenberger observer for this plant is

˙̂x0 = ax̂0 − k0(ŷ0 − y) ŷ0 = x̂0. (5)



The estimation error system is given by (3) with̃A0 = a−k0
while K̃0 = k0. Its convergence rate isa − k0 and its
steady-state error ise⋆0 := k0

k0−a
m. It is apparent that to get

fast convergence, the constantk0 needs to be positive and
large. However, withk0 large, the influence of measurement
error is amplified as well. As argued in the introduction
and suggested by Figure 1(a), a balance needs to be made
between convergence rate and steady-state error induced by
measurement noise.
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Fig. 1. Trade off between the rate of convergence and the robustness.

The tradeoff pointed out above inspired the proposed
observer, which consists of a pair of coupled Luenberger
observers. For the scalar plant (4), the proposed observer
takes the form

˙̂x1 = ax̂1 − k1(ŷ1 − y)− ℓ1(ŷ2 − y),

˙̂x2 = ax̂2 − k2(ŷ2 − y)− ℓ2(ŷ1 − y),

ŷi = x̂i, i ∈ {1, 2}, x̄ =
x̂1 + x̂2

2
.

(6)

The coupling injections terms “−ℓ1(ŷ2−y)” and “−ℓ2(ŷ1−
y)” define the innovation terms of the proposed observer.
Compared to (5), with the proposed observer, a one dimen-
sional design problem onk0 becomes a fourth dimensional
design onk1, k2, ℓ1, ℓ2. The outputx̄ of the coupled pair
of observers defines the estimate ofx as the average of the
statesx̂1 and x̂2 of the individual observers.

By defining the error variablesei := x̂i − x for each
i ∈ {1, 2}, the error dynamics are captured by

ė1 = (a− k1)e1 − ℓ1e2 + (k1 + ℓ1)m,

ė2 = −ℓ2e1 + (a− k2)e2 + (k2 + ℓ2)m,
(7)

which can be written in matrix form as

ė = Ãe+ K̃m, (8)

wheree = [e1 e2]
⊤ and

Ã =

[

a− k1 −ℓ1
−ℓ2 a− k2

]

, K̃ =

[

k1 + ℓ1
k2 + ℓ2

]

. (9)

For i ∈ {1, 2}, the steady-state error of (7) is given by

e⋆i =
k1k2 − ℓ1ℓ2 − kia− ℓia

k1k2 − ℓ1ℓ2 − k2a− k1a+ a2
m. (10)

The estimation error of the proposed observer is given by
the quantity

ē := x̄− x (11)

and has a steady-state value given by

ē⋆ =
k1k2 − ℓ1ℓ2 − (1/2)(k1 + k2 + ℓ1 + ℓ2)a

k1k2 − ℓ1ℓ2 − k2a− k1a+ a2
m. (12)

Under the condition that all eigenvalues of the matrix̃A
are stable, they can be written in the general formλ1,2 =
−σ ± jω, whereσ is positive andω ∈ R. Then, by solving
for the eigenvalues of̃A and comparing with the rate of
convergence of the observer (5), the following conditions
guarantee a faster convergence rate of the proposed observer:

− σ =
−(k1 − a)− (k2 − a)

2
< a− k0 < 0, (13)

((k1 − a) + (k2 − a))
2
< 4 det Ã. (14)

On the other hand, in order to assure an improvement on
the effect of measurement noise, we want to guarantee that
|ē⋆| < |e⋆0| , which leads to the following condition:
∣

∣

∣

∣

k1k2 − ℓ1ℓ2 − (1/2)(k1 + k2 + ℓ1 + ℓ2)a

k1k2 − ℓ1ℓ2 − k2a− k1a+ a2

∣

∣

∣

∣

<

∣
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k0
k0 − a

∣

∣

∣

∣

.

(15)

It will be shown in Section IV-A that for any givenk0,
there exist parametersk1, k2, ℓ1, ℓ2 of the proposed observer
(6) such that conditions (13)-(15) hold. This observer leads
to the improvement in rate of convergence and robustness
suggested in Figure 2, where the dot dashed line denotes the
state of a stable plant (4), dashed line denotes the estimate
provided by the standard Luenberger observer (5), and the
black line is the estimate from the proposed observer (6).1
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Fig. 2. Comparison between proposed observer (black, solid) and a standard
Luenberger observer (blue, dashed). The plant solution is denoted in red,
dash-dot.

More generally, whenm is bounded, Figure 3(a) shows
the H∞ norm from measurement noisem to estimation
error e0 for the nominal observer (3) as a function ofk0.
On the other hand, the rate of convergence, as shown in
Figure 3(c), also increases whenk0 gets larger (σn and
σ are defined as the absolute value of the real part of the
dominant pole of closed-loop systems with the Luenberger
observer and the coupled pair of observers, respectively).
Such a tradeoff would become crucial when both rate of
convergence and robustness are required. Figure 3(b) shows
the H∞ norm of the proposed observer as a function ofℓ1

1It should be noted that simply using two Luenberger observers without
any coupling and taking the average of their estimates will not lead to both
faster convergence rate and smaller steady state error.
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(b) H∞ norm of proposed observer
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Fig. 3. Comparison between nominal observer and the proposed observer
with a = −0.5 andk1 = k2 = 2.

and ℓ2 with k1 = k2 = k0 = 2. Figure 3(d) shows that, for
k1 = k2 = k0, the rate of convergence is also a function
of ℓ1 andℓ2.2 The figures suggest that, when a specific rate
of convergence is required, instead of only one option (k0)
for choosingk0 for the design of the Luenberger observer,
we have more parameters for the coupled pair of observers
to improve both rate of convergence and robustness. For
example, if a particular rate of convergenceσn,⋆ is required,
the correspondingH∞ gain andk0 can be obtained from
Figure 4(a). When using the proposed observer withk1 =
k2 = k0, as shown in Figure 4(b), the constraint on the rate of
convergence leads to a feasible area on theℓ1, ℓ2 plane while
the constraint on theH∞ norm defines an additional plane.
As long as there is a nonempty region forℓ1, ℓ2 on which
both constraints are satisfied, which is the case in Figure 4(b),
the proposed observer would have better robustness property
with faster or equal rate of convergence.

III. A COUPLED PAIR OFLUENBERGER OBSERVERS

A. Notation

Given a matrixA with Jordan formA = XJX−1,
α(A) := max{Re(λ) : λ ∈ eig(A)}, where eig(A) denotes
the eigenspace ofA; µ(A) := max{Re(λ)/2 : λ ∈
eig(A + A⊤)}; |A| := max{|λ| 12 : λ ∈ eig(A⊤A)};
κ(A) := min{|X ||X−1| : A = XJX−1}; A is dissipative if
A+ A⊤ < 0. Given two vectorsu, v ∈ R

n, (u, v) := u⊤v,
and |u| :=

√
u⊤u. Given a Lebesgue measurable function

2Note that in Figure 3(b), theH∞ grows unbounded at points on the
ℓ1 − ℓ2 plane corresponding to the case of purely imaginary poles. This
can be seen from Figure 3(d), where, at such points, the rate of convergence
is zero.
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G(t), norm ||G||1 is defined by||G||1 :=
∫∞

0
||G(t)||dt,

where ||G(t)|| = sup{|G(t)u| : u ∈ R
n and|u| ≤ 1} for

all t ≥ 0. Given a bounded functionm : R≥0 → R
n,

|m|∞ := supt≥0 |m(t)|. Given a functionν : R≥0 → R,
D+ν(t) := lim suph→0+

ν(t+h)−ν(t)
h

. C defines the set of
complex numbers. Given a symmetric matrixP , λmax(P ) :=
max{λ : λ ∈ eig(P )}, λmin(P ) := min{λ : λ ∈ eig(P )}.

B. Observer structure and basic properties

The proposed observer consists of a coupled pair of Luen-
berger observers with output given by the average between
the states of the individual observers.3 The two coupled
observers for system (1) can be formulated as

˙̂xi = Ax̂i −Ki(ŷi − y)− Li(ŷj − y), i 6= j, i, j ∈ {1, 2}

ŷi = Cx̂i, i ∈ {1, 2}, x̄ =
x̂1 + x̂2

2
, (16)

whereK1,K2, L1, L2 are constant matrix gains to be de-
signed and̄x is the estimate ofx. Defining the error vector
e = [e⊤1 e⊤2 ]

⊤, we obtain

ė = Ãe+ K̃m, (17)

where

Ã =

[

A−K1C −L1C
−L2C A−K2C

]

, K̃ =

[

K1 + L1

K2 + L2

]

.

Under a detectability condition, the following asymptotic
stability property holds for the error system (17).

Proposition 3.1: (Asymptotic stability): For the case of
m ≡ 0, if the pair (C,A) of the plant defined in(1) is
detectable, then there exist gainsK1, K2, L1, L2 such that
the origin of the error dynamics for coupled pair observers
as in (17) is asymptotically stable.

C. Conditions for improving rate of convergence and robust-
ness

The performance and measurement noise effect of the
observers are characterized in terms of input-to-state-
stability-like bounds. More precisely, given an observer with

3More general linear combinations are possible.



estimation errore, we are interested in bounds of the form

|e(t)| ≤ β(|e(0)|, t) + γ(|m|∞) ∀t ≥ 0,

whereβ is a class-KL function andγ is a class-K∞ function.
For the particular Luenberger observer in (2), it is well
known that, whenÃ0 is Hurwitz with distinct eigenvalues
and Ã0 is decomposed as̃A0 = X̃0J̃0X̃

−1
0 , the estimation

error e0 satisfies [13]

|e0(t)| ≤ β0(|e0(0)|, t) + γ0(|m|∞) ∀t ≥ 0

with, for example, for alls ∈ R≥0 and t ∈ R≥0,

β0(s, t) = κ(Ã0) exp(α(Ã0)t)s, γ0(s) =
|K̃0|
µ(Ã0)

s. (18)

To establish and compare this property with that of the
proposed observer, the next result guarantees that the upper
bounds on the rate of convergence and the steady-state error
due to the proposed coupled pair of observers outperform
those due to a standard Luenberger observer.

Lemma 3.2: Consider the plant(1), the Luenberger ob-
server (2) with estimation error(3), and the coupled pair
observers(16) with error dynamics(17). Suppose that

a) Ã0 is dissipative, i.e., for someα0 > 0

Ã⊤
0 + Ã0 ≤ −2α0I; (19)

b) ∃ K1, K2, L1, L2 such thatÃ is dissipative, i.e., for
someα > 0

Ã⊤ + Ã ≤ −2αI; (20)

c) each ofA0 and Ã has distinct eigenvalues,α(Ã) <
α(Ã0); (21)

d)
|K̃|
α

<
|K̃0|
α0

. (22)

Then, there exists a class-KL function β and a class-K∞

functionγ such that the errore in (17)satisfies the following:

a) |e(t)| ≤ β(|e(0)|, t) + γ(|m|∞) ∀t ≥ 0;
b) Given nonzeroe(0) and e0(0), ∃t⋆ ≥ 0 such that

β(|e(0)|, t) ≤ β0(|e0(0)|, t) ∀t ≥ t⋆;
c) γ(s) < γ0(s), for all s 6= 0 and s ∈ R≥0.

A Lyapunov-based set of conditions for rate of conver-
gence and robustness improvement is given next.

Lemma 3.3: Consider the plant(1), the Luenberger ob-
server (2) with estimation error(3), and a coupled pair of
observers(16) with error dynamics(17). Suppose that

a) the measurement noisem is bounded;
b) ∃ P⊤

0 = P0 > 0 such that for someα0 > 0

Ã⊤
0 P0 + P0Ã0 ≤ −2α0P0; (23)

c) ∃ K1, K2, L1, L2 andP⊤ = P > 0 such that for some
α > 0

Ã⊤P + PÃ ≤ −2αP ; (24)

d) α0
λmin(P0)

λmax(P0)
< α

λmin(P )

λmax(P )
; (25)

e)
(λmax(P ))2|K̃|
(λmin(P ))2|α| <

(λmax(P0))
2|K̃0|

(λmin(P0))2|α0|
. (26)

Then, there exists a class-KL function β and a class-K∞

function γ such that the errore in (17) resulting from the
coupled pair of observers satisfies the following:

a) |e0(t)| ≤ β0(|e0(0)|, t) + γ0(|m|∞) ∀t ≥ 0;
b) |e(t)| ≤ β(|e(0)|, t) + γ(|m|∞) ∀t ≥ 0;
c) Given nonzeroe(0) and e0(0), ∃t⋆ ≥ 0 such that

β(|e(0)|, t) ≤ β0(|e0(0)|, t) ∀t ≥ t⋆;
d) γ(s) < γ0(s), for all s 6= 0 and s ∈ R≥0.

Remark 3.4:Lemma 3.2 is a special case of Lemma 3.3
with matricesP = I andP0 = I.

Lemmas 3.2 to 3.3 establish boundedness properties from
noisem to error e for the proposed observer. A property
from m to the estimation errore is established next.

Theorem 3.5: For the plant(1) with the Luenberger ob-
server (2) and the coupled pair of observers(16), suppose
the measurement noisem is bounded. If there exist matrices
K̃0 K1, K2, L1, L2 such that(19)-(22) or (23)-(26), then
there exists a class-KL functionβ and a class-K∞ function
γ such that the estimation error̄e resulting from the coupled
pair of observers satisfies the following:

a) |ē(t)| ≤ β(|e(0)|, t) + γ(|m|∞) ∀t ≥ 0,
b) Given nonzeroe(0) and e0(0), ∃t⋆ ≥ 0 such that

β(|e(0)|, t) ≤ β0(|e0(0)|, t) ∀t ≥ t⋆,
c) γ(s) < γ0(s), for all s 6= 0, s ∈ R≥0.

D. Design of coupled pair of observers

The design of the proposed observer can be described as
an optimization problem, particularly, under the constraints
of pole placement and of minimizing theH∞ gain of the
transfer function from noisem to the outpute of the system
(16). To formulate such an optimization problem following
[14], the error dynamics for (16) can be rewritten as

ė = Aee+Beu, ye = Cee +Dem, z∞ = C∞e, (27)

where

Ae =

[

A 0
0 A

]

, Be = I2n×2n, Ce = −
[

C 0
0 C

]

,

De =
[

Ip×p Ip×p

]⊤
, C∞ =

1

2

[

In×n In×n

]

and the “input”u is assigned viau = Muye with

Mu =

[

K1 L1

L2 K2

]

.

Moreover,z∞ denotes the estimation error of the proposed
observer,i.e., z∞ = e. In frequency domain, the transfer
function fromm to z∞ for (27) can be written as

Tmz∞(s) = Ccl

(

sI −Acl

)−1
Bcl +Dcl, (28)

whereAcl= Ae+MuCe, Bcl = MuDe, Ccl = C∞, Dcl = 0.
Within this setting, the optimization problem for the

proposed observer are formulated in the following two sub-
sections.



1) Rate of convergence as an inequality constraint:
To guarantee a rate of convergence requirement, we are
interested in placing the poles in a particular region such
as that one achieved by a Luenberger observer,i.e., all poles
locates at left of vertical line−σ⋆ in the complex plane.
Following [15], the system (27) has all poles located at left
of −σ⋆ in the complex plane if and only if there exists a
symmetric positive definite matrixPD such that

A⊤
clPD + PDAcl + 2σ⋆PD < 0. (29)

It is worth to note that, for system (27), the above inequality
constraint is nonlinear because of the appearance of the cross
termPDMu. The following theorem provides an equivalent
linear formulation and a sufficient condition for (29).

Proposition 3.6: The inequality(29) is satisfied if

a) and only if there existPD andMp such that

A⊤
e PD + PDAe + C⊤

e M⊤
p +MpCe + 2σ⋆PD < 0,

PD = P⊤
D > 0,

in which caseMu = P−1
D Mp.

b) there existsh1, h2 ∈ R such that the following hold:

b.1) h1 + h2 ≥ σ⋆;
b.2) Pi = P⊤

i > 0, for eachi ∈ {1, 2}
b.3) (A − KiC)⊤Pi + Pi(A − KiC) + 2h1Pi < 0 for

eachi ∈ {1, 2};

b.4)

[

2h2P1 −(L2C)⊤P2−P1L1C
−(L1C)⊤P1−P2L2C 2h2P2

]

<0.

2) Bound ofH∞ gain as an inequality constraint:We are
interested in minimizing the bound of the transfer function
Tmz∞ , i.e., find the minimumγ ≥ 0 such that|Tmz∞(jω)| <
γ for all ω ∈ R. 4 The following result follows from [14].

Lemma 3.7: For the system (28) defined by
(Acl, Bcl, Ccl, Dcl), the following statements are equivalent.

a) The system is stable and theH∞ gain of the system is
less thanγ for someγ > 0, i.e., ||Tmz∞ ||∞ < γ,

b) There existsPH = P⊤
H > 0 such that





A⊤
clPH + PHAcl PHBcl C⊤

cl

B⊤
clPH −γI D⊤

cl

Ccl Dcl −γI



 < 0, (30)

Remark 3.8:The condition in itemb) is the so-called
Bounded Real Lemma condition; see,e.g., [17], [18].

3) Minimization of theH∞ norm under a rate of con-
vergence constraint:Using the formulations in terms of
inequality constraints and LMIs in Section III-D.1 and Sec-
tion III-D.2, we formulate optimization problems to mini-
mize theH∞ norm fromm to e under constraints imposing
an specific rate of convergence.

Theorem 3.9: Givenσ⋆ ≥ 0, the poles of system(27) are
located in the regionD = {s ∈ C : Re(s) ≤ −σ⋆}, and
the H∞ gain is less or equal thanγ if and only if there

4Such a bound guarantees that
∫
∞

0
|z∞(t)|2dt < γ2

∫
∞

0
|m(t)|2dt, and

γ is theL2 gain, wherem ∈ L2, the so-calledH∞ gain [16]. Lemma 3.7
shows equivalent conditions for this.

existMu, PD, andPH such that the following optimization
problem is feasible:

min γ

s.t.: A⊤
clPD + PDAcl + 2σ⋆PD ≤ 0,





A⊤
clPH + PHAcl PHBcl C⊤

cl

B⊤
clPH −γI 0

Ccl 0 −γI



 < 0,

PH = P⊤
H > 0, PD = P⊤

D > 0.

(31)

Note that the optimization problem (31) is not jointly
convex over the variables (PD, PH , Mu). Moreover, it is
nonlinear because of the existence of cross termsPHMu

andPDMu. In order to remove the nonlinearities and make
the two constraints jointly convex, following [14], we refor-
mulate the problem by seeking common solutions ofPD and
PH , and changing variables toMp := PMu.

Theorem 3.10: Givenσ⋆ ≥ 0, the poles of system(27) are
located in regionD = {s ∈ C : Re(s) ≤ −σ⋆}, and theH∞

gain is less or equal thanγ if there existsMp andP such
that the following optimization problem (LMI) is feasible.

min γ

s.t.: A⊤
e P + PAe + C⊤

e M⊤
p +MpCe + 2σ⋆P ≤ 0,





A⊤
e P + PAe + C⊤

e Mp +M⊤
p Ce MpDe C⊤

cl

D⊤
e M

⊤
p −γI 0

Ccl 0 −γI



 < 0,

P = P⊤ > 0.

Remark 3.11:The resulting observer gain matrix from
Theorem 3.10 is given byMu = P−1Mp. By making the
optimization problem linear and convex, a global optimizer
is guaranteed. However, asking forPH = PD may eliminate
a better feasible solution to the original optimization in (31).

The following result assures that the performance and
robustness of the proposed observer are no worse than those
of a Luenberger observer.

Theorem 3.12: Givenσ⋆ ≥ 0, the poles of error dynamics
(3) of the Luenberger observer(2) for the plant (1) are
located in the regionD = {s ∈ C : Re(s) ≤ −σ⋆}, and
the H∞ gain from m to e0 is less or equal thanγ⋆ ≥ 0
if and only if there existK̃0, XD and XH such that the
following optimization problem is feasible:

min γ⋆

s.t.: Ã⊤
0 XD +XDÃ0 + 2σ⋆XD ≤ 0,





Ã⊤
0 XH +XHÃ0 XHK̃0 I

K̃⊤
0 XH −γ⋆I 0

I 0 −γ⋆I



 < 0,

XH = X⊤
H > 0, XD = X⊤

D > 0.

(32)

Moreover, if suchK̃0, XD andXH exist, then the optimiza-
tion problem in Theorem 3.9 onPD, PH andMu is feasible,
and its solutionγ has the propertyγ ≤ γ⋆.

For simplicity, we do not linearize (32) but that is possible
following the approach in Theorem 3.10.



IV. EXAMPLES

A. Numerical results for first order plant

To illustrate the main feature of the proposed coupled pair
of observers, we revisit the motivational example. Consider
the plant in (4) witha = −0.5. The Luenberger observer is
designed following (5) withk0 = 2. The proposed observer is
designed following (6) with error dynamics (7). Conditions
(19)-(22) of Theorem 3.5 can be rewritten as

α(Ã) ≤ a− k0,√
2

2

√

(k1 + ℓ1)2 + (k2 + ℓ2)2

|µ(Ã)|
<

∣

∣

a

a− k0

∣

∣.
(33)

By solving (33), we pick parametersk1 = 1.7896, k2 =
2.2278, ℓ1 = 0.0538, ℓ2 = −1.1633. It can be verified
that the eigenvalue of̃A according to this set of parameters
are−2.5087 ± 0.1208i. Moreover,µ(Ã) = −1.9123. With
initial conditionsx(0) = 3, x1(0) = x2(0) = x0(0) = 5, a
simulation form(t) ≡ 0.3 is shown in Figure 5. It is worth to
note that there is an improvement of the steady-state error by
the proposed observer,e⋆ = 0.2272, while the Luenberger
observer givese⋆0 = 0.2400. As shown in Figure 5(b), we
obtaint⋆ = 2s, ande becomes closer to0 thane0 thereafter.

Based on Theorem 3.9, we are able to find better
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(a) Trajectories of error for Luen-
berger observer and coupled pair of
observers.
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enberger observer and that of the
coupled pair of observers.

Fig. 5. Observer errors withm(t) ≡ 0.3

parameters by using the solver PENBMI [19]. For values
k1 ≈ 3.5198, k2 ≈ 0.4802, ℓ1 ≈ −8.0142, ℓ2 ≈ 0.2883, the
resultingH∞ gain is≈ 0.4953, which is≈ 38.09% smaller
than that of Luenberger observer (γ0 = 0.8) with k0 = 2. The
simulation in Figure 2 was obtained using these parameters.

B. Numerical results for second-order plant

Consider the second-order plant given as in (1) with

A =

[

−1 1
−1 0

]

, C =
[

1 2
]

. For a given Luenberg-

er observer withK̃0 = [2 5]⊤, its rate of convergence
is −1 and its H∞ norm from measurement noisem to
estimation errore0 is equal 0.4859. By formulating the
problem according to Theorem 3.12 withσ⋆ = 1, we
obtain γ⋆ ≈ 0.2850, which is a great improvement from
the non-optimized LuenbergerH∞ norm of 0.4859, with
K̃0 = [0.2852 0.3574]⊤. However, Theorem 3.12 gives
γ ≈ 0.0594 for the proposed observer with

M⊤
u =

[

−0.2790 0.2160 0.1400 −0.1149
0.0367 −0.9901 0.3470 0.7500

]⊤

.

The resultingγ of the proposed observer is approximately
a decrease by79.16% when compared to the optimized
Luenberger observer.

V. CONCLUSION

In this work, a novel observer for LTI systems was
proposed. It is constructed by a coupled pair of Luenberger
observers, whose states average provide an estimate of the
plant’s state. Sufficient conditions guaranteeing that thepro-
posed observer has better performance and robustness prop-
erties are presented. Moreover, optimization problems are
formulated for the computation of the observer parameters.
While it is true that there exist observer gains for which
the error dynamics have no worse performance and robust-
ness property, numerical results indicate that the proposed
observer can be designed to have faster rate of convergence
and betterH∞ gain when compared with standard single
Luenberger observers.
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