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A Coupled Pair of Luenberger Observers for Linear Systems to
Improve Rate of Convergence and Robustness to Measurementoiée

Yuchun Li and Ricardo G. Sanfelice

Abstract— Motivated by the need of observers that are both the presence of measurement noise can lead to large values
robust to disturbances and guarantee fast convergence tome  of the gains. Such issues also emerge in the design of high-
of the estimation error, we propose an observer for linear  gqin gpservers, where the use of high gain can significantly
time-invariant systems that consists of the combination ofwo lifv the effect of t noi indeed. in [11. 2
coupled Luenberger observers. The output of the proposed 2MPlify the effect of measurement noise. Indeed, in [1], [2]
observer is defined as the average between the estimates ofit iS shown that measurement noise introduces an upper limit
the individual ones. The convergence rate and the robustnes for the gain of a (constant) high-gain observer when good
to measurement noise of the proposed observer's output are performance is desired.
characterized in terms of ISS estimates. Conditions guaran — \15re recently, observers using essentially two set of gains
teeing that these estimates outperform those obtained witta t optimized f d the other f bust
standard Luenberger observer are given. The conditions are one set optimized lor convergence an € other for robust-
exercised in a stable scalar plant, for which a design procede  Ness, have been found successful in certain settings. Such
and numerical analysis are provided, and in a second order approaches include the piecewise-linear gain approach in
plant, numerically. [10] for simultaneously satisfying steady-state and tiemts
bounds, the high gain observer with nonlinear adaptive gain
in [11], and the high gain observer with on-line gain tuning
We consider linear time-invariant systems of the form jn [12].

(1) In this paper, we propose a linear time-invariant observ-
er and design conditions for both robustness to measure-

wherex € R”, y € RP, andt — m(t) denotes measurementment noise and fast convergence of the estimation error.

|. INTRODUCTION

& = Az, y = Cz + mf(t),

noise, for which there exists a Luenberger observer The proposed observer consists of two coupled Luenberger
. . _ A . observers. We establish that, under certain conditiorsvnav
To = Ao — Ko(o — ), Yo = Cig ) ing its parameters, and when compared to the Luenberger

observer, the proposed observer improves the convergence
~ R R R rate and the effect of measurement noise. The main propertie

éo = (A — KoC)ep + Kom(t) =: Apeg + Kom(t) (3) of the proposed observer, namely, convergence rate and the
robustness to measurement noise, are characterized ia term

\t,;llltrt] est&ma‘ugn errotr)-lgtlven bgpt.:: x%l_::f. I:h's Weltl'.k NOWN ot 1SS estimates and compared with those of a standard
at, under observability conditions & (1), the matrixrgéi huenberger observer. A design procedure is formulated in

can be chosen to make the convergence rafél of (3) arbitrar &rms of optimization problems. While general conditions

fas_t. Howev_er, due to .faSt convergence speed requirng Ia_r%r which this problem can be solved are not known at this
gain, the price to pay is that the effect of measurement no'ﬁ?ne, a design procedure for the case of a stable scalar plant

mtlﬁ a][nphfl[ezd. !ndeled, th? dgmgr;f(t))f (t)vt\alservers, such as tholieprovided. The design procedure is exercised in the scalar
in the form [2), involves a trade off between convergence ra lant and, also for a second order plant, numerical results

ang robuTtngss to meashgtrer?ent n0|sde (51]’_[2]' thod i%dicate improvement of performance and robustness.
everal observer architectures and design methods with-r, organization of the remainder of this paper is as

the goal of conferring good performance. and ro_bustness Gllows. In Sectior(l, a motivational example is presented
the error system have been proposed in the literature. ction(Tl] establishes the main results. Finally, Sediigh
particular, I, tools have been employed to formulate S8 hows a complete design for the motivational example and

of Llnetar l::l}attrltﬁélnqua?tles (](‘u:m? that,t V\{[uen fsas'?le’simulations. Complete proofs of presented results will be
guarantee tha 2 gain from disturbance to the estima |0n£]ublished elsewhere.

error is below a pre-established upper bound; see, e.g., [
[4], [5], to just list a few. Following ideas from adaptive [1. MOTIVATIONAL EXAMPLE
control [6], [7], observers with a gain that adapts to the ~gnsider the scalar plant

plant measurements have been proposed in [8], [9], though

leading to the exponentially stable estimation error syste

T = ax, y=1x+m, (4)
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The estimation error system is given bY (3) wilh = a—k, and has a steady-state value given by

while Ko = ko. Its convtzrgence rate i8 — ko and its o kiko — Oy — (1/2) (k1 + Fa 4+ 01 + £o)

steady-state error isj := tX2-m. It is apparent that to get ~ €" = e — Tl — g — ot a? m. (12)

fast convergence, the constant needs to be positive and 1he otz e !

large. However, withk, large, the influence of measurementUnder the condition that all eigenvalues of the matrix

error is amplified as well. As argued in the introductiorare stable, they can be written in the general form =

and suggested by Figufe J(a), a balance needs to be made + jw, whereo is positive andv € R. Then, by solving

between convergence rate and steady-state error inducedfy the eigenvalues off and comparing with the rate of

measurement noise. convergence of the observdil (5), the following conditions

guarantee a faster convergence rate of the proposed ohserve
(k1 —a) — (ko —

. P ")2 2= <o, (193)

el . (ki —a)+ (ks —a)? < 4det 4. (14)

On the other hand, in order to assure an improvement on
the effect of measurement noise, we want to guarantee that

et @ B ow v m e e < ed|, which leads to the following condition:
(& The steady -state error wittb) Rate of convergence with respect
5l = |k ml, m = 0.4 andto ko. kika — 010y — (1/2) (k1 + ko + 01 + £2)a ko |
a = —0.5. klkg—élég—kQCL—kla—i-aQ ko—a

(15)
It will be shown in Sectioi TV=A that for any givery,

The tradeoff pointed out above inspired the proposedi€re exist parametefs, ks, (1, {2 of the proposed observer
observer, which consists of a pair of coupled Luenbergd®) such that conditiong (13)-(I15) hold. This observer ¢ead

observers. For the scalar plafi (4), the proposed obsenférthe improvement in rate of convergence and robustness
takes the form suggested in Figufd 2, where the dot dashed line denotes the

state of a stable planfl(4), dashed line denotes the estimate
provided by the standard Luenberger obserler (5), and the

Fig. 1. Trade off between the rate of convergence and thestoéss.

i1 = adr — k(i —y) — (2 — ),

o = ads — ka2 (g2 — y) — La(ih — ), (6) black line is the estimate from the proposed obsefud (6).
i =i, i€{1,2}, 5::“71;“72 .

The coupling injections terms—¢; (> —y)” and “—/¢a(j1 — = :

y)" define the innovation terms of the proposed observer. z—',’\*,‘\

Compared to[{j5), with the proposed observer, a one dimen-
sional design problem ok, becomes a fourth dimensional
design onky, ko, {1, £5. The outputz of the coupled pair
of observers defines the estimatezofs the average of the
statesz; andzs of the individual observers.

By defining the error variables; := %; — « for each
i € {1,2}, the error dynamics are captured by

Fig. 2. Comparison between proposed observer (black,)solid a standard
é1 = (a — kl)el —l1ex + (kl + fl)m, Luenberger observer (blue, dashed). The plant solutioreited in red,

(7) dash-dot.
ég = —loer + (a — k2)ea + (ka2 + La)m
which can be written in matrix form as More generally, whenn is bounded,_ Flgur@) sr_lows
B R the H,, norm from measurement noise to estimation
€= Ae+ Km, (8) erroreq for the nominal observef{3) as a function &f.
On the other hand, the rate of convergence, as shown in
Figure[3(c), also increases whenp gets larger ¢* and
i k1 =4 ja ki + 40, ©) o are defined as the absolute value of the real part of the
T =4 a—ky |77 | kot |7 dominant pole of closed-loop systems with the Luenberger
, S bserver and the coupled pair of observers, respectively).
Fori € {1,2}, the steady-state error 7) is given b 0 .
redl2) y di()is g y Such a tradeoff would become crucial when both rate of
er = kika — by — kia — Lia _m. (10) convergence and robustness are required. F[guré :_3(b) shows
kiky — l1ly — koa — kia +a the H., norm of the proposed observer as a functior/ of

The estimation error of the proposed observer is given by,

wheree = [e; e5] " and

h . It should be noted that simply using two Luenberger obsservathout
the quantity any coupling and taking the average of their estimates willlead to both

=T — (11) faster convergence rate and smaller steady state error.



HLEL D
e P B " 0 o L ]
(@) Hoo norm of nominal observetb) Ho. norm of proposed observer (a) H., norm and rate of convertb) Region of ¢, and ¢ where
(HZ) in (3) vs gaink. (Hso) in (B) vs gains?y and ¢o. gence based on gai,. Heo < HZ* ando™* < o.

Fig. 4. Comparison of design regions for nominal observe@nand
proposed observer if](6) with = —0.5, k} = 2, and particular choice of
gainky = k2 = kj.

G(t), norm ||G||, is defined by||G||; = fO°°||G(t)||dt,
where [|G(t)|| = sup{|G(t)u| : v € R™andu| < 1} for
all t > 0. Given a bounded functiom : R>y — R”,
v o T e Imlee 1= sup;q |m(t)|. Given a functionv : R>¢y — R,
(c) Rate of convergence of nomin@) Rate of convergence of proposed DYu(t) == lin_lsup vtth)—v() -~ dqefines the set of
b )i inko. b i in¢1 ands. ‘ h20t h ’

observer ¢") in @ vs gainko.  observer ) in @ vs gaint, and complex numbers. Given a symmetric matix Ay ax (P) ==

Fig. 3. Comparison between nominal observer and the prdpolsgerver max{\: A € €ig(P)}, Amin(P) := min{\: X € eig(P)}.
with a = —0.5 and k1 = ko = 2.

B. Observer structure and basic properties

The proposed observer consists of a coupled pair of Luen-
erger observers with output given by the average between
he states of the individual observelfs. The two coupled
Bbservers for systenh](1) can be formulated as

and/y with ky = ko = ko = 2. Figure[3(d) shows that, for b
k1 = ko = ko, the rate of convergence is also a functioq
of ¢, and/,[ The figures suggest that, when a specific rat
of convergence is required, instead of only one optiky) (
for choosingk, for the design of the Luenberger observer,:; = Az; — K;(§i —y) — Li(§; — y), i # j,4,j € {1,2}
we have more parameters for the coupled pair of observers . . I TR
to improve both rate of convergence and robustness. Fdét = Ci;, ie{1,2}, =7
example, if a particular rate of convergence* is required,
the corresponding?,, gain andk, can be obtained from
Figure[4(d). When using the proposed observer with= v
ki = ko, as shown in Figue Z(p), the constraint on the rate of [
convergence leads to a feasible area or/thé, plane while ¢=Ae+ Km, (17)
the constraint on théf,, norm defines an additional plane.

As long as there is a nonempty region far, /> on which Where

both constraints are satisfied, which is the case in Flgiop 4( - A—-K,C —L,C - K+ Iy

the proposed observer would have better robustness pyopert”™ — | —L,C A— KsC ] , K= [ Ko+ Lo ] :
with faster or equal rate of convergence.

(16)

where K, Ks, L1, L, are constant matrix gains to be de-
signed andr is the estimate of. Defining the error vector
el es]T, we obtain

Under a detectability condition, the following asymptotic
lll. A COUPLED PAIR OFLUENBERGER OBSERVERS Stability property holds for the error system(17).

A. Notation Propos_ition 3.1:. (Asymptotic stability): F(_)r theT case of

, ) . _, m =0, if the pair (C,A) of the plant defined ir(D) is

Given a matrix A with Jordan formA = XJX™,  getectaple, then there exist gaifi§, K, L1, Lo such that

a(A) := max{Re()) : A € eig(A)}, where eigA) denotes e origin of the error dynamics for coupled pair observers

the eigenspace off; n(A) := max{Re(\)/2 : A € 45y (T7)is asymptotically stable.

eiglA + AT} |A] == max{|\2 : X € eig(ATA)};

k(A) = min{|X||X!|: A= XJX'}; Aisdissipative if C. Conditions for improving rate of convergence and robust-

A+ AT < 0. Given two vectorsu, v € R”, (u, v) :=u'v, ness

and [u| := VuTu. Given a Lebesgue measurable function The performance and measurement noise effect of the

observers are characterized in terms of input-to-state-

2Note that in Fi , thed bounded at point th L . . )
ote that in Figurd 3(h) S e O PO stability-like bounds. More precisely, given an observéhw

(1 — ¢ plane corresponding to the case of purely imaginary poléss T
can be seen from Figufe 3[d), where, at such points, the fatenvergence
is zero. SMore general linear combinations are possible.



)\max P 2 K )\max P 2 K
(Amax( ))2|_| - (Amax( o))2|_o|. (26)
- 0 Vi >0 (Amin(P))?[@] (Amin(Fo))? [0l

le(®)] < B(le(0)],1) +7(Imloo) t=20, Then, there exists a clagst function 5 and a classk
wheres is a classk. function andy is a classk.. function, function~y such that the errore in (I7) resulting f.rom the
For the particular Luenberger observer [d (2), it is welfoupled pair of observers satisfies the following:
known that, whend, is Hurwitz with distinct eigenvalues @) leo(t)| < Bo(leo(0)[,t) +vo(|m]oo) vt > 0;
and A, is decomposed ad, = X,.JoX, ', the estimation b) |e(t)| < B8(|e(0)],£) +v(Jm|s) vt > 0;

estimation erroe, we are interested in bounds of the form e)

error ey satisfies [13] c) Given nonzeroe(0) and ey(0), 3t* > 0 such that
B(le(0)],1) < Bo(leo(0)[,1) Vi =17
leo()] < Bolleo(0)];) +0(jmlec)  VE=0 d) v(s) < o(s), for all s # 0 and s € Rx.
with, for example, for alls € R>o andt € R>o, Remark 3.4:Lemmal3.2 is a special case of Lemmal 3.3
|f( | with matricesP = I and P, = 1.

Bo(s, 1) = w(Ao) exp(a(Ao)t)s,  yo(s) = M(flo)& (18) Lemmad 3P t§ 313 establish boundedness properties from
) ) . noise m to errore for the proposed observer. A property
To establish and compare this property with that of thgom 1, to the estimation erroe is established next.
proposed observer, the next result guarantees that the uppe ) .
bounds on the rate of convergence and the steady-state erro heorem 3.5: For the pladl)) with the Luenberger ob-

due to the proposed coupled pair of observers outperfort?ﬁrver@ and th? co_upl_edbpalrc;)fdolester:vedE),_ fuppto_se
those due to a standard Luenberger observer. € measurement hoise 1S boundea. Ere exist matrices

Ko K1, K3, L1, Ly such that or , then
Lemma 3.2: Consider the plarf), the Luenberger ob- e (922 or (23y(28)

: TIoIEE )" there exists a claskL functions and a classk., function
server (@) with estimation error(@), and the coupled pair

: ! 7 such that the estimation errarresulting from the coupled
observers(16) with error dynamics(L7). Suppose that pair of observers satisfies the following:

a) Ay is dissipative, i.e., for some, > 0 a) [e(t)] < B(le(0)],t) +7(|m|s) vt >0,

Al + Ay < —2a,1; (19) b) Given nonzeroe(0) and eg(0), 3t* > 0 such that

o B(le(0)],t) < Bo(leo(0)], 1) VE =17,
b) 3 K1, Ka, L1, Lo such thatA is dissipative, i.e., for  c) 5(s) < yo(s), for all s # 0, s € Rxg.
somea > 0
S B D. Design of coupled pair of observers

A +As -2l (20) The design of the proposed observer can be described as

c) each of4, and A has distinct eigenvaluesy(4) < an optimization problem, particularly, under the constisi

a(Ay); (21) of pole placement and of minimizing thE., gain of the
|f(| |f(0| transfer function from noise: to the output of the system
d) — < —. (22) (18). To formulate such an optimization problem following

@Q . .

Then, there exists a clags£ function 3 and a classk.,, [14], the error dynamics fof(16) can be rewritten as

function such that the erroe in (1) satisfies the following:
a) le(t)] < B(le(0)],t) +v(Imle) VL 20;

b) Given nonzeroe(0) and eo(0), Jt* > 0 such that where

é=Ace+ Beu, Yo =Cee+ Dem, zo =Cxe, (27)

B(le(0)],1) < Bolleo(0)].£) Vt > t*; A4 0 c oo
c) v(s) < 7o(s), for all s # 0 and s € Rxy. ez[o A]aBe:IQnXZna Ce:—[o C’]’
A Lyapunov-based set of conditions for rate of conver- T 1

gence and robustness improvement is given next. De = [ Iyxp  Ipxp ] 1 Coo = 9 [ Insn Inxn }

Lemma 3.3: Consider the plarf), the Luenberger ob- znd the “input”u is assigned vias = M, y. with
server () with estimation error(3), and a coupled pair of

observers[18) with error dynamics(I7). Suppose that M, = [ K, L ] _
a) the measurement noise is bounded,; L2 Ky
b) 3 P, = P, > 0 such that for somey, > 0 Moreover, z,, denotes the estimation error of the proposed

observer,i.e, z,, = €. In frequency domain, the transfer

- _ .
Ag Po+ Podo < —200 y; (23)  function fromm to 2+ for 7) can be written as

¢) 3Ky, Ks, L1, Ly andPT = P > 0 such that for some

a>0 Tmzoo (S) =Cy (SI - Acl)ichl + D, (28)
AT A< —ogP: WhereAcl: A6+Mucea B = Mul_)ea _Ccl = Cs, Doy = 0.
A P+ PAs —20P; (24) Within this setting, the optimization problem for the
d) Amin (FPo) - a/\min(P) . (25) proposed observer are formulated in the following two sub-

Amax(Po) Amax(P)’ sections.



1) Rate of convergence as an inequality constraint: exist M,, Pp, and Py such that the following optimization
To guarantee a rate of convergence requirement, we gmeblem is feasible:
interested in placing the poles in a particular region such

as that one achieved by a Luenberger obseineerall poles min
locates at left of vertical line-o* in the complex plane. s.t.: A Pp + PpAc + 20 Pp <0,
FoIIovv*ing [15], the systenﬂ}?) has all pol_es Iocated.at left Al Py + PyAy PuBg CJ (31)
of —g* in the complex plane if and only if there exists a B, Py —~I 0 <0,
symmetric positive definite matri®p such that C. 0 —~I

ALPp + PpAg + 20 Pp < 0. (29) Py =Py >0, Pp=Pp >0.

) ) _ Note that the optimization probleni_(31) is not jointly
It is worth to note that, for systerh (7), the above ineqyalitconyex over the variablesPp, Py, M,). Moreover, it is

constraint is nonlinear because of the appearance of t88 cro 4 linear because of the existence of cross tefps)/
term Pp M, The following theorem provides an equivalentynq p, a7, In order to remove the nonlinearities and make

linear formulation and a sufficient condition far {29). the two constraints jointly convex, following [14], we refo
Proposition 3.6: The inequalitf29) is satisfied if mulate the problem by seeking common solution$’gfand
a) and only if there exisPp and M, such that Pp, and changing variables @f, := PM..

T TaT N Theorem 3.10: Given* > 0, the poles of syste(@1) are
Ac Pp +TPDAE +Ce My + MpCe +207Pp <0, located in regiorD = {s € C: Re(s) < —o*}, and theH
Pp = Pp >0, gain is less or equal than if there existsM,, and P such

in which casel,, — Pl;lMp. that the following optimization problem (LMI) is feasible.

b) there existsi1, ho € R such that the following hold: min ~
b.1) hy + hsz or; stiAl P+ PA.+C/ M, + M,C. +20*P <0,
b.2) P, =P, >0, for eachi € {1,2} AT T T T
i ’ P+ PA.+CM,+MC., M,D, C
b.3) (A — K,C)TP, + PA(A — K,C) + 20, P, < 0 for et T A Ce My My G Mple Co
, DI M —I 0 <0,
eachi € {1,2}; C P 0 ]
b.ay| 2P ~(L:C) T P=PLL.C] _, . v
N —(L1C)T P—PyLyC 2ho Py ' P=P >0

2) Bound ofH, gain as an inequality constraintVe are Remark 3.11:The resulting observer gain matrix from
interested in minimizing the bound of the transfer functiorrheorem3.10 is given by/, = P~'M,. By making the
Tz, i€, find the minimumy > 0 such thatT,,,. (jw)| < optimization problem linear and convex, a global optimizer
~ for all w € R. A The following result follows from [14].  is guaranteed. However, asking fBf; = Pp may eliminate

Lemma 3.7: For the system (28) defined by a better feasible solution to the original optimizationl).
(Act, Ber, Cer, Do), the following statements are equivalent.  The following result assures that the performance and

a) The system is stable and ti& gain of the system is robustness of the proposed observer are no worse than those

less thany for somey > 0, i.e., ||z ||oo <7 of a Luenberger observer.
b) There exists’y = P, > 0 such that Theorem 3.12: Given* > 0, the poles of error dynamics
AT Py + PyAu PuBu CJ ) of the Luenbe_rger observe@) for the plant*(]]]) are
e . located in the regiorD = {s € C : Re(s) < —o*}, and
B} Py —I D}, | <0, (30) : ; !
o Dy i the H,, gain fromm to e, is less or equal thany* > 0

if and only if there existky, Xp and Xy such that the
Remark 3.8:The condition in itemb) is the so-called following optimization problem is feasible:
Bounded Real Lemma condition; seeg, [17], [18].

3) Minimization of theH., norm under a rate of con- - - )
vergence constraint:Using the formulations in terms of  S:t: Ay Xp + XpAo+20"Xp <0,

min ~*

inequality constraints and LMIs in Section 1[I-D.1 and Sec- AJXH +XpyAy XpKo I (32)
tion [M-D.2] we formulate optimization problems to mini- Ko X —~*I 0 <0,
mize the H., norm fromm to € under constraints imposing I 0 —*1

an specific rate of convergence.

Theorem 3.9: Givem™* > 0, the poles of systei@1) are )
located in the regiorD = {s € C : Re(s) < —c*}, and Moreover, if suchKy, Xp and Xy exist, then the optimiza-
the H,, gain is less or equal than if and only if there tion problem in Theorem 3.9 oRp, Py and M, is feasible,

and its solutiony has the propertyy < ~+*.
4Such a bound guarantees gt |zoo (t)|2dt < 72 [° |m(t)|?dt, and S . . . .
~ is the Lo gain, wherem € E;’ﬁtﬁe ;g_ca”edHoo gaifﬁ [16]. Lemm&3]7 For simplicity, we do not linearize (32) but that is possible

shows equivalent conditions for this. following the approach in Theorem 3]10.

Xg=X}>0, Xp=X}>0.



IV. EXAMPLES The resultingy of the proposed observer is approximately
A. Numerical results for first order plant a decrease byr9.16% when compared to the optimized

To illustrate the main feature of the proposed coupled palruenberger observer.

of observers, we revisit the motivational example. Conside V. CONCLUSION

the plant in [%#) witha = —0.5. The Luenberger observer is In this work, a novel observer for LTI systems was

designed following((b) wittk = 2. The proposed observer is proposed. It is constructed by a coupled pair of Luenberger

designed following[{5) with error dyna_midél(?). Conditionsobservers, whose states average provide an estimate of the
(19)-(22) of Theorem 3]5 can be rewritten as

plant’s state. Sufficient conditions guaranteeing thatpitee

a(A) < a — ko, posed observer has better performance and robustness prop-
V2 /(1 + 0)2 + (ka2 + 02)? a (33) erties are presented. More(_)ver, optimization problems are
5 |M(A)| |a o | formulated for the computation of the observer parameters.
While it is true that there exist observer gains for which
By solving [33), we pick parameters, = 1.7896, k2 = the error dynamics have no worse performance and robust-
2.2278, £, = 0.0538, f; = —1.1633. It can be verified pess property, numerical results indicate that the prapose

that the eigenvalue of according to this set of parametersppserver can be designed to have faster rate of convergence
are —2.5087 + 0.1208i. Moreover,u(A) = —1.9123. With  and betterf.. gain when compared with standard single
initial conditionsz(0) = 3, 71(0) = 72(0) = Zo(0) =5, @ Lyenberger observers.

simulation form(t) = 0.3 is shown in Figur€ls. It is worth to

note that there is an improvement of the steady-state eyror b REFERENCES
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