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Abstract

The universality of the point cloud format enables many
3D applications, making the compression of point clouds a
critical phase in practice. Sampled as discrete 3D points,
a point cloud approximates 2D surface(s) embedded in 3D
with a finite bit-depth. However, the point distribution of a
practical point cloud changes drastically as its bit-depth
increases, requiring different methodologies for effective
consumption/analysis. In this regard, a heterogeneous
point cloud compression (PCC) framework is proposed.
We unify typical point cloud representations—point-based,
voxel-based, and tree-based representations—and their
associated backbones under a learning-based framework
to compress an input point cloud at different bit-depth
levels. Having recognized the importance of voxel-domain
processing, we augment the framework with a proposed
context-aware upsampling for decoding and an enhanced
voxel transformer for feature aggregation. Extensive exper-
imentation demonstrates the state-of-the-art performance
of our proposal on a wide range of point clouds.

1. Introduction
As affordable depth-sensing devices develop, the point
cloud format increasingly attracts interest in the ecosystem
of 3D applications, such as AR/VR, robotics, autonomous
driving, etc. A 3D point cloud describes the surface of an
object or a scene by sampling a set of 3D points. To cater
to real-world usages in representation and analysis, a point
cloud needs to store a huge number of points. For instance,
a 10-bit point cloud frame for AR/VR applications typically
contains over a million of points. There is a practical de-
mand for point cloud compression (PCC) [25] to alleviate
the transmission or storage of point cloud information. In
this work, we particularly focus on the lossy compression
of point cloud geometry.

A point cloud to be compressed has finite precision in-
dicated by its bit-depth, the number of bits needed to de-
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Figure 1. Several 3D point clouds at different bit-depth levels.

scribe the 3D coordinates of its points. For example, a 10-
bit point cloud is a point set confined in a 3D box of size
1024 × 1024 × 1024, where its (x, y, z)-coordinates are
integers ranging between 0 to 210 − 1 = 1023. In other
words, the point cloud coordinates are represented by a 10-
bit binary number, where the first few bits correspond to the
coarse geometry/shape while the last few bits delineate the
fine details established on top of the coarse shape. By re-
moving the last few bits from the coordinates followed by
removing the duplicate points, a point cloud is quantized
to its coarser version. For instance, removing the last 2 bits
from a 10-bit point cloud results in an 8-bit point cloud with
coordinates ranging from 0 to 255. Thus, the compression
of a point cloud means to compress all bits of its points’ co-
ordinates, starting from its coarse representation (first few
bits) to its finer details (last few bits). With every additional
bit that is compressed, the resolution of the whole 3D space
increases by a factor of 2; meanwhile, the precision of the
point cloud also increases by 2 times.

However, it is non-trivial to compress the bits of the
point cloud coordinates. As analyzed by [20, 33], a prac-
tical point cloud has very different point distributions when
it is inspected at different bit-depth levels, as demonstrated
by the examples in Fig. 1. When inspected at the first few
bits, the points are densely distributed in the space. As
bit-depth/granularity increases, distances between the 3D
points gradually increase. At the last few bits represent-
ing the fine details, the 3D points become farther apart from
one another. In other words, the points are sparsely dis-
tributed, as opposed to the distributions at the first few bits.
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Therefore, the varying point distributions request differ-
ent methodologies/strategies to effectively process a point
cloud at different bit-depths.

In this work, we unify the merits of different point cloud
representations—the point-based, the voxel-based, and the
tree-based representations—under one learning-based PCC
framework that we call the PIVOT-Net (PoInt, VOxel and
Tree). It novelly considers the point distributions across
bit-depth levels under the Rate-Distortion (RD) restric-
tion of compression problems. Similar to related works
[20, 24, 30], for the first few bits where the neighboring
points are highly correlated and compressible, a tree-based
method is applied to compress the quantized version loss-
lessly. This lays a faithful foundation for compressing the
remaining bits at a low cost. For the last few bits where
the 3D points are sparsely distributed and less correlated,
we apply a point-based neural network to extract the local
geometric features like in [20].

Different from [20], to compress the middle-range bits,
where neighboring points are still considerably correlated,
a 3D convolutional neural network (CNN) is applied for
processing in the voxel domain. Notably, PIVOT-Net aug-
ments the voxel-domain processing via a proposed context-
aware upsampling for decoding/synthesis and via an en-
hanced voxel transformer for advanced feature aggregation.

The main contributions of the proposed PIVOT-Net in-
clude the following:

(i) We propose the first learning-based PCC framework
unifying the point-based, voxel-based, and tree-based
representations of point clouds to efficiently com-
press different bit-depth levels of a point cloud.

(ii) The voxel-domain processing is augmented by a pro-
posed context-aware upsampling module and an en-
hanced voxel transformer module.

(iii) The proposed PIVOT-Net demonstrates the state-of-
the-art compression performance on a wide spectrum
of practical point clouds.

2. Related Work
Unlike an image whose pixels are naturally organized on
a 2D grid, a point cloud contains unordered 3D points in
space. To consume the challenging point cloud data, sev-
eral representations—point-based, voxel-based, and tree-
based—are exploited. We first review these representations,
followed by illustrating how they facilitate the state-of-the-
art PCC proposals. To this end, related techniques for voxel-
domain processing are discussed.

Point cloud representations: Voxel-based representa-
tion organizes 3D points in the Euclidean domain, which
enables them to be processed like images by 3D CNNs
[25]. It is achieved by uniformly quantizing the 3D coor-
dinates to voxel grids with a given quantization step size
s. For example, a point (x, y, z) is quantized to a voxel

(⌊x/s⌋, ⌊y/s⌋, ⌊z/s⌋) where ⌊·⌋ is the floor function. Then
for indication, a scalar “1” is assigned to the voxel to mark
it as occupied while empty voxels are marked by “0” [25].
During voxelization, a smaller s creates many empty voxels
that make the subsequent processing inefficient, whereas a
larger s compromises the representability of the geometry.
Thus, voxel-based representation is less suitable to delin-
eate intricate details.

With a voxelized point cloud, the tree-based representa-
tion views the occupied voxels as leaf nodes and organizes
them under a hierarchical tree structure [13]. For instance,
a voxelized point cloud with 10-bit precision can be orga-
nized as an octree with depth level of 10, where each level
is represented by a bit. Thus, encoding the whole octree
means encoding the whole point cloud losslessly; and en-
coding only the first few levels of the tree—the first few
bits of the point cloud—is to encode the quantized version
of the input losslessly [9].

Point-based representation is a native point cloud rep-
resentation, where a point cloud is simply a set of 3D
points specified by their (x, y, z)-coordinates [20, 25]. Un-
like other representations, it does not require any pre-
processing. Thus, it accurately represents intricate details—
the last few bits of a point cloud—without compromising
known geometric information. Though it is non-trivial to
digest an unordered point set, recent progress in point-based
deep neural networks has shed light on this problem. The
seminal work PointNet [21] combines multi-layer percep-
tron (MLP) and pooling operators to extract permutation-
invariant features. Inspired by the convolutional layer in Eu-
clidean domain, subsequent works, such as PointCNN [17]
and PointConv [36], are proposed. Point-based representa-
tion also applies to reconstruction. With a series of MLP
layers, Latent GAN [2] directly learns the 3D coordinates
of a point cloud. Other works, such as FoldingNet [39] and
TearingNet [19], embed a topology for reconstruction.

Point cloud compression: As the state-of-the-art, non-
learning-based PCC method, MPEG G-PCC utilizes the oc-
tree representation for lossless point cloud coding [9]. It is
achieved by a hand-crafted context model that predicts the
voxel occupancy status, followed by an arithmetic coder for
entropy coding. Replacing its hand-crafted context model
with a learnable one establishes a family of works called
deep octree coding. Representative works in this thread in-
clude OctSqueeze [13] and VoxelContext-Net [26].

Based on the seminal work on end-to-end learning for
image compression [4, 5], another family of learning-based
PCC methods is proposed to perform rate-distortion opti-
mization for lossy point cloud geometry compression. Dif-
ferent from deep octree coding that compresses occupancy
status, this paradigm compresses geometric features gen-
erated by deep neural networks. As first attempts of this
thread, the works [10, 23, 24, 31] apply regular 3D CNN
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0 𝑛𝑛 (bit)𝑛𝑛1Tree Voxel

(a) Tree + voxel: PCGCv2[30], SparsePCGC[33], and [24]
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(b) Tree + point
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(c) Tree + point, w/ feat. down/upsampling: GRASP-Net [20]

0 𝑛𝑛 (bit)𝑛𝑛2𝑛𝑛1 VoxelTree Point

Voxel (for features)

𝑛𝑛1′

(d) Tree + voxel + point, w/ feat. down/upsampling: PIVOT-Net (Ours)

Figure 2. Comparisons of lossy PCC frameworks utilizing different point cloud representations.

to compress voxelized point cloud. Since most of the vox-
els are empty, regular 3D convolution is memory inefficient.
To counter this issue, PCGCv2 [30] and its follow-up effort
SparsePCGC [33, 33] apply 3D sparse CNN [7] for lossy
compression based on an octree-coded coarse partitioning.

Compared to voxel representation and the associated
CNN backbone, point-based representation is more ef-
fective for consuming local geometric details. However,
there is limited progress in using point-based representa-
tion for learning-based PCC. Many existing works, such
as [3, 14, 35, 38, 40], fail to justify their performance on
real-world data, e.g., the MPEG group’s recommended test
point clouds [34]. The recently proposed GRASP-Net [20]
has successfully used point-based learning and octree cod-
ing for promising compression performance. However,
GRASP-Net is sub-optimal. It only digests the very last
few bits (e.g., the last 2 bits for a 12-bit point cloud) with
a point-based neural network, while the rest (e.g., the first
10 bits for a 12-bit point cloud) are coded losslessly with an
octree coder that can be very inefficient.

Voxel-domain processing: Unlike GRASP-Net, in
this work, we relieve the burden of the octree coder
by introducing additional voxel-based processing to con-
sume the middle-range bits. The aforementioned works
PCGCv2 [30] and SparsePCGC [33] utilize sparse CNNs to
achieve upsampling, followed by binary classification and
pruning in the voxel domain. Following a similar methodol-
ogy, while being inspired by the context modeling in octree
coding [13, 26], we propose an adaptive voxel upsampling
process for decoding that is context aware.

Feature aggregation also plays a critical role in the pro-
cessing and analysis of voxel geometry. In [24], Quach et al.
applies the classic ResNet [12] for analysis and synthesis in
the voxel domain. Wang et al. [30, 33] then extend the In-
ception ResNet (IRN) proposed for 2D images [28] to 3D.
The recently proposed vision transformer module [8] for
2D image analysis adaptively counts the contributions from

nearby pixels according to a self-attention model, which en-
ables a large receptive field with affordable computational
cost. It is later adapted for point cloud processing, leading
to point transformer [41] and voxel transformer [18]. In the
PIVOT-Net, we enhance the voxel transformer for advanced
geometric feature aggregation.

3. Point-Voxel-Tree-based PCC Framework
First we analyze typical lossy PCC frameworks to under-
stand how they utilize different point cloud representations.
Then we introduce the proposed PIVOT-Net that combines
point-based, voxel-based, and tree-based representations.

3.1. Heterogeneous PCC Frameworks

Overview: Fig. 2 compares several lossy PCC frameworks
to encode an n-bit point cloud. For each framework, differ-
ent point cloud representations are applied to compress dif-
ferent intervals along the bit axis. First and foremost, in all
frameworks, a tree-based (e.g., octree-based) coder is first
applied to code the first few bits losslessly as a bit-stream,
which results in a coarse, quantized representation of the in-
put point cloud. For instance, see the occupied leaf voxels
(in gray) of the tree at the bottom-left of Fig. 2a where the
point cloud is partitioned as occupied blocks at the bit-depth
level of n1. And this partitioning information is losslessly
recorded by compressing the octree. Thus, the associated
bit-stream of the octree is called the partitioning bit-stream.
After partitioning the point cloud into blocks, how do we
encode the point coordinates within each block? In other
words, how do we encode the remaining bits?

Tree+voxel: Under the general tree+voxel design
in Fig. 2a, several works, including PCGCv2 [30],
SparsePCGCv1 [33], and [24], view the points within each
block as voxels, allowing them to apply a CNN to extract a
geometric feature for each block. Unlike traditional com-
pression paradigm (e.g., HEVC [27]) where information
rarely flows across block boundaries, utilizing deep neural
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networks naturally aggregates information across blocks.
Depending on the receptive field of the networks, the gener-
ated feature fA associated with the block A may not only ab-
stract the geometry of A but also contain information from
other blocks surrounding A. Hence, CNNs can uncover the
underlying correlation between nearby voxels to generate
compact, informative features that can facilitate better cod-
ing performance. The extracted features are organized as a
3D feature map of size 2n1 × 2n1 × 2n1 , where n1 is the
number of bits already processed in tree-based representa-
tion. The nonempty entries of the feature map only corre-
spond to the occupied blocks (in gray) as they are capable of
generating features. The feature map is then entropy coded
as another bit-stream that we call the feature bit-stream to
represent the geometry of the last n− n1 bits.

Tree+point: However, the tree+voxel design fails on
sparse point cloud [20] such as LiDAR sweeps because the
inherent lack of neighbors undermines the performance of
CNNs. To address this problem, the points of each block
are represented as raw 3D points in (x, y, z)-coordinates so
that they are fed into point-based neural networks to extract
blockwise features. This process leads to the tree+point
design in Fig. 2b. This design is motivated by the fact
that point-based neural networks are flexible in represent-
ing intricate details without heavily relying on neighboring
points, as mentioned in Section 2. Extracting descriptive
features with point-based networks should only be applied
to the very last few bits where the point cloud gets very
sparse. Thus, compared with the tree+voxel design, the
tree+point design requires more bits of the point cloud to
be coded in tree-based representation. In other words, n2

in Fig. 2b is larger than n1 in Fig. 2a, leaving a smaller bit
interval to be coded in point-based representation.

GRASP-Net [20]: The tree+point design is not opti-
mal for PCC. Compared with the tree+voxel design, the
tree+point design requires a larger bit-stream because of
two reasons: (i) the feature map generated from the last few
bits is finer, and (ii) the tree-based representation is deeper.
To resolve (i), GRASP-Net additionally downsamples (or
upsamples when decoding) the feature map in the voxel do-
main by a CNN, as shown in Fig. 2c. Via downsampling
with a CNN, the resolution of the feature map is reduced
from 2n2 × 2n2 × 2n2 to 2n

′
2 × 2n

′
2 × 2n

′
2 (when encoding)

where n′
2 < n2. The downsampled feature map is further

entropy coded. In this design, the point cloud geometry is
not consumed by the CNN. Differently, the known geom-
etry at bit-depth level n2 serves as a support to down-/up-
sample the features attached to the point cloud blocks.

Our proposal: Note that GRASP-Net still encodes the
finer-grained block partitioning of the first n2 bits. Moti-
vated by the CNN in the tree+voxel design (Fig. 2a) for di-
gesting geometry, we propose PIVOT-Net as the first frame-
work for the unified tree+voxel+point design in Fig. 2d. In-
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Encoder

Encoder

Overall architecture
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Bpart
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Figure 3. Architecture of our PIVOT-Net. The orange blocks
contain learnable neural network layers, where point analy-
sis/synthesis are point-based neural networks while voxel and fea-
ture analysis/synthesis are sparse CNNs.

stead of handling bit interval [n1, n2] with an octree coder
in GRASP-Net, the proposed PIVOT-Net represents these
middle-range bits with voxels and consumes them with a
CNN, thereby reducing the burden of the octree coder.

Based on a novel processing of the fine, middle and
coarse levels of point clouds with the point-, voxel-, and
tree-based modules, our PIVOT-Net considers the point dis-
tributions across bit-depth levels under the Rate-Distortion
(RD) restriction in compression. Thus, each main compo-
nent of PIVOT-Net can be configured to handle a specific
range of point distribution to achieve superior PCC.

3.2. The PIVOT-Net Architecture

The block diagram of the PIVOT-Net is shown in Fig. 3,
where the neural network modules are colored in orange.

Encoder: An input point cloud X0 is fed into the Point
Analysis Network, a point-based neural network akin to
PointNet++ [22]. In contrast to PointNet++ relying on far-
thest point sampling to obtain a coarse point cloud, the
Point Analysis Network first generates the coarse represen-
tation X1 by uniform quantization with a constant step size
s1 > 1, where n− n2 = log2 s1. Then with the set abstrac-
tion layer from PointNet++, it extracts a geometric feature
for each point in X1 with the nearest neighbor search fol-
lowed by a shared PointNet. Thus, the last log2 s1 bits rep-
resenting the fine geometric details are consumed with this
point-based network (the bit interval [n2, n] of Fig. 2d).

Next, in the 3D tensor format, the coarse point cloud X1

(appended with the geometric features generated from the
Point Analysis Network) is fed into the Voxel Analysis Net-
work that uses a sparse CNN for downsampling and fea-
ture aggregation similarly done in PCGCv2 [30]. By down-
sampling X1 by s2 times to obtain the output X2 and its
features, the Voxel Analysis Network abstracts from X1

the last log2 s2 bits, which corresponds to the bit interval
[n1, n2] in Fig. 2d, i.e., n2 − n1 = log2 s2.

The voxel geometry, or occupancy status, of X2 is de-
noted as Xpart, which contains the block partitioning in-
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formation. Xpart is a coarse version of the input X0 with
an overall quantization step size s = s1s2. It is loss-
lessly coded with the tree-based encoder as a partitioning
bit-stream Bpart, corresponding to the bit interval [0, n1] in
Fig. 2d. Moreover, the feature map of X2 shrinks by s3
times using the Feature Analysis Network, another sparse
CNN for downsampling. Thus, the Feature Analysis Net-
work is applied to the bit interval [n′

1, n1] in Fig. 2d, i.e.,
n1 − n′

1 = log2 s3. The downsampled feature map F is
finally entropy encoded as the feature bit-stream Bfeat.

Decoder: The partitioning information Xpart is decoded
from the partitioning bit-stream Bpart. Meanwhile, the fea-
ture bit-stream Bfeat is decoded for the (decoded) downsam-
pled feature map F ′. Next, both Xpart and F ′ are fed to the
Feature Synthesis Network, a sparse CNN similar to the one
in GRASP-Net [20]. It upsamples the input feature map
F ′ while refining it to match the occupancy status of Xpart,
leading to an output tensor X ′

2 with the upsampled feature
map attached to it. Note that X ′

2 and X2 have different fea-
tures, but they share the same geometry as Xpart.

X ′
2 is then fed into the Voxel Synthesis Network. Like the

Feature Synthesis Network, the Voxel Synthesis Network is
also a sparse CNN for upsampling. However, while the Fea-
ture Synthesis Network intends to upsample the features F ′

to a known geometry Xpart, the Voxel Synthesis Network
aims at upsampling the geometry of X ′

2 based on its fea-
tures. Outputted from the Voxel Synthesis Network, X ′

1 has
the same resolution as X1, i.e., 2n2 × 2n2 × 2n2 .

In the end, consisting of a series of multi-layer percep-
tron (MLP) layers, the Point Synthesis Network [20] recov-
ers the raw 3D points for the final reconstruction. For each
geometric feature in X ′

1, it generates a 3D point set that de-
lineates the local geometric details in the neighborhood of
the point cloud block A. The decoded point cloud X ′

0 is the
aggregation of all the 3D point sets generated by the Point
Synthesis Network. Please refer to the supplementary ma-
terial for additional details on architecture designs.

4. Voxel Geometry Processing
Our proposed PIVOT-Net stands out among the other de-
signs in Fig. 2 because it utilizes voxel-domain processing
for consuming the middle-range geometric bits. This sec-
tion illustrates our efforts in capitalizing voxel-domain pro-
cessing. We incorporate two major components for voxel-
domain processing: (i) a context-aware upsampling process
for adaptive voxel synthesis and (ii) an Enhanced Voxel
Transformer inspired by [18] for feature aggregation.

4.1. Adaptive Voxel Synthesis

Downsampling and feature aggregation are straightforward
to perform with sparse CNN, such as using convolutional
layers with stride 2 as done in [24] and [30]. For sim-
plicity, our work adopts the “down-scale” module from

Binary 
Classifier

Voxel 
Pruning

Concat.

X’2 X’1

f0 f1

f2 f3

f4 f5 f6 f7

f8 f9

f0 f0 f1 f1
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f3’

f2’ f3’
f4’ f5’ f6’ f6’ f7’
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f4 f5 f6 f6 f7

f4 f5 f6 f6

f8 f8 f9 f9

f9

Pruned Tensor

Figure 4. Context-aware upsampling for adaptive voxel synthesis.
Learnable modules are colored in yellow.

PCGCv2 [30] for the Voxel Analysis Network.
On the other hand, upsampling in the voxel domain is

non-trivial. The naı̈ve nearest-neighbor (NN) upsampling
always splits a parent voxel into 8 child voxels, which
leads to not only inaccurate upsampled geometry but also
a waste of computation because many irrelevant occupied
voxels are created. To address these issues, PCGCv2 [30]
and SparsePCGC [33] perform binary classification on the
newly created child voxels and remove some of them that
are less likely to be occupied in the ground truth.

Inspired by the context modeling in octree coding, we
additionally utilize the known knowledge about the child
voxels to determine which child voxels should be pruned
and which to be kept. The block diagram of the proposed
Voxel Synthesis Network is shown in Fig 4. For simplic-
ity, we assume the voxel analysis/synthesis network digests
only 1 bit. Thus, the voxel synthesis network performs up-
sampling by a factor of 2, though it can be cascaded a few
times if more middle-range bits are coded.

To upsample the point cloud X ′
2 and its associated fea-

ture map, they are first fed to an NN upsampling module us-
ing transposed convolution [11] to obtain an initial upsam-
pled tensor that is two times larger along each dimension.
After that, they are concatenated with the context informa-
tion, followed by being fed to a binary classification mod-
ule [30] to determine which voxels should be removed. In
this work, the context information of a child voxel includes
its (x, y, z)-coordinate and the current bit-depth level. Next,
the geometry of the initial upsampled point cloud is refined
using voxel pruning according to the classification output.
In the end, a feature aggregation module with sparse con-
volutions is appended to improve the features based on the
refined geometry, resulting in the output point cloud X ′

1.

4.2. Enhanced Voxel Transformer

Compared to point-based neural network that usually has a
large receptive field for capturing neighboring relationships,
voxel-based processing with convolutional layers appears to
be more “rigid” as it is unable to discover long-range depen-
dency, especially for sparse point clouds. However, CNN-
based feature aggregation, e.g., with 3D Inception ResNet
(IRN) [20, 30], in the voxel-domain is still critical for gen-
erating descriptive geometric features. To overcome this in-
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⊗
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𝐸𝐸𝐴𝐴𝑖𝑖

𝐟𝐟𝐴𝐴′

Self-attention

Figure 5. Enhanced Voxel Transformer (left) and its self-attention
module (right). Learnable modules are colored in yellow.

herent issue of CNN-based feature aggregation, we propose
the Enhanced Voxel Transformer inspired by [18] as a better
alternative for feature aggregation.

An Enhanced Voxel Transformer block is shown in the
left of Fig. 5, which consists of a self-attention block and an
MLP block. The self-attention block is detailed in the right
of Fig. 5. Given a current feature vector fA associated with a
voxel A and its neighboring k features fAi ’s associated with
the k nearest voxels Ai’s, the self-attention block updates
fA based on the neighboring features fAi

’s using learnable
MLP blocks MLPQ, MLPK , MLPV and MLPP .

Firstly, the query embedding of A is obtained via QA =
MLPQ(fA). The key embedding KAi and the value embed-
ding VAi of all the nearest neighbors of A are computed as

KAi =MLPK(fAi)+EAi , VAi =MLPV (fAi)+EAi , (1)

for 0 ≤ i ≤ k− 1. The term EAi
is the positional encoding

between the voxels A and Ai calculated by

EAi
= MLPP (PA − PAi

), (2)

where PA and PAi
are the 3D coordinates of the voxels A

and Ai, respectively. Then the updated feature of A is

f ′A =
∑k−1

i=0
σ
(
QT

AKAi

/
c
√
d
)
· VAi , (3)

where σ(·) is the softmax function for computing the atten-
tion map, d is the length of f ′A, and c is a constant.

In contrast to [18], we replace the linear projection lay-
ers with MLP layers for more flexibility when computing
the attention map and the value embedding. In this work,
we use the Enhanced Voxel Transfomer blocks for feature
aggregation in the Feature Synthesis Network (Fig. 3) to
have a good trade-off between complexity and performance,
where we cascade 3 blocks with shared weights. Empiri-
cally, we find that our weight-shared transformers lead to a
smaller model with better results.

5. Experimentation
5.1. Experimental Setup
Datasets: Compression of the PIVOT-Net is verified on a
comprehensive set of selected point clouds suggested by the

MPEG group for learning-based PCC [1]. With the taxon-
omy of [1], selected point clouds are categorized into four
types—(i) 4 solid surface point clouds (10–11 bits), (ii) 3
dense surface point clouds (12 bits), (iii) 5 sparse surface
point clouds (12–13 bits), and (iv) “ford 02” & “ford 03”
LiDAR sequences with 3000 point cloud frames collected
by a spinning LiDAR (18 bits). The surface point clouds
have a number of points ranging from 272K to 4.8M ; the
LiDAR point clouds have about 80K points. Example point
clouds in [1] are visualized in Fig. 1.

To compress surface point clouds, PIVOT-Net is trained
with the ModelNet40 [37] dataset which contains 12k CAD
models from 40 categories of objects. As recommended
by [1], for the case of LiDAR point clouds, we train the
PIVOT-Net with the LiDAR sequence “ford 01” containing
1500 point cloud frames.

Implementation details: PIVOT-Net is implemented
based on PccAI [15]—a testbed for learning-based PCC.
It is then end-to-end trained with the rate-distortion (R-
D) loss L = LD + λLR. Here LD measures the geo-
metric distortion and LR is the estimated bitrate of Bfeat
while λ controls their trade-off. The distortion is computed
as LD = αLCD + βLBCE, where LCD is the augmented
Chamfer distance between the ground-truth and the decoded
point clouds [6, 20, 39] and LBCE is the average binary
cross entropy loss between the classification output (before
thresholding) and the voxelized ground-truth point cloud.

We achieve different rate points by adjusting the interval
[n1, n] (Fig. 2d) and train one model per rate point, where
shorter interval n − n1 means a deeper octree (or smaller
block size) and leads to a larger rate point. For surface point
clouds, we sample 5 sizes of n−n1 in [1, 4] for 5 rate points.
Within [n1, n], we configure the sub-interval of point-based
processing [n2, n] to have a size from 0 to 4 according to the
surface point cloud categories. Note that n − n2 = 0 im-
plies the point-based processing is turned off and the whole
range [n1, n] is consumed by voxel-domain processing. For
the sparse LiDAR point clouds, we let n−n1 ranges within
[2, 9] and pick 6 rate points covering a typical operation
range. We also turn off the voxel-domain processing due
to the highly sparse nature of LiDAR sweeps, i.e., n1 = n2.
In all cases, we let n1 − n′

1 = 1, meaning that the feature
map is 2× downsampled/upsampled for compression.

We apply the Adam optimizer [16] to train the PIVOT-
Net for 50 epochs with a learning rate 8× 10−4. The batch
size is 8 when training on ModelNet40 and is 2 when train-
ing on LiDAR data. Please refer to the supplementary ma-
terial for more details.

Benchmarking: State-of-the-art lossy PCC methods are
used for comparisons: (i) G-PCC octree (lossy), which is
a non-learning-based method standardized by MPEG [9];
(ii) GRASP-Net [20] and (iii) SparsePCGC [33] which are
learning-based methods. For fair comparisons, the octree
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Figure 6. R-D performance on different point clouds measured in both D1-PSNR and D2-PSNR. Our proposed PIVOT-Net provides
competitive performance among all the methods.

Table 1. BD-Rate (in %) and BD-PSNR (in dB) gains against G-PCC octree (lossy) on different categories of point clouds.
Category Solid surface point clouds Dense surface point clouds Sparse surface point clouds LiDAR point clouds

Metric
BD-Rate ↓ BD-PSNR ↑ BD-Rate ↓ BD-PSNR ↑ BD-Rate ↓ BD-PSNR ↑ BD-Rate ↓ BD-PSNR ↑

D1 D2 D1 D2 D1 D2 D1 D2 D1 D2 D1 D2 D1 D2 D1 D2

GRASP-Net -88.80 -75.74 9.30 7.20 -41.08 -54.86 2.86 3.70 -10.19 -9.97 0.86 1.01 -5.56 -9.64 1.31 2.08
SparsePCGC -91.10 -81.98 10.99 9.01 -52.23 -68.10 4.26 6.11 14.53 6.08 -1.48 -0.80 -5.40 -11.47 1.00 2.04
PIVOT-Net -92.34 -83.22 10.88 8.97 -58.42 -66.61 4.37 5.20 -17.01 -21.21 1.40 2.30 -11.85 -17.19 2.19 3.10

coders in GRASP-Net, SparsePCGC, and our PIVOT-Net
are all aligned as G-PCC octree (lossless). The code/results
of SparsePCGC and GRASP-Net are provided by their au-
thors, where the SparsePCGC we compared is a slightly im-
proved version [32] over the original work [33].

For evaluation, bitrate is measured by bits per input point
(bpp) while geometry distortion is measured by the peak
signal-to-noise ratio (PSNR) based on point-to-point dis-
tance (D1) and point-to-plane distance (D2) [29]. Follow-
ing the convention in MPEG [34], we evaluate BD-Rate (in
%, the more negative it is, the more bitrate savings) and
BD-PSNR (in dB, higher means better) by comparing an
R-D curve with the one achieved by G-PCC octree (lossy),
i.e., G-PCC octree (lossy) serves as an anchor.

5.2. Performance Comparisons
The average R-D curves of the different methods on repre-
sentative point clouds are plotted in Fig. 6. We also compute
the BD-Rate and BD-PSNR gains against the G-PCC octree
(lossy) anchor. The results are provided Table 1.

Overall, we see that our PIVOT-Net achieves the best
R-D trade-off among the competing approaches. It per-
forms on par with SparsePCGC [33] on solid and dense
surface point clouds while outperforming SparsePCGC sig-
nificantly on sparse surface point clouds and LiDAR point

clouds. That is because we account for the sparse nature of
these point clouds with point-based processing (the [n2, n]
interval of Fig. 2d) while SparsePCGC does not. Compared
to GRASP-Net [20], we achieve clear advantages on the
solid and dense surface point clouds because of the con-
sumption of the middle-range bits in the voxel domain (the
[n1, n2] interval of Fig. 2d) while GRASP-Net ignores that.

Fig. 7 visualizes the 11-bit solid surface point cloud
“dancer vox11 00000001” decoded by different methods
while Fig. 8 visualizes the decoded results of the LiDAR
sweep “ford 02 vox1mm-0120”. The decoded point clouds
in these figures are colorized by their D1 errors. Compared
with the other methods, our PIVOT-Net provides higher-
quality reconstructions at smaller or similar bit-rates. No-
tably, it makes fewer errors in intricate details such as the
corners in Fig. 7 and the line patterns in Fig. 8.

5.3. Ablation Study
We study how the coding performance of the PIVOT-Net
is benefited by (i) the voxel processing of the middle-range
bits and (ii) the transformer. On solid surface point clouds,
the performance of several variations of the PIVOT-Net are
shown in Table 2. We start from a configuration where both
(i) and (ii) are removed (i.e., GRASP-Net [20]). Then we
enable (i) (first without, then with the context-aware upsam-

7



D1: 64.46dB
D2: 68.28dB
bpp: 0.07

D1: 73.56dB
D2: 75.31dB
bpp: 0.03

D1: 71.15dB
D2: 72.36dB
bpp: 0.03

D1: 72.41dB
D2: 73.88dB
bpp: 0.03

0

1

2

3+

(a) Ground-truth (b) G-PCC (c) GRASP-Net (d) SparsePCGC (e) PIVOT-Net

Figure 7. Visual comparisons of “dancer vox11 00000001” (solid, 11-bit). The decoded point clouds are colored by the D1 errors.
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Figure 8. Visual comparisons of LiDAR point cloud “ford 02 vox1mm-0120” (18-bit). Decoded point clouds are colored by D1 errors.

Table 2. BD-Rate (in %) and BD-PSNR (in dB) gains against G-
PCC octree (lossy) on different variations of the PIVOT-Net.

Voxel for mid. bits Transformer BD-Rate ↓ BD-PSNR ↑
w/o ctx. w/ ctx. VT Enh. VT D1 D2 D1 D2

× × × × -88.80 -75.74 9.30 7.20
✓ × × × -91.31 -81.46 10.52 8.70
× ✓ × × -91.72 -82.01 10.64 8.80
× ✓ ✓ × -91.85 -82.40 10.58 8.79
× ✓ × ✓ -92.34 -83.22 10.88 8.97

(a) “dancer vox11” (solid, 11-bit) (b) “ford 02 vox1mm” (18-bit)

Figure 9. Changing the interval lengths in PIVOT-Net.

pling) which leads to around 3% and 6% BD-Rate gains in
terms of D1 and D2, respectively. Next, we enable (ii) (with
the voxel transformer [18], then with the Enhanced Voxel
Transformer), bringing an extra 1% BD-Rate saving. Thus,
we verify the importance of (ii) for PIVOT-Net.

We also adjust the intervals for solid (most dense) and
LiDAR (most sparse) point clouds, showing the trade-offs
in Fig. 9. In Fig. 9, each operation point in the R-D plot
is denoted by [c,m, f ], where c = n1, m = n2 − n1, and
f = n − n2 bits are the coarsest-, middle-, and finest-bit
intervals (Fig. 2d), respectively. From Fig. 9a, ▼ operation
points (with m > 0, i.e., voxel processing for middle bits)
are preferable for solid point clouds, where the ▼ points
delineate the best R-D curve. But for sparse point clouds
(Fig. 9b), point-based coding (▲) is preferred.

5.4. Complexity

PIVOT-Net has a reasonable computational cost. For in-
stance, on the 3000 test LiDAR frames, to encode/decode
a frame at around 8 bpp (the rate point of the exam-
ples in Fig. 8), PIVOT-Net takes about 1.8 sec/2.0 sec.
On the same platform, G-PCC takes 3.8 sec/1.8 sec,
GRASP-Net takes 1.6 sec/1.7 sec and SparsePCGC takes
2.1 sec/11.5 sec. Note that running time is measured with
the time.monotonic() function in Python.

PIVOT-Net also has a small model size. When com-
pressing different point cloud categories, neural network
models of different sizes are applied. On average, the mod-
els of PIVOT-Net have 482K parameters, being slightly
larger than those of the GRASP-Net (430K). However,
both of them are much smaller than the model size of
SparsePCGC, which on average has 3363K parameters.

6. Conclusion

We propose PIVOT-Net, a heterogeneous PCC frame-
work unifying three point cloud representations—the point-
based, voxel-based, and tree-based representations—to al-
together digest the least-significant, the middle-range, and
the most-significant bits. The voxel-domain processing is
augmented with a proposed context-aware upsampling pro-
cedure for decoding and an Enhanced Voxel Transformer
for feature aggregation. The state-of-the-art performance
of PIVOT-Net is confirmed on a wide spectrum of point
clouds. A future research direction is to optimize the al-
location of the bits assigned to the three representations.
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[5] Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin
Hwang, and Nick Johnston. Variational image compres-
sion with a scale hyperprior. In International Conference on
Learning Representations, pages 1–47, Vancouver, Canada,
2018. ICLR. 2

[6] Siheng Chen, Baoan Liu, Chen Feng, Carlos Vallespi-
Gonzalez, and Carl Wellington. 3D point cloud processing
and learning for autonomous driving: Impacting map cre-
ation, localization, and perception. IEEE Signal Processing
Magazine, 38(1):68–86, 2020. 6

[7] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d
spatio-temporal convnets: Minkowski convolutional neural
networks. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 3075–3084,
2019. 3

[8] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 3

[9] D Graziosi, O Nakagami, S Kuma, A Zaghetto, T Suzuki,
and A Tabatabai. An overview of ongoing point cloud com-
pression standardization activities: Video-based (V-PCC)
and geometry-based (G-PCC). APSIPA Transactions on Sig-
nal and Information Processing, 9:e13, 2020. 2, 6
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