
Proceedings of the  American Control Conference 
Arlington, VA June 25-27, 2001 

On the analysis of uncertain hybrid systems with estimated-state 
feedback 

Kiriakos Kiriakidis Bradley E. Bishop 
Systems Engineering 

United States Naval Academy 
118 Maryland Avenue (Stop 14a) 

Annapolis, MD 21402 
kiri&idC!nadn.navy.mil 

Abstract 

In this paper we present an analysis technique for hy- 

brid linear systems using observers for state feedback 

control. We present a stability proof for such systems 

under sector bounded dynamic uncertainties, and dis- 

cuss the implications of observer feedback for hybrid 

systems. 

1 Introduction 

Control techniques relying on logic-based switching 

have a long-standing history, from classical variable 

structure control [I, 2) to recent approaches to adap- 

tive control [3,4]. Each of these techniques is limited in 

some way to a class of hybrid systems: it is well-known 

that there exists no universal analytic technique for 

control synthesis in arbitrary hybrid systems. In fact, 

even stability analysis is nontrivial for these systems [5],  

and can prove to be analytically intractable [6]. We will 

thus limit our domain of investigation to the field of lin- 

ear hybrid systems. Such systems are made up of M 

subsystems Ci, given by: 

where the state is x E R", ui E R" is the control for 

the subsystem (which may be zero) and p is an uncer- 

tainty term including effects of parametric uncertain- 

ties and unmodeled dynamics. The current subsyct-m 
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dynamics Ci determine the vector field for the state x 

at each time instant. We assume that, while-switch- 

ing is either controlled or implicit, it is state-based 

(as opposed to the time-based methods of some earlier 

work [7]). The switching arbiter can be modeled as a 

secondary discrete system with state n, where the dy- 

namics of the overall system are given by (Ai,  Bi) when 

n = 2. 

One common method for synthesizing controller 

switching laws in hybrid control literature depends on 

the use of Lyapunov theory. A Lyapunov function is 

generated for each subsystem of t h e  hybrid system, 

from which a variety of switching methods can be de- 

veloped [8,9]. A common technique when using Lya- 

punov functions for hybrid systems is to rely on spe- 

cialized classes of such functions that admit analytic 

techniques (see, e.g., [lo, 111). A promising approach 

relies on piecewise-quadratic Lyapunov functions [12], 

although existing results focus on stability of such sys- 

tems under perfect state feedback, which is never the 

case in reality. 

In a hybrid system whose switching surfaces are state- 

based, the lack of perfect state feedback (and other un- 

certainties) requires careful consideration, as the sys- 

tem dynamics and the estimates thereof may switch 

(according to the state-based switching surfaces) at 

different times. Under feedback control, errors in state 
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estimates could therefore result in a controller designed 

for subsystem Ci begin implemented when the actual 

system dynamics are given by some other E,, with po- 

tentially destabilizing effects. To address these con- 

cerns, we will focus our attention on stability analysis 

for linear hybrid systems using state feedback control 

and observers. We will utilize generalized Lyapunov 

functions as a basis for our initial investigations. 

The paper is organized as follows. A complete prob- 

lem formulation is offered in Section 2, followed by our 

main stability results in Section 3. A discussion of the 

implications of these results in hybrid control synthesis 

is given in Section 4. 

2 Problem Statement 

In this article, we address the stabilization of plants 

modeled as hybrid systems. Moreover, we consider 

two challenging issues associated with the above prob- 

lem. First, we take into account the possibility that 

the switching hypersurfaces are uncertain by including 

a modeling error term, p, in the continuous state equa- 

tions as follows: 

where pTp<p2xTx. Second, when the state vector is 

unavailable for feedback, we employ the following hy- 

brid system in the feedback path: 

whose discrete state i is synchronous with the one of 

the model (2). 

3 Main Result 

Let us consider the composite system 

+[:I 
which, for simplicity, we write as follows 

where FT$<fi2ZT5, fi  2 p. In the sequel, we analyze 

the stability of the composite hybrid system (4) us- 

ing the following concept of the generalized Lyapunov 

function [13]. 

Definition 1 A continuous function V is a global gen- 

eralized Lyapunov function, iff 

(i) 

(ii) 

(iii) 

V is proper, i.e., the set { w ~ R ~ l V ( w ) ~ a }  is com- 

pact for each a > 0 

V is positive definite, i.e., V(0) = 0 and V(w) > 
0 for each w E RL\{O} 

For each w E R'\{O}, there exists some time 0 > 
0 such that, along the trajectory ( ( t ) ,  where ((0) 

= w, 

V ( l ( t ) )  < V(W), tE(O,d 

Let ZN be the index set { 1, . . ., N }  and consider a col- 

lection { C 2 j } j E ~ N  of closed subsets of RZn such that: 

In the sequel, we refer to such collection as a partition 

of RZn. Let us define s j k  := flj a k  and note that sj, 
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= Bdy 0, 0 Bdy R k ;  thus, s j k  is either a hypersurface 

in R2” or the singleton (0). 

The following lemma applies to the composite hybrid 

system (4). 

Lemma 1 Let {R3)jEzN be a partition of Etzn and 

V : R2” -+ R be a continuous function. V is a 

generalized Lyapunov function for the composite hy- 

brid system (4), if it is continuously differentiable on 

Uz,Int R j  and its restriction to R j ,  : R j  + IR, is 
proper, positive definite, and, for each E E Rj ,  

V ~ ( Z ) . ( & Z  + p )  < 0,  iEZM (5) 

Proof: Clearly, V is both proper and positive defi- 

nite. Furthermore, for each E E Int 0j, jE.Z,, we have 

VV(5)  = Vvj(5) .  Therefore, from ( 5 )  it follows that 

property (iii), in Definition 1, holds for each initial state 

Z E Uj,lInt Rj. The gradient, V V ,  however, is unde- 

fined on the hypersurfaces that form the Bdy Rj ,  i.e., 

S j k ,  ICEIN.  Suppose that E E S j k ,  then <(t) evolves 

inside Q k ,  kE&, or on s j k  before it crosses Bdy R k .  

In the former case, for small T > 0, [(T) E Int R k .  

By continuity of v v k  on Int n k ,  we are able to choose 

U > T small enough so that 

N 

for all t E [T,u]. Therefore, V ( < ( t ) )  < V ( ( ( T ) )  for all t 

E (T,o] .  Moreover, as T + 0, <(T).-+ 5 hence V(<(T)) 

-+ V ( Z ) .  In turn, V(<( t ) )  < V(Z) for all t E ( O , U ] .  

A similar argument applies to the latter case, for [ ( t )  

evolves on Sj, only if 

(the alternative implies that V is discontinuous). 

Consider now a generalized Lyapunov function with 

quadratic restrictions on a certain partition-{Rj)jEZN. 

Lemma 2 Let V be a continuous function and Vj(5) 

._ .- zTp.2 3 ,  p .  3 E ~ 2 n x 2 n  and Pj > 0, its restriction to 

Rj. Suppose, for each 5 E R j  and any @, 

< 0, Z E I M  (6) 
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Then, the composite hybrid system (4) is globally as- 

ymptotically stable (g.a.s.) 

Proof: Using the S-procedure [14], the sufficient 

condition (5) in the hypothesis of Lemma 1 derives 

from (6). 

Hereafter, the candidate generalized Lyapunov func- 

tion, V ,  assumes the following form 

By definition, the candidate function (7) has quadratic 

restrictions on the partition {Rj}jEzN where 

ai = {fEp”IE.Tp.5>-T 3 -2 4 x 7  - - kEZN\{j)} (8)  

Clearly, 0j # {O}Totherwise the corresponding is 

superfluous in the RHs of (7). Moreover, for 5 E s j k  

# {O}, it follows that ZTPj5 = ZT&Z; thus, the can- 

didate function (7) is continuous. It is worth noticing 

that, in general, Pj5 # P k 5  on S j k ;  thus, the candidate 

function is nonsmooth. 

Using the S-procedure, the hypothesis of Lemma 2 

holds if there exist Pj and r i j k  5 0 such that 

. . -  -12n 1 - -  
Arpj + PjAi + P212n - ~ ~ ~ = 1 ~ i j k ( p k  7 pj) Pj 

Pj 
(9) 

[ 
< 0, iEZM 

Let us consider positive definite matrices with the fol- 

lowing structure: 



After manipulation, inequality (9) holds if there exist 

Pj > 0, QT1 > 0, and T;jk > 0 that satisfy the following 

simultaneous inequalities: 

We formally state the above result as follows. 

Theorem 1 Consider the hybrid system (2) and the 

observer-based state feedback (3) or, equivalently, the 

composite hybrid system (4). Suppose there exist Pj 

> 0, &j > 0, j E Z N ,  and Ti jk  2 0, iE&, k E ZN, that 

satisfy the matrix inequalities (10) and (11). Then, 

the composite hybrid system (4) admits (7) as a global 

generalized Lyapunov function; thus, the closed loop 

(2)-(3) is g.a.s. 

The above theorem casts the sufficient condition for 

the stability of the composite hybrid system (4) as an 

optimization problem, namely, an eigenvalue problem 

subject to the bilinear matrix inequalities (10) and (11) 

for the observer and controller design, respectively. Bi- 

linear matrix inequalities have emerged in other areas 

of control theory and a wide range of approaches to 

the solution of the resulting optimization problems is 

available; see [15] and the references therein. 

4 Conclusion 

In summary, we consider hybrid systems with uncer- 

tainty in the switching of the discrete state variable. 

The control objective is to stabilize such systems when 

the continuous state is inaccessible. We propose to 

design the closed loop using an observer-based hybrid 

system in the feedback. In addition, we consider that 

the controller and observer gain matrices switch syn- 

chronously with the discrete state variable of the sys- 

tem in forward path. To assess the stability of such 

design, we follow the approach of piecewise quadratic 

Lyapunov functions, which leads to the formulation of 

the analysis problem as two coupled bilinear matrix in- 

equalities. Characteristic of the proposed method is. 

the independence of the Lyapunov function from the 

partition of the state space of the hybrid system in the 

forward path. As a result, one is able to formulate the 

design and analysis as synthesis step by synchroniz- 

ing the hybrid system in the feedback (i.e., controller 

and observer gain matrices) with the partition that 

the piecewise quadratic Lyapunov function generates 

on‘the state space of the composite hybrid system. A 
detailed treatment of this idea, however, warrants fur- 

ther research. 
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