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The Role of Singular Control in Frictionless Atom Cooling in a
Harmonic Trapping Potential

Dionisis Stefanatos and Jr-Shin Li

Abstract—In this article we study the frictionless cooling of
atoms trapped in a harmonic potential, while minimizing the
transient energy of the system. We show that in the case of
unbounded control, this goal is achieved by a singular control,
which is also the time-minimal solution for a “dual” problem ,
where the energy is held fixed. In addition, we examine briefly
how the solution is modified when there are bounds on the
control. The results presented here have a broad range of
applications, from the cooling of a Bose-Einstein condensate
confined in a harmonic trap to adiabatic quantum computing
and finite time thermodynamic processes.

I. INTRODUCTION

Frictionless atom cooling in a harmonic trapping potential
is defined as the problem of changing the harmonic frequency
of the trap to some lower final value, while keeping the
populations of the initial and final levels invariant, thus with-
out generating friction and heating. Achieving this goal in
minimum time has many important potential applications. For
example, it can be used to reach extremely low temperatures
inaccessible by standard cooling techniques [1], to reducethe
velocity dispersion and collisional shifts for spectroscopy and
atomic clocks [2], and in adiabatic quantum computation [3].
It is also closely related to the problem of moving in minimum
time a system between two thermal states, as for example in
the transition from graphite to diamond [4].

The quest for optimal controls that minimize the neces-
sary time for the cooling process has an interesting history.
It was initially proved that minimum transfer time can be
achieved with bang-bang real frequency controls [4]. Later,
it was shown that when the restriction for real frequencies is
relaxed, allowing the trap to become an expulsive parabolic
potential at some time intervals, shorter transfer times can be
obtained [5]. Based on these previous works, we formulated
frictionless atom cooling as a minimum-time optimal control
problem, permitting the frequency to take real and imaginary
values in specified ranges [6]. We showed that the optimal
solution has again a bang-bang form and used this fact to
obtain estimates of the minimum transfer times for various
numbers of switchings [6]. We subsequently fully solved the
corresponding time-optimal control problem and obtained the
optimal synthesis [7].

Recently, it was pointed out that the energy “cost” of the
cooling process, more precisely the transient excitation energy,
can impose limits to the possible speed-up [8]. For example,
for a trap which is harmonic near the ground state, but not
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for higher energies, large transient energies imply perturbing
effects of anharmonicities and thus undesired excitationsof
the final state. The problem of minimizing the transient
energy for a fixed transfer time and with unlimited controls
was considered in [8], and an interesting conjugate relation
between these two quantities was revealed.

In the present article we examine this problem from a
control-theoretic point of view. We show that the transient
energy is minimized by a singular control. We also show that
this singular control is the time-minimal solution for a “dual”
problem, where the energy is held fixed, elucidating thus
the conjugate relation between transient energy and minimum
time. Finally, we examine briefly how the solution is modified
when there are bounds on the control. The results presented
here come to meet several examples of singular solutions for
optimal control problems on spin systems existing in Quantum
Control literature [9], [10], [11], [12].

II. FORMULATION OF THE PROBLEM IN TERMS
OF OPTIMAL CONTROL

The evolution of the wavefunctionψ(t,x) of a particle
in a one-dimensional parabolic trapping potential with time-
varying frequencyω(t) is given by the Schrödinger equation

ih̄
∂ψ
∂ t

= H(t)ψ =

[

− h̄2

2m
∂ 2

∂x2 +
mω2(t)

2
x2
]

ψ , (1)

whereH(t) is the Hamiltonian operator of the system,m is
the particle mass and̄h is Planck’s constant. Consider the
time evolution with initial frequencyω(0) = ω0 at t = 0
and final frequencyω(T ) = ωT < ω0 at the final timeT .
This corresponds to a temperature reduction (cooling) by a
factorωT/ω0. Frictionless cooling corresponds to a pathω(t)
between these two values so that the populations of all the
oscillator levelsn = 0,1,2, . . . at t = T are equal to the ones
at t = 0. More explicitly, if

ψ(0,x)=
∞

∑
n=0

cn(0)Ψω0
n (x), ψ(T,x)=

∞

∑
n=0

cn(T )ΨωT
n (x), (2)

whereΨω0
n (x),ΨωT

n (x) are the eigenfunctions of the operators
H(0),H(T ), respectively, then frictionless cooling corresponds
to

|cn(0)|2 = |cn(T )|2, n = 0,1,2, . . . (3)

It was shown in [5], using the Lewis-Riesenfeld invariant
[13], that frictionless cooling is achieved whenω(t) satisfies
the following Ermakov equation [14]

b̈+ω2(t)b =
ω2

0

b3 , (4)
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with boundary conditions

b(0) = 1, ḃ(0) = 0, b̈(0) = 0, (5)

b(T ) = γ, ḃ(T ) = 0, b̈(T ) = 0, (6)

and γ =
√

ω0/ωT > 1. Hereb(t) is a scaling dimensionless
function describing the expansion of the wavefunction during
the cooling process. When the above conditions are satisfied,
the nth eigenstate of the initial oscillator att = 0 evolves
following the “expanding mode”

Ψn(t,x) =
(mω0

π h̄

)1/4 exp
[

−i
(

n+ 1
2

)
∫ t

0 dt ′ ω0
b2(t′)

]

(2nn!b)1/2
×

exp

[

i
m
2h̄

(

ḃ
b
+

iω0

b2

)

x2
]

Hn

[

(mω0

h̄

)1/2 x
b

]

, (7)

whereHn is the Hermite polynomial of degreen, and becomes
eventually thenth eigenstate of the final trap att = T , up to
a global phase factor (independent of the spatial coordinate).
The instantaneous average energyEn(t) = 〈Ψn|H(t)|Ψn〉 for
the nth expanding mode is

En(t) =
(2n+1)h̄

4ω0

[

ḃ2+ω2(t)b2+
ω2

0

b2

]

, (8)

and the time-averaged energy is

En =
1
T

∫ T

0
En(t)dt. (9)

If we substitute (8) in (9) and use the boundary conditions for
b, we obtain

En =
(2n+1)h̄

2ω0T

∫ T

0

(

ḃ2+
ω2

0

b2

)

dt. (10)

We would like to findω(t) satisfying the Ermakov equation
(4) and the corresponding boundary conditions (5) and (6),
i.e., the sufficient conditions for frictionless cooling (3), while
minimizing the time-averaged energy (10), for fixed final time
T . If we set

x1 = b, x2 =
ḃ

ω0
, u(t) =

ω2(t)

ω2
0

, (11)

and rescale time according totnew= ω0told, we obtain the
following system of first order differential equations

ẋ1 = x2, (12)

ẋ2 =−ux1+
1

x3
1

, (13)

equivalent to the Ermakov equation (4), and

En =
(2n+1)h̄ω0

T
J, (14)

where

J =
1
2

∫ T

0

(

x2
2+

1

x2
1

)

dt. (15)

The corresponding optimal control problem is: Given the
system (12), (13), with initial condition(x1(0),x2(0)) = (1,0)
and final condition(x1(T ),x2(T )) = (γ,0), find the control
u(t),0 ≤ t ≤ T , T fixed, with u(0) = 1,u(T ) = 1/γ4, that
minimizes the costJ given in (15). The boundary conditions

on the state variables(x1,x2) are equivalent to those forb
and ḃ, while the boundary conditions on the control variable
u lead to the corresponding conditions forb̈. Note that the
possibility ω2(t)< 0 (expulsive parabolic potential) for some
time intervals is permitted [5]. Also, for fixed final timeT , the
minimization of costJ corresponds to minimizing the time-
averaged energy (14).

If we omit the boundary conditions onu(t) and solve the
corresponding problem, the minimum cost that we find is a
lower bound of the minimum cost for the full problem, where
these conditions are on. In the following we solve the relaxed
problem, while the study of the full case will be the subject
of a subsequent publication.

Problem 1: Given the system (12), (13) with initial condi-
tion (x1(0),x2(0))= (1,0) and final condition(x1(T ),x2(T ))=
(γ,0),γ > 1, find the controlu(t),0 ≤ t ≤ T , T fixed, that
minimizes the costJ given in (15).

III. SINGULAR SOLUTION

The control Hamiltonian is given by

Hc = λ0
1
2

(

x2
2+

1

x2
1

)

+λ1x2+λ2

(

−ux1+
1

x3
1

)

, (16)

where, according to Maximum Principle [15],λ0 ≤ 0 is a
constant and the adjoint variables satisfy the equations

λ̇1 =−∂Hc

∂x1
= λ0

1

x3
1

+λ2

(

u+
3

x4
1

)

, (17)

λ̇2 =−∂Hc

∂x2
=−λ0x2−λ1. (18)

Observe thatHc is linear in u. The switching function is
Φ =−λ2 (note thatx1 > 0 due to the repulsive force 1/x3

1 at
x1 = 0). Singular arcs are encountered whenλ2 = 0 for some
finite time interval. Note that if alsoλ0 = 0 then from (18) it is
λ1 = 0, which is forbidden since Maximum Principle requires
(λ0,λ1,λ2) 6= 0 [15]. Soλ0 6= 0 on a singular arc and we set
λ0 =−1. Forλ2 = 0, (17), (18) reduce tȯλ1 =−1/x3

1,λ1 = x2,
respectively. Settingλ1 = x2 in (16) we obtain

Hc =
1
2

(

x2
2−

1

x2
1

)

. (19)

Since the system (12), (13) is autonomous, the control Hamil-
tonian is constant. The equation

x2
2−

1

x2
1

= c (20)

represents a one-parameter family of singular arcs in state
space. Combining the adjoint equations we find ˙x2 = −1/x3

1,
and using this in (13) we obtain the expression for the control
on the singular arc

us =
2

x4
1

(21)



A. Unbounded Control

When the control is unbounded, the state can be shifted
along the lines of constantx1 instantaneously by the use of
Dirac impulses inu. Such controls have no effect on the
performance indexJ directly, sinceu(t) does not enter the
cost function. A typical extremal solution involves an initial
impulse to move the state to the singular arc (att = 0+), then
motion along the singular arc until the linex1 = γ is reached,
then another impulse to move the state to the target point
(γ,0). The fact that the state must arrive at the target point at
t = T determines the constantc in (20), which picks out the
particular singular arc in the one-parameter family of possible
arcs. Using (12) and (20), one can find the time evolution of
x1 along the singular arc

x1(t) =

√

(B2−T 2)
( t

T

)2
+2B

( t
T

)

+1, (22)

where B =
√

γ2+T 2 − 1, in agreement with the result ob-
tained in [8] using the Euler-Lagrange equation. The constant
defining the singular arc in (20) isc = (B/T )2−1. The initial
impulse moving the state to the singular arc is negative. Now

x2(T
−) = ẋ1(T ) =

γ2−
√

γ2+T 2

γT
, (23)

so x2(T−) > 0 for T < γ
√

γ2−1 and x2(T−) < 0 for T >
γ
√

γ2−1. The final impulse that drives the state tox2(T+) = 0
is positive in the first case and negative in the second.
Characteristic trajectories in state space for these two cases
are plotted in Figs. 1 and 2, respectively. It can be easily
shown thatdc/dT < 0 for T < γ

√

γ2−1 anddc/dT > 0 for
T > γ

√

γ2−1. The corresponding minimum value iscmin =
−1/γ2 andc ∈ [−1/γ2,∞), with c → ∞ for T → 0 andc → 0
for T → ∞. Note that as the final timeT varies, the minimum
cost J is obtained whenHc = 0 ⇒ c = 0 ⇒ T = (γ2− 1)/2.
This case is equivalent to finding the minimumJ with the
final time T free. Returning to the fixed time case, we are
interested in the time-averaged energyE = 2J/T , in units of
(n+1/2)h̄ω0, which is given by the following expression

E =
1

T 2

[

γ2+1−2
√

γ2+T 2+2T ln

(

T +
√

γ2+T2

γ

)]

(24)
and is plotted versusT in Fig. 3. It is shown in Appendix A
that dE/dT < 0, so the time-averaged energy is a decreasing
function of the final timeT .

There is an alternative way to obtain the above results and
the optimality of the singular solution. The idea is to define
a “dual” time-optimal problem and use the results regarding
singular trajectories of such problems [16]. With this in mind,
we augment the system (12), (13) with a state variablex3

satisfying the differential equation

ẋ3 = x2
2+

1

x2
1

−E (25)

and the boundary conditionsx3(0) = x3(T ) = 0, whereE > 0
is fixed. We now seek a control that drives the state of the
augmented system fromx(0) = (1,0,0) to x(0) = (γ,0,0),γ >
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Fig. 1. Singular trajectories for various values of the finaltime T when
γ = 10 and the control is unbounded. The trajectories characterized by the
constant values of the control Hamiltonianc = 0, c =−1/γ2, correspond to
T = (γ2−1)/2, T = γ

√

γ2−1, respectively. The initial impulse, driving the
starting state(1,0) to the singular arc is negative, while the final impulse,
driving the state from the singular arc to the target point(γ ,0), is positive.
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1

x
1
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c=−1/γ2

c=0
T=300

Fig. 2. Singular trajectory forT > γ
√

γ2−1. Note that final impulse is
negative.

1, in minimum timeT . Observe that the extra state is defined
such that the equality

1
T

∫ T

0

(

x2
2+

1

x2
1

)

dt = E (26)

holds, in other words the time-averaged energy is now fixed
while the final time is free. The corresponding affine control
system is ˙x = f (x)+ ug(x), where the vector fieldsf ,g are

f = (x2,
1

x3
1

,x2
2+

1

x2
1

−E)T , g = (0,−x1,0)
T .

The next step is to calculate the following determinants

D = det(g, [ f ,g], [g, [ f ,g]]) =−2x4
1,

D′ = det(g, [ f ,g], [ f , [ f ,g]]) = 4,

D′′ = det(g, [ f ,g], f ) = 1− x2
1(E + x2

2),

where the Lie-bracket is[ f ,g] = (∂g/∂x) f − (∂ f/∂x)g. The
singular control for the augmented time-optimal problem is
given byus =−D′/D = 2/x4

1 [16], and is the same as in (21).
As a consequence, the projection of the singular arc on the
x1x2-plane is given by (20) andT is determined implicitly
by (24), sinceE is fixed. We now show that this solution
corresponds to a minimum. We first show that the singular
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Fig. 3. Time-averaged energyE, in units of (n+ 1/2)h̄ω0, plotted as a
function of the final timeT , for γ = 10 and unbounded control. Note that
dE/dT < 0.

arc is hyperbolic. The criterion for this is [16]

DD′′ > 0⇔ E + x2
2−

1

x2
1

= E + c > 0. (27)

Using (24) and the expression forc given above we find
E + c = 2 f (T )/T 2, where the functionf (T ) > 0 is given in
Appendix A. So the singular arc is hyperbolic. In this case,
we know that it corresponds to the minimum time solution,
up to the first conjugate timet1c [16]. In order to find t1c

we introduce the vector fieldS = f + usg, that generates the
singular trajectory, and the Jacobi fieldV , which is the solution
of the variational equation

δ̇x =
∂S
∂x

δx,

with the initial conditionδx(0) = g(0) = (0,−1,0)T . The first
conjugate time is the first time such that the fieldsV,g are
collinear, i.e.,V (t1c) ‖ (0,1,0)T . The first two equations of the
variational system are

˙δx1 = δx2,

˙δx2 =
3

x4
1

δx1,

with the initial conditionsδx1(0) = 0,δx2(0) = −1. It is not
hard to see thatδx1(t)< 0 for t > 0, soV cannot be aligned
with g and there is no conjugate point. As a result, the singular
solution is time-optimal for the augmented system with fixed
time-averaged energy. This elucidates the conjugate relation
between energy and time.

B. Bounded Control

In practice there are limits on the control amplitude that set
a tighter lower bound on the transfer time. To fix ideas, we
consider the case|u| ≤ 1 for the two-dimensional system (12),
(13). We have shown in our previous work [7] that in this
case the minimum necessary time to transfer the initial state
(1,0) to the target state(γ,0),γ > 1, is obtained following the
bang-bang strategy

u(t) =

{

−1, t < T1

1, T1 < t ≤ T1+T2
. (28)

2 4 6 8 10
0

2

4

6

x
1

x 2

T=T
min

T=5

T=10
c=0

T=4

Fig. 4. Trajectories corresponding to the (bounded) control policy (35), for
various values of the final timeT ≥ Tmin and γ = 10.

From (12), (13) we find the trajectory fort < T1

x2
2− x2

1+
1

x2
1

= 0, (29)

and the trajectory forT1 < t ≤ T1+T2

x2
2+ x2

1+
1

x2
1

= γ2+
1
γ2 . (30)

The x1 coordinate of their common point att = T1 is

x1(T1) =

√

γ4+1
2γ2 (31)

Integrating (12), (13) from the initial point up to the common
point, for durationt = T1 andu =−1, we find

x1(T1) =
√

cosh(2T1). (32)

Integrating (12), (13) from the final point back to the common
point, for durationt = T2 andu = 1, we find

x1(T1) =

√

1
2

(

γ2+
1
γ2

)

+
1
2

(

γ2− 1
γ2

)

cos(2T2) (33)

From (31), (32) and (33) we obtain

Tmin = T1+T2 =
1
2

cosh−1
(

γ4+1
2γ2

)

+
π
4

(34)

We see that in the presence of control bounds, problem 1 is
meaningful for final timesT ≥ Tmin. For simplicity, we will
restrict the rest of the discussion to the bang-singular-bang
case

u(t) =







−1, t < T ′
1

2/x4
1, T ′

1 < t ≤ T ′
1 +T ′

2
1, T ′

1 +T ′
2 < t ≤ T ′

1 +T ′
2 +T ′

3

. (35)

Under this control policy, the initial and final arcs (29) and
(30) are joined by a singular arc (20), as it is depicted in Fig.
4. We expect that at least for the most interesting case, where
T is close toTmin, the pulse sequence (35) is the optimal one.
Note that the joint point forT = Tmin lies above the singular
arcx2 = 1/x1 corresponding toc= 0, as shown in Fig. 4, when
γ8− 6γ4+ 1> 0 ⇒ γ >

4
√

3+2
√

2 ≈ 1.554. Throughout the
text we use the valueγ = 10.
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Fig. 5. Time-averaged energy corresponding to the (bounded) control policy
(35), as a function of the final timeT ≥ Tmin, for γ = 10 (dashed line). The
corresponding energy for the case of unbounded control and the same target
point is also plotted (solid line).

Using (29), (20) we find for the first junction point

x1(T
′
1) =

√

c+
√

c2+8
2

, (36)

while from (30), (20) we find for the second junction point

x1(T
′
1 +T ′

2) =

√

−cγ2+ γ4+1+
√

(cγ2− γ4−1)2−8γ4

2γ2 ,

(37)
If we limit our analysis to the cases where the constant deter-
mining the singular arc satisfiesc > 0, which also correspond
to shorter transfer times, then

us(t) =
2

x4
1(t)

≤ 2

x4
1(T

′
1)

=
8

(c+
√

c2+8)2
< 1, (38)

so the control remains within the allowed bounds along the
singular arc. By integrating the equations of motion we obtain
the time spent on each arc

T ′
1(c) =

1
2

cosh−1 x2
1(T

′
1), (39)

T ′
2(c) =

x2
1(T

′
1 +T ′

2)− x2
1(T

′
1)

√

1+ cx2
1(T

′
1 +T ′

2)+
√

1+ cx2
1(T

′
1)
, (40)

T ′
3(c) =

1
2

cos−1
(

2γ2x2
1(T

′
1 +T ′

2)− γ4−1
γ4−1

)

. (41)

The constantc which determines the singular arc can be found
from the transcendental equation

T ′
1(c)+T ′

2(c)+T ′
3(c) = T. (42)

Having determinedc, we can calculate the time-averaged en-
ergy corresponding to the control sequence (35) for a specific
final time. The result is plotted in Fig. 5, along with the time-
averaged energy that derived previously for the unbounded
control case. As expected, when the control is bounded, a
larger amount of energy is necessary to achieve the same
transfer for times close toTmin. Equivalently, for a fixed level
of time-averaged energy, a longer time is needed to reach the
same target point.

IV. CONCLUSION AND FUTURE WORK

In this paper we examined from a control-theoretic view-
point the frictionless cooling of atoms trapped in a harmonic
potential, while minimizing the transient energy of the system,
a problem that was first considered in [8]. We showed that
the transient energy is minimized by a singular control. We
also showed that this singular control is the time-minimal
solution for a “dual” problem, where the energy is held fixed,
highlighting the conjugate relation between transient energy
and minimum time. In addition, we examined briefly how the
solution is modified when there are bounds on the control.

Possible future work could include the detailed examination
of the bounded control case, that was only slightly touched
here, as well as the incorporation in the analysis of additional
restrictions on the controls reflecting experimental limitations
[17]. The complexity of the resulting optimal control prob-
lems, which may increase the difficulty of the analytical study,
can be overcome by using a powerful state of the art numerical
optimization method based on pseudospectral approximations
[18], [19].

The results presented here can be immediately extended to
the frictionless cooling of a two-dimensional Bose-Einstein
condensate confined in a parabolic trapping potential [20],
[21]. The above techniques are not restricted to atom cooling
but are applicable to areas as diverse as adiabatic quantum
computing [3] and finite time thermodynamic processes [4].
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APPENDIX A

We show thatdE/dT < 0. From (24) we obtaindE/dT =
−2 f (T )/T 3, where

f (T ) = γ2+1−2
√

γ2+T 2+T ln
T +

√

γ2+T2

γ
. (43)

It is f (0) = (γ −1)2 > 0 andd f/dT = g(T ), where

g(T ) = ln
T +

√

γ2+T 2

γ
− T
√

γ2+T2
. (44)

It is g(0) = 0 and

dg
dT

= T 2(γ2+T 2)−3/2 ≥ 0. (45)

So g(T )≥ 0⇒ f (T )> 0⇒ dEn/dT < 0.
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