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The Role of Singular Control in Frictionless Atom Cooling in a
Harmonic Trapping Potential

Dionisis Stefanatos and Jr-Shin Li

Abstract—In this article we study the frictionless cooling of ~for higher energies, large transient energies imply pbitgr
atoms trapped in a harmonic potential, while minimizing the effects of anharmonicities and thus undesired excitatiains
transient energy of the system. We show that in the case of jhg fing| state. The problem of minimizing the transient

unbounded control, this goal is achieved by a singular contl, . . . L
which is also the time-minimal solution for a “dual” problem. €Nergy for a fixed transfer time and with unlimited controls

where the energy is held fixed. In addition, we examine briefly Was considered in_[8], and an interesting conjugate refatio
how the solution is modified when there are bounds on the between these two quantities was revealed.

control. The results presented here have a broad range of |n the present article we examine this problem from a
applications, from the cooling of a Bose-Einstein conden$& ., 0| theoretic point of view. We show that the transient
confined in a harmonic trap to adiabatic quantum computing . L .
and finite time thermodynamic processes. energy is m|n|m|zed.by a s!ngular gontrol. W_e also show that
this singular control is the time-minimal solution for a ‘@l
problem, where the energy is held fixed, elucidating thus
. INTRODUCTION the conjugate relation between transient energy and mimimu

Frictionless atom cooling in a harmonic trapping potenti:&ilme- Finally, we examine briefly how the solution is modified

is defined as the problem of changing the harmonic frequentdfen there are bounds on the control. The results presented
of the trap to some lower final value, while keeping thBére come to meet several examples of singular solutions for

populations of the initial and final levels invariant, thuithw ©Ptimal control problems on spin systems existing in Quantu
out generating friction and heating. Achieving this goal iFontrol literature([8], [10], [[11],[[12].
minimum time has many important potential applications. Fo
example, it can be used to reach extremely low temperaturels, FORMULATION OF THE PROBLEM IN TERMS
inaccessible by standard cooling techniqués [1], to redinee OF OPTIMAL CONTROL
velocity dispersion and collisional shifts for spectrgsg@nd
atomic clocks|[2], and in adiabatic quantum computatidn [3]
It is also closely related to the problem of moving in minimu . o . .
time a system between two thermal states, as for examplevﬁ{y'ng frequencyw(t) is given by the Schrodinger equation
the transition from graphite to diamond [4]. ;, R 92  mo?(t
The quest for optimal controls that minimize the neces- 'ﬁa—f =H{t)y = Tomad 2( )Xz g, (1)
sary time for the cooling process has an interesting history
It was initially proved that minimum transfer time can bavhereH(t) is the Hamiltonian operator of the system,is
achieved with bang-bang real frequency controls [4]. Latdhe particle mass andl is Planck’s constant. Consider the
it was shown that when the restriction for real frequencées time evolution with initial frequencyw(0) = ap att =0
relaxed, allowing the trap to become an expulsive parabo#iad final frequencyw(T) = wr < ap at the final timeT.
potential at some time intervals, shorter transfer timestma This corresponds to a temperature reduction (cooling) by a
obtained [[5]. Based on these previous works, we formulatéftor wr /ay. Frictionless cooling corresponds to a pait)
frictionless atom cooling as a minimum-time optimal cohtrdoetween these two values so that the populations of all the
problem, permitting the frequency to take real and imagina@scillator levelsn=0,1,2,... att =T are equal to the ones
values in specified ranges|[6]. We showed that the optinglit = 0. More explicitly, if
solution has again a bang-bang form and used this fact to ® ®
obtain estimates of the minimum transfer times for variougp(0,x) = Z)cn(O)qJn‘*h(x), Y(T,x)= Z)cn(T)LPﬁ’T (x), (2)
numbers of switchings [6]. We subsequently fully solved the n= n=
cor_responding ti_me-optimal control problem and obtairtesl twherellJ‘n*b(x),LlJ‘n*’r (x)
optimal synthesis [7]. H
Recently, it was pointed out that the energy “cost” of thg,
cooling process, more precisely the transient excitatiergy,
can impose limits to the possible speed-up [8]. For example,

for a trap which is harmonic near the ground state, but nott yas shown in[[5], using the Lewis-Riesenfeld invariant
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The evolution of the wavefunctiony(t,x) of a particle
a one-dimensional parabolic trapping potential witheim

are the eigenfunctions of the operators
(0),H(T), respectively, then frictionless cooling corresponds

lca(0))? =|en(T)2, n=0,1,2,... ©)

b+ w?(t)b = g, (4)
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with boundary conditions on the state variablegx;,x;) are equivalent to those fdo
. . andb, while the boundary conditions on the control variable
b(0)=1, b(0)=0, t.).(O) =0, ) | lead to the corresponding conditions for Note that the
b(T)=y, b(T)=0, b(T)=0, (6) possibility w?(t) < O (expulsive parabolic potential) for some
time intervals is permitted [5]. Also, for fixed final tinTe, the

andy =/ 1. Hereb(t) is a scaling dimensionless™ .~ """ . o .
y o/ cr > (®) 9 minimization of costJ corresponds to minimizing the time-

function describing the expansion of the wavefunction migiri

the cooling process. When the above conditions are satisfigﬁeraged epergﬂlM). "
the nth eigenstate of the initial oscillator at= 0 evolves | We omit the boundary conditions omt) and solve the
following the “expanding mode” corresponding problem, the minimum cost that we find is a

lower bound of the minimum cost for the full problem, where

exp|—i (n+3) [tdt' - these conditions are on. In the following we solve the redaxe
Wy(t,x) = M \ 1/4 p[ ( ) Jo bo(t )} problem, while the study of the full case will be the subject
e h nib)L/2 e
(2'nlb) of a subsequent publication.

exp im E’Jr@ 2 |H (@)1/25 ) Problem 1. Given the systen (12)[_(1.3) with initial condi-
2Ai\b b2 n b|’ tion (x1(0),%2(0)) = (1,0) and final condition(xy(T),%2(T)) =

h
whereHh, is the Hermite polynomial of degree and becomes (¥:0):¥ > 1, find the controlu(t),0 <t <T, T fixed, that
minimizes the cosf given in [15).

eventually thenth eigenstate of the final trap &= T, up to
a global phase factor (independent of the spatial cooreljnat
The instantaneous average enekgyt) = (Wy|H(t)|Wn) for

the nth expanding mode is I1l. SINGULAR SOLUTION

Ent) = (Zrlll-bl)ﬁ {b2+ PP+ %} ’ (®) The control Hamiltonian is given by
1 1 1
and the time-averaged energy is He =203 (X§+ F) +A1X2+ Az (—UX1+ ;) . (16)
1 1
_ 1 /T
En= T/o En(t)dt. ©) where, according to Maximum Principle 1500 < 0 is a
If we substitute[{B) in[{9) and use the boundary conditioms sgonstant and the adjoint variables satisfy the equations
b, we obtain
! P 0Hc 1 3
T /. /\12——2/\0—+A2<U+—), (17)
E.= M/ S APY (10) ox N Xi
200T b? : IHc
Apg=———=—AgXp — A1. 18
We would like to findew(t) satisfying the Ermakov equation 2 ox2 02—/ (18)

(@) and the corresponding boundary conditionls (5) dand (6), o _ o o
i.e., the sufficient conditions for frictionless coolirig(&hile ~ Observe thatc is linear inu. The switching functlgn is
minimizing the time-averaged enerdy110), for fixed finaleim® = —Az (note thatx; > 0 due to the repulsive force/; at

T. If we set x1 = 0). Singular arcs are encountered when= 0 for some
b (1) finite time interval. Note that if als@g = 0 then from[IB) it is
x1=Db, X=-—, ult)=—3", (11) A1 =0, which is forbidden since Maximum Principle requires
o Wy (A0,A1,A2) # 0 [15]. SoAp # 0 on a singular arc and we set
and rescale time according taew= (otg)g, We obtain the Ao=—1.ForA; =0, (I7), [I8) reduce td; = —1/x3,A1 =%,
following system of first order differential equations respectively. Setting; = x in (I8) we obtain
X1 = Xo, 12
.1 2 . (12) Hc—%(@—%). (19)
%o = —Wa+ —, (13) X1
1

Since the systenl_(12), (IL3) is autonomous, the control Hamil

equivalent to the Ermakov equatidd (4), and tonian is constant, The equation

—  (2n+1)h
E,= M37 (14) 1
T X—=c¢ (20)
where X1
1= M e+ 2)d 15
- 2/0 X2+X_% t. (15) represents a one-parameter family of singular arcs in state

space. Combining the adjoint equations we fiad="—1/x,
&nd using this in[{113) we obtain the expression for the cdntro
on the singular arc

The corresponding optimal control problem is: Given th
system [(IP),[(T3), with initial conditiofx; (0),x,(0)) = (1,0)
and final condition(x1(T),x(T)) = (y,0), find the control
ut),0 <t < T, T fixed, with u(0) = 1,u(T) = 1/y*, that Us =
minimizes the cosf given in [I%). The boundary conditions

(21)

RSN



A. Unbounded Control

When the control is unbounded, the state can be shifted
along the lines of constang instantaneously by the use of
Dirac impulses inu. Such controls have no effect on the
performance index directly, sinceu(t) does not enter the
cost function. A typical extremal solution involves an iait
impulse to move the state to the singular arct(at0"), then
motion along the singular arc until the ling = y is reached,
then another impulse to move the state to the target point
(y,0). The fact that the state must arrive at the target point at
t =T determines the constantin (20), which picks out the

particular singular arc in the one-parameter family of aes
Singular trajectorles for various values of the fitimle T when

arcs. Usmg @2) anmo) one can find the time evolution 98 10 and the control is unbounded. The trajectories chaiaeteby the

x; along the singular arc constant values of the control Hamiltonian= 0, c = —1/y?, correspond to
=(y2-1)/2, T = y\/y?2—1, respectively. The initial impulse, driving the

starting state(1,0) to the singular arc is negative, while the final impulse,

t\2 t
Xl(t) = \/(BZ - TZ) (f) +2B (T) +1, (22) driving the state from the singular arc to the target pgin®), is positive.

where B = /y2+T2 -1, in agreement with the result ob-

. ; . . 1
tained in [8] using the Euler-Lagrange equation. The canista
defining the singular arc ifi.{20) s= (B/T)?— 1. The initial 0.8
impulse moving the state to the singular arc is negative. Now 06
_ 24 T2 ~ .

Xo(T7) = 3%¢(T) = Y- VyPHT? Vy¥+ (23) < 0.4
s0X(T7) >0 for T <yy/y?—1 andx(T) <0 for T > 02 o1/ 0] 1300
yy/ Y2 — 1. The final impulse that drives the statet¢T ) =0 0
is positive in the first case and negative in the second. 5 4 6 8 10 12 14
Characteristic trajectories in state space for these tveesa X

are plotted in Figs[]1 and] 2, respectively. It can be easily

shown thatdc/dT <0 for T <y /y2_ 1 anddc/dT > 0 for Fig. 2. Singular trajectory foff > y4/y?—1. Note that final impulse is
T > yy/y?— 1. The corresponding minimum value g, = negative.

—1/y? andc € [-1/y?,»), with c — o for T — 0 andc — 0
for T — c. Note that as the final tim& varies, the minimum
costJ is obtained wherH, =0=c=0=T = (y* - 1)/2.
This case is equivalent to finding the minimuinwith the
final time T free. Returning to the fixed time case, we are 1 /77, 1
interested in the time-averaged enefgy= 2J/T, in units of ?/ <X2+ _>
(n+1/2)hay, which is given by the following expression

1, in minimum timeT. Observe that the extra state is defined
such that the equality

=E (26)
holds, in other words the time-averaged energy is now fixed

T4y +T2 while the final time is free. The corresponding affine control
_2./\2LT2
V' +1-2V/y2+T2+2TIn < y system isx= f(x) 4+ ug(x), where the vector field$,g are

4)
and is plotted versu$ in Fig.[3. It is shown in AppendikA f = (%, 13,X2+ 12 E)", g=(0,—x;,0)".
thatdE/dT < 0, so the time-averaged energy is a decreasing &t X
function of the final timeT. The next step is to calculate the following determinants
There is an alternative way to obtain the above results and
the optimality of the singular solution. The idea is to define D =det(g,[f.g],[g.[f.g]]) = —24,
a “dual” time-optimal problem and use the results regarding D' =defq,[f.q],[f,[f,g]]) =4,
singular trajectories of such problems|[16]. With this imuhi "__
we augment the systeri {12], [13) with a state variable D" =det(g,[f.g]. f) = 1-X{(E +3).
satisfying the differential equation where the Lie-bracket i$f,g] = (9g/9x)f — (9 /dx)g. The
. , 1 _ singular control for the augmented time-optimal problem is
X3 =X;+ 2 E (25) given byus=—D’/D = 2/x! [16], and is the same as iR {21).

As a consequence, the projection of the singular arc on the
and the boundary conditiong(0) = x3(T) = 0, whereE > 0 x;x-plane is given by[(20) and is determined implicitly
is fixed. We now seek a control that drives the state of thwy (24), sinceE is fixed. We now show that this solution
augmented system frow{0) = (1,0,0) to x(0) = (y,0,0),y> corresponds to a minimum. We first show that the singular
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Fig. 3. Time-averaged enerdy, in units of (n+ 1/2)hwy, plotted as a Fig. 4. Trajectories corresponding to the (bounded) comtodicy (35), for
function of the final timeT, for y = 10 and unbounded control. Note thatvarious values of the final tim& > Ty, andy = 10.
dE/dT < 0.

From , we find the trajectory for< T
arc is hyperbolic. The criterion for this i5 [16] 12). 13) : Y '

1

2 2

_ 1 X5 —X1+— =0, 29

DD”>0<:>E+X§—;:E+C>O. (27) 2T (29)
1

Using [24) and the expression far given above we find

E +c = 2f(T)/T?, where the functionf(T) > 0 is given in X343 + 1_ v+ i (30)

Appendix[A. So the singular arc is hyperbolic. In this case, x§ y2

we know that it corresponds to the minimum t|me_ solutiorppe x1 coordinate of their common point at= Ty is

up to the first conjugate timé. [16]. In order to findtic

we introduce the vector fiel&= f + ugg, that generates the Vi1

singular trajectory, and the Jacobi fi&ldwhich is the solution x1(Tw) = 22 (31)

of the variational equation

and the trajectory fofl; <t <Tp+ T,

Integrating [(12),[(T13) from the initial point up to the commo

OXx = 3_55)(, point, for durationt = T; andu= —1, we find
X
with the initial conditiondx(0) = g(0) = (0,—1,0)". The first X1(To) = \/COSH(2Ty). (32)

conjugate time is the first time such that the fieldg are |ntegrating [IR),[(T8) from the final point back to the common
collinear, i.e.V(t1c) || (0,1,0)T. The first two equations of the point, for durationt = T, andu = 1, we find

variational system are

. 1 1 1 1
5 = % (T = \/ IR e e I
. 3
Oxp = Fiéxl’ From [31), [32) and{33) we obtain
with the initial conditionsdx;(0) = 0,0x2(0) = —1. It is_ not Tnin=Ti+T2= }cosh* (V1+21> + T (34)
hard to see thabx;(t) < 0 fort >0, soV cannot be aligned 2 2y 4

with g an_d there is no conjugate point. As a result, the_sing_;ularwe see that in the presence of control bounds, proBlem 1 is
solution is time-optimal for the augmented system with f'xefﬁeaningful for final timesT > Trin. For simplicity, we will

time-averaged energy. This elucidates the conjugateioelat ostrict the rest of the discussion to the bang-singulagba
between energy and time.

case
-1, t<T
B. Bounded Control ut)=<¢ 2/x4, T/ <t<T/+T, : (35)
In practice there are limits on the control amplitude that se 1, WAL <t<T+T+Ty

a tighter lower bound on the transfer time. To fix ideas, wg

nder this control policy, the initial and final ards {29) and
consider the casil| < 1 for the two-dimensional systerin {12), poicy )

. ) : (30) are joined by a singular arlc (20), as it is depicted in Fig
@3). we hgvg shown in our previous work [7] th‘?‘t_ n thi . We expect that at least for the most interesting case,aevher
case the minimum necessary tlm(_e to tra_nsfer the mmabst is close toTi,, the pulse sequendg{35) is the optimal one.
(1,0) to the target statgy,0),y > 1, is obtained following the Note that the joint point foll = T,i,, lies above the singular
bang-bang strategy arcxp = 1/x; corresponding te = 0, as shown in Fid.]4, when

g/ L t<T 28) B —6yA+1>0=y> v/3+2y/2~ 1.554. Throughout the
ut) = 1, M<t<Ti+T° text we use the valug= 10.



14 IV. CONCLUSION AND FUTURE WORK

12 In this paper we examined from a control-theoretic view-
| point the frictionless cooling of atoms trapped in a harraoni
potential, while minimizing the transient energy of theteys,
a problem that was first considered [n [8]. We showed that
the transient energy is minimized by a singular control. We
also showed that this singular control is the time-minimal
solution for a “dual” problem, where the energy is held fixed,
highlighting the conjugate relation between transientrgne
5 10 15 20 and minimum time. In addition, we examined briefly how the
Time solution is modified when there are bounds on the control.
S § ding o the (boyrctatrol pol Possible future work could include the detailed examimatio
d%), s al?LiSt\i/c?r:agftheer;ﬁrgﬁltﬁégs%z?n,mfgr(y)/:io (?iashedrﬁngf e of the bounded control case, that was only slightly touched
corresponding energy for the case of unbounded control rmdame target here, as well as the incorporation in the analysis of adutitio
point is also plotted (solid line). restrictions on the controls reflecting experimental latians
[17]. The complexity of the resulting optimal control prob-
lems, which may increase the difficulty of the analyticaldstu

104

Energy

o N DD OO

Using [29), [20) we find for the first junction point can be overcome by using a powerful state of the art numerical
optimization method based on pseudospectral approxinmstio
%o (T!) = c+vc?+8 (36) [18], [19].
1 2 ’ The results presented here can be immediately extended to

the frictionless cooling of a two-dimensional Bose-Eiirste

condensate confined in a parabolic trapping potential [20],
[21]. The above techniques are not restricted to atom cgolin

xa(TL+T4) = \/—CV2+ yit+1+ \/(CVZ_V4_1)2_8V47 but are applicable to areas as diverse as adiabatic quantum

2y? 37) computing [3] and finite time thermodynamic processes [4].

If we limit our analysis to the cases where the constant deter V. ACKNOWLEDGMENTS
mining the singular arc satisfies> 0, which also correspond
to shorter transfer times, then

2 2 8
t - < =
Us(t) A0 XM (crVZ<s) APPENDIXA
so the control remains within the allowed bounds along theWe shov3v thatlE/dT < 0. From [2#) we obtainlE/dT =
) ; . : ; > —2f(T)/T°, where
singular arc. By integrating the equations of motion we imbta

while from (30), [20) we find for the second junction point

The authors would like to thank Profs. J. G. Muga and H.
Schaettler for valuable comments.

- <1, (38)

the ti t h 2+ T2
e time spent on each arc f(T):y2+1—2\/m+TlnT+ ;//—i—T @3
/ _ } 121/
Ti(c) = ZCOSh xa(T1), B9 i f(0) = (y—1)? >0 anddf/dT =g(T), where
2(T/ N _ 2 (T/
TZI(C) — Xl(T1+T2) Xl(Tl) , (40) T) i T+ /y2+T2 3 T (44)
V1T (T 1)+ 1+ 0é(T)) a(T) = % Nl
2 .
T3/(C) — }C0571 2y2X1(T]{ +T2/) B V4_ 1 ) (41) Itis g(O) =0 and
2 yi-1 dg 2\-3/2
— =T T9)¥/<>0. 45
The constant which determines the singular arc can be found dT (y2+ ) - (43)
from the transcendental equation Sog(T) > 0= f(T) > 0= dE,/dT <O.
T{(c)+T2(c) + T5(c) = T. (42) REFERENCES
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