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Abstract

Registering clothes from 4D scans with vertex-accurate
correspondence is challenging, yet important for dynamic
appearance modeling and physics parameter estimation
from real-world data. However, previous methods either
rely on texture information, which is not always reliable,
or achieve only coarse-level alignment. In this work, we
present a novel approach to enabling accurate surface reg-
istration of texture-less clothes with large deformation. Our
key idea is to effectively leverage a shape prior learned from
pre-captured clothing using diffusion models. We also pro-
pose a multi-stage guidance scheme based on learned func-
tional maps, which stabilizes registration for large-scale
deformation even when they vary significantly from train-
ing data. Using high-fidelity real captured clothes, our
experiments show that the proposed approach based on
diffusion models generalizes better than surface registra-
tion with VAE or PCA-based priors, outperforming both
optimization-based and learning-based non-rigid registra-
tion methods for both interpolation and extrapolation tests.

1. Introduction
How we dress is important in the perception of identity. The
digitization of dynamically deforming clothes is, therefore,
one of the core technologies to enable genuine social inter-
action in virtual environments. This will bring out a myriad
of applications including photorealistic telepresence, virtual
try-on and visual effects for game and movies. Recently, re-
markable progress has been made in computer vision and
graphics by modeling photorealistic appearance [49] and
plausible geometric deformations [30]. One of the essen-
tial building blocks for these approaches is surface registra-
tion, which establishes correspondences between a template
model and observed 3D reconstruction at each time frame.

Classic methods like Iterative Closest Point (ICP) regis-
tration achieve low surface error, but suffer from in-plane
sliding of the vertices due to the lack of geometric con-
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Figure 1. Wrinkle-accurate cloth registration. We learn a strong
shape prior from pre-captured 4D data using a diffusion model,
and apply it to texture-less registration of the clothing with highly
complex deformations.

straints. This problem makes the registration results un-
suitable for learning clothes characteristics such as phys-
ical parameters or statistical models of deformations. Cur-
rent registration approaches [49] avoid sliding by relying on
texture, i.e., photometric consistency to establish the corre-
spondence between the template and the observed images.
Due to the reliance on the texture, the performance of the
registration is highly dependent on the uniqueness and con-
trast of the texture. It is impossible to establish reliable cor-
respondence for regions without salient patterns.

Hand-crafted shape priors like Laplacian [28, 43] and
ARAP [42] can be helpful for texture-less cloth registra-
tion by regularizing the cloth deformation. They are based
on the heuristic that a shape deforms under isometry. How-
ever, this may not apply to clothing, because cloth deforma-
tion is highly complex, including stretching and bending.
The hand-crafted shape priors also require hyperparameter
tuning to achieve a balance between registration objective
and regularization. To avoid heuristics and parameter tun-
ing, our goal is to learn a shape prior from real-world cloth-
ing deformations, which can constrain our solution space
within the span of plausible clothing deformations. Exist-
ing learning-based approaches like PCA and VAE [2, 14]
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have difficulty modeling large deformation and fine details
of clothing simultaneously. Noticing the success of diffu-
sion probabilistic models [16, 40, 41] on a wide variety of
challenging generative tasks [10, 11, 32, 36], we argue that
the representation power of diffusion models is useful for
non-rigid surface registration.

In this paper, we present a novel shape prior and illus-
trate how to use it for surface registration in order to achieve
accurate registration of clothing under large motion even
without texture information. In particular, we employ a dif-
fusion probabilistic model [16, 40, 41] to learn complex
shape distributions of clothing. Given the target 3D point
clouds, we employ approximated posterior sampling [10]
of the diffusion model with loss functions that optimize the
surface alignment. Unfortunately, sampling the posterior
directly from scratch results in unstable coarse shape that
makes further refinement meaningless. To stably guide the
surface registration process, we propose a multi-stage pos-
terior sampling process, where the early stage of the denois-
ing process is guided by a learning-based coarse registration
approach [17], and the later stage is only refined with point-
to-plane errors. In this way, the registration can avoid local
minima while retaining high-fidelity wrinkles with faithful
surface deformations.

Real clothing exhibits intricate deformations and inter-
actions with human body parts, which may not be pre-
cisely synthesized by physics-based simulation. To eval-
uate the accuracy of surface registration in real data, we ob-
tain ground-truth correspondence by utilizing a state-of-the-
art tracking method based on clothes with a special printed
pattern [15]. Experimental results show that our method
generalizes to new unseen motion of the garment it was
trained on (tested on t-shirts and skirts). In addition, our
diffusion-based shape prior significantly outperforms other
data-driven shape priors such as PCA and hierarchical VAE
as well as state-of-the-art non-rigid registration methods.

Our method has promising applications in 3D cloth mod-
eling. Specifically, after learning the shape prior from a
garment with a special printed pattern [15], it can be used
to register garments with the same shape but different tex-
tures. This enables creating appearance models as in [49],
but without requiring the garment to be densely textured.

In summary, our contributions can be summarized as fol-
lows:
• a novel diffusion-based shape prior that can effectively

encode highly complex clothing geometry.
• a cloth registration approach that leverages the shape prior

to achieve accurate cloth registration even in a texture-less
setting.

• the first evaluation on ground truth from a wide range of
motions and contact of real clothes, quantitatively expos-
ing the accuracy of each registration method in real world
scenarios.

2. Related Work
Non-rigid 3D registration is a long-standing problem in the
field of computer vision and graphics. In this section we
focus on approaches relevant to cloth registration and shape
priors. For a more in-depth review of non-rigid 3D registra-
tion, please refer to a survey [12].
Optimization-based non-rigid tracking. The goal of non-
rigid tracking or registration is to align a stream of un-
structured input surfaces with a consistent template mesh,
so that the vertices in the template encode the correspon-
dences across different frames. Early work typically uses
iterative optimization to find a template deformation which
minimizes an energy function including data terms (e.g.
target-to-template distance) and regularization terms impos-
ing predefined constraints on the template such as smooth-
ness [43]. Furukawa and Ponce [13] combine rigid local
patches with a non-rigid global model for markerless dense
3D tracking. Amberg et al. [1] propose local affine regu-
larization and take optimal greedy steps for non-rigid ICP.
Zaharescu et al. [51] propose a 3D feature detector and a
3D feature descriptor for triangle meshes that can be ap-
plied to shape matching. Pons-Moll et al. [31] and Xiang
et al. [48, 49] use heuristic objectives for non-rigid match-
ing of a template to 4D scans of clothes. SimulCap [50]
fits garment templates to a depth video stream by exert-
ing artificial forces in a mass-spring system. Compared
with these approaches that rely on hand-crafted regular-
ization constraints, we propose a learning-based approach
that effectively leverages garment-specific shape priors di-
rectly learned from high-quality ground truth, and therefore
achieve more accurate registration.
Learning-based non-rigid tracking. Recent advancement
of deep learning has sparked interest in applying deep neu-
ral networks to the non-rigid tracking problem. Parameter-
izing the optimization problem with deep neural networks
reduces the number of iterations (typically to a single one)
since training data provide better correspondence guesses
than the ”closest-point” guess used in methods like ICP.

Early learning-based methods use discriminative ap-
proaches like regression forest to obtain body correspon-
dences in depth images [44]. The adoption of neural net-
works further avoids the need of engineering the type of
features. A similar approach [19], where the regression
forest is replaced by soft classifiers using ResUNet [9],
achieves state-of-the-art results in the FAUST dataset [4].
Early work on deep 3D registration like 3D-Coded [14] was
based on the PointNet [34] architecture. Numerous repre-
sentations (3D voxel grids [39], basis point sets [33], zero
level sets [3], signed distance functions [6]) have been used
to represent the inputs and outputs in these learning-based
approaches. Note that deep features can be combined with
iterative solvers as in [22], or upgraded to an end-to-end
trainable system in Bozic et al. [5]. Most of these methods
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are trained in a self-supervised manner using loss functions
(e.g. point-to-plane distance) and hand-crafted priors (e.g.
smoothness) similar to classical approaches, circumvent-
ing the need of accurate ground truth at the cost of fidelity
to real deformations. By comparison, our method focuses
on utilizing a garment-specific shape prior directly learned
from high-quality ground truth to perform more accurate
registration.
Shape prior. Deep learning has emerged as a power-
ful tool to build statistical 3D shape priors directly from
data. Such data prior can be useful for various down-
stream tasks such as animation, reconstruction and track-
ing. Functional maps [17, 23, 29] are a flexible frame-
work for isometric shape matching, where a shape can be
modeled by either deterministic descriptors (e.g., Laplace-
Beltrami operator) or learnable descriptors. Different ver-
sions of mesh autoencoders (multi-scale [35], an embedded
deformation layer [47], and fully convolutional [52]) have
been used to model shape variations. Local shape models
like PatchNets [46] and DeepLS [7] claim better generaliz-
ability. Minimal Neural Atlas [25] models a 3D shape in the
parametric domain as a combination of multiple charts, en-
abling the learning of distortion-minimal parameterization.
While these approaches have pushed forward the accuracy
of shape generation, implicit surface models lack an explicit
parameterization to model in-plane sliding, and approaches
like functional maps only provide coarse-level registration
when applied to highly non-rigid objects such as clothing.

Learning-based shape priors are also incorporated in
clothing or clothed human modeling. Cloth has been
modeled independently from the body in a few classic
works [21, 30]. TailorNet [30] jointly models the pose,
shape and style of clothing, where a high frequency com-
ponent is responsible for representing fine details. To in-
crease the high frequency deteails, DeepWrinkles [21] uses
conditional GAN to generate high resolution normal maps.
Another classic system is CAPE [27], which related the 3D
clothes to the underlying body [24] through 3D displace-
ments. All these approaches primarily focus on the syn-
thesis of clothing shapes under different poses, and how to
use implicitly learned shape priors for surface registration
remains an open question.
Diffusion models. Diffusion models [16, 40, 41] are a class
of generative models that can learn the prior from highly
complex data distributions by score matching. They have
achieved state-of-the-art performance in various image-
based generative tasks [10, 11, 36], including a dedicated
application to clothing image manipulation [20]. Diffusion
models have also been applied to 3D tasks including text-
to-3D generation [32], human motion generation [45], point
cloud completion [26], and stereo-based human body recon-
struction [38]. Specifically, DiffuStereo [38] is closely re-
lated to our work, which uses a conditional diffusion model

to refine depth maps for high-quality human body recon-
struction. Different from DiffuStereo, which only models
small residual deformations in a feed-forward fashion, we
propose to estimate both large deformation and detailed de-
formation in a unified diffusion model by integrating it into
an optimization framework.

3. Method
Given the ground-truth 4D scans of cloth in motion, we
learn a shape prior using a diffusion model [10, 16] to
simultaneously encode large deformation and fine details.
The learned shape prior can be used to register the same
clothing to noisy 4D scans via multi-stage manifold guid-
ance [10, 11]. In the early stage, our shape prior relies
on coarse registration signal to achieve rough alignment.
The coarse registration signal can be acquired by mark-
ers, visual-based tracking, geometric-based tracking, or any
combination of them. In a minimum setting, where mark-
ers or visual information are not available, we rely on the
geometric information by training SyNoRiM [17] a coarse
registration module. In the later stage of manifold guidance,
our shape prior further refines the alignment to achieve
wrinkle-accurate registration by considering spatial proxim-
ity with the input 4D scan.

3.1. Shape Representation

We represent the clothing geometry as a 3D triangle mesh
with V vertices V ∈ RV×3 and F triangles, where the i-th
vertex position is denoted as vi. The i-th vertex corresponds
with at least one point u on the 2D UV surface. We define
the displacement of the mesh from the mean shape with ver-
tices V as a function of UV coordinate, i.e., U|u = vi − vi,
where vi is the i-th vertex of the mean shape, and U|u is
the displacement map evaluated at u. With an abuse of no-
tation, we denote the mapping and its inverse as U = Φ(V)
and V = Ψ(U), respectively. Note that this parameteriza-
tion is not injective, i.e., there exists a vertex that maps to
multiple points in U where these points lie in the boundary
(seam) of the unwrapped clothes.

3.2. Diffusion-based Shape Prior

Based on the UV displacement parameterization, we aim
to learn a prior distribution of the plausible deformations,
which can be used as guidance for cloth registration. We
leverage the diffusion model [16] that is made of two pro-
cesses: forward and reverse. For the forward process, we
learn a transition probability from the complete signal to a
random noise xT by adding noise:

xt =
√
1− βtxt−1 + βtϵ, x0 = U , (1)

where ϵ ∼ N (0, I) is a sample from the Gaussian distri-
bution. We gradually increase the variance schedule βt as
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Figure 2. We learn a diffusion-based shape prior from 4D cloth capture, and use it to accurately register the same clothing to noisy scans.

Figure 3. Seam stitching. We enforce the same noise value for
corresponding points on the seams in the reverse process.

increasing t, which reduces the impact of xt−1 while in-
creasing that of Gaussian noise. This ensures coarse-to-fine
shape learning where the large deformation (low-frequency)
are modeled at large t (early denoising stage), and the small
deformation (high-frequency) is modeled at small t.

The reverse process, known as ancestral sampling [16],
reconstructs the signal from random noise by denoising:

xt−1 =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)

)
+ σtz (2)

Based on the variance schedule βt, we define αt = 1 − βt,

ᾱt =
∏t

i=1 αi, and σt =

√
β̃t =

√
1−ᾱt−1

1−ᾱt
βt. The learn-

able neural network ϵθ parameterized by θ aims to predict
the noise ϵ from corrupted data xt. We train ϵθ with a
weighted variational bound [16] as the objective:

L = Et,x0,ϵ

[
∥ϵ− ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵ, t)∥2

]
(3)

Iterating Equation (2) will generate a plausible data sam-
ple x0 from the learned prior. Figure 4 illustrates the for-
ward and reverse diffusion processes.
Seam stitching. As illustrated in Figure 3, panels of the
clothing can be disconnected along seams in UV parame-
terization. A plausible clothing shape has a smooth surface
that maps to smoothly transitioned values across seams. To
avoid the clothing being separated apart at the seam, at ev-
ery time step in the reverse process, we enforce the noise
value on the seams to be the same for corresponding points
by x

′

t−1 = Φ(Ψ(xt−1)). Note that the mapping Ψ from UV
to mesh space is not injective, so the ambiguity is solved by
averaging the 3D locations of UV positions which refer to
the same point.

3.3. Non-rigid Registration via Manifold Guidance

The ancestral sampling in Equation (2) allows generating
diverse plausible shape deformations. To ensure that the
deformed shape matches the visible surface of the clothing,
it is necessary to steer the reverse diffusion process. Notic-
ing that the gradient of log marginal density can be approx-
imated by the learned network ∇xt log p(xt) ≃ −ϵθ/σt,
we make use of manifold guidance [10, 11] to sample the
near optimal shape deformation that can match the ob-
served points. The manifold guidance maximizes the log-
likelihood of every diffusion state, xt, given the observation
Y ∈ RP×3 where P is the number of observed 3D points:

∇xt log p(xt|Y) ≃ −ϵθ(xt, t)

σt
− ρ∇xtd(x̂0,Y) (4)

where d is a distance measurement in Euclidean space, and
ρ is the step size of guidance. The posterior mean x̂0 can be
estimated from xt

x̂0 =
1√
ᾱt

xt −
√

1− ᾱt

ᾱt
ϵθ(xt, t) (5)

We take a multi-stage distance measurement d with the
decreasing of time step t in the reverse diffusion process

d(x̂0,Y) =

{ ∑V
i=1 ϱ (∥ṽi − v̂i∥) t > τ∑P
i=1 ϱ

((
yi −N(V̂,yi)

)⊺
nyi

)
t ≤ τ

(6)
where ṽi is the target position predicted by the coarse reg-
istration module C(Y), and ϱ(·) is the Huber robust func-
tion [18]. The mesh vertices are mapped from the UV dis-
placement map as V̂ = Φ(x̂0) with the i-th vertex denoted
as v̂i. The time step τ is the point where the distance mea-
surement is changed. N retrieves the closest point in V̂ , and
nyi

∈ R3 is the normal vector of yi.
When t > τ , we use the signals from the coarse registra-

tion module C to guide the large deformation of the cloth-
ing shape, until we achieve a rough alignment with the input
point cloud. We adopt SyNoRiM [17] as the coarse registra-
tion module C. It learns to predict per-vertex 3D flow from
template to target shape given a 3D point cloud as input.
The dense correspondences it infers are not strictly neces-
sary since our method works well with sparse ones as shown
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Figure 4. Illustration of the diffusion model for clothing shape. In the forward process, we gradually add noise to the UV displacement map
x0 to acquire an isotropic Gaussian distribution xT . To sample from the learned data distribution, we recover x0 by gradually denoising
the corrupted UV displacement map.

in Section 4. After t ≤ τ , the vertices are guided by point-
to-plane errors [8] based on spatial proximity from the point
yi, which is typically used for non-rigid registration tasks.
The point-to-plane distance helps to avoid overestimating
the distance when the input point cloud contains holes.

After reaching t = 0 in the reverse diffusion process, we
repeat the final denoising step with point-to-plain guidance
to adjust the inferred vertices to the high-frequency surface
details of the point cloud.

4. Experiments
We evaluate our method by comparing with baseline meth-
ods quantitatively and qualitatively, demonstrating the ef-
fectiveness of the proposed approach. We further discuss
the design choice of our method in the ablation study and
showcase that our method can be flexible in practical use
cases when sparse tracking signals are available. See more
experiments in Supp. Mat., including robustness to noisy
input and cross-subject generalization.

4.1. Dataset and Settings

Dataset. We conduct our experiments using the pattern-
based cloth registration dataset [15], which provides a tem-
plate geometry for each clothing type, as well as accurate
registrations in the same topology. We use the provided
data as ground-truth for both training and evaluation. As
the dataset does not release the original point clouds, we in-
stead construct partial 3D reconstruction to be used as input
at test time. See Supp. Mat. for details.

Since the body is not included in the dataset, we use the
ground-truth registration to compute the global translation
and rotation of each frame w.r.t. the mean shape using Pro-
crustes analysis, and then normalize the data by applying
inverse of the global transformation on each frame. In real
use cases where the body is available, we can apply a sim-
ilar normalization by estimating the body pose, and taking
the pelvis transformation as global transformation.

We use T-shirt on ”subject 00” (T-shirt 1), T-shirt on
”subject 04” (T-shirt 2, with a stiffer material than T-shirt
1), skirt on ”subject 03” (Skirt 1), and skirt on ”subject 04”
(Skirt 2, longer than Skirt 1) in our experiments. For each

data sequence, we split the frames into training set and test
set, which further includes interpolation and extrapolation
sets. The interpolation test set is uniformly sampled from
the entire sequence, so its data distribution is similar to the
training set. The extrapolation test set is a manually selected
short sequence consisting of body poses unseen in training
set. All learning-based methods use this identical train-test
split.
Implementation details. We train the diffusion model with
T = 1, 000 steps, and sample a subset S = 50 steps using
DDIM [41] with η = 0 in the reverse process. We use a
linear variance schedule that increases from β1 = 10−4 to
βT = 0.02. The network ϵθ is implemented as a U-Net [37]
that takes in a 256 × 256 UV displacement map. The in-
valid pixels on the UV map are masked out during both
training and testing. We use SyNoRiM [17] as the coarse
registration module in our pipeline. It is trained in a pair-
wise manner between the mean template shape and each
training sample with randomly sub-sampled mesh vertices.
Note that our method can seamlessly integrate with not only
SyNoRiM but also any coarse registration methods.
Metrics. We quantitatively evaluate the performance of our
method and baseline methods using vertex error Ev and
bidirectional point-to-plane error Ept and Eps.

Ev =
1

V

V∑
i=1

∥v̂i − vi∥ (7)

Ept =
1

V

V∑
i=1

∣∣∣(vi −N(V̂,vi)
)⊺

nvi

∣∣∣ (8)

Eps =
1

V

V∑
i=1

|(v̂i −N(V, v̂i))
⊺
nv̂i

| (9)

Our actual goal is to achieve a low Ev for accurate align-
ment, while Ept/Eps are also important. Ev directly indi-
cates the accuracy of the registration, while Ept/Eps mea-
sures only surface alignment. When Ept/Eps is small, Ev

can still be large due to in-plane sliding. Similarly, lower
Ev with higher Ept/Eps is not preferable due to large devi-
ation from the true surface. Our goal is to achieve low Ev

with reasonable Ept/Eps.

5



T-shirt 1 T-shirt 2 Skirt 1 Skirt 2
Int. set Ext. set Int. set Ext. set Int. set Ext. set Int. set Ext. set

Ev Ept/Eps Ev Ept/Eps Ev Ept/Eps Ev Ept/Eps Ev Ept/Eps Ev Ept/Eps Ev Ept/Eps Ev Ept/Eps

SyNoRiM [17] 5.76 1.37/1.68 11.13 1.38/1.67 6.32 1.39/1.80 10.09 1.41/1.80 18.94 1.57/2.76 24.05 1.61/2.87 20.88 1.68/2.70 22.17 1.71/2.67
Lap. reg. [43] 5.04 0.65/0.64 10.80 0.66/0.64 5.60 0.59/0.62 9.61 0.59/0.62 18.33 0.71/0.73 23.71 0.73/0.73 20.47 0.73/0.72 21.82 0.66/0.67
Lap. precond. [28] 5.00 0.53/0.59 10.64 0.53/0.59 5.53 0.52/0.59 9.44 0.51/0.58 18.09 0.55/0.66 23.40 0.56/0.67 20.42 0.60/0.70 21.84 0.57/0.67
ARAP reg. [42] 4.57 0.52/0.60 10.48 0.51/0.60 5.16 0.53/0.60 9.23 0.51/0.59 17.88 0.59/0.75 23.36 0.60/0.76 19.88 0.65/0.77 21.25 0.58/0.68
3D-CODED [14] 11.02 2.50/3.31 21.19 3.01/5.47 13.24 2.93/5.15 14.76 3.45/5.22 18.44 2.03/5.21 24.30 2.25/6.33 17.78 3.37/6.09 28.25 4.51/9.06
3D-CODED opt. 10.26 2.41/3.06 18.81 2.72/4.48 11.25 2.67/4.09 13.72 2.95/4.07 18.14 1.98/4.83 23.47 2.18/5.61 17.07 3.05/5.09 25.40 3.92/6.72
PCA 10.24 2.62/2.93 14.30 2.95/3.75 8.69 2.99/3.41 12.96 3.58/4.36 15.87 3.36/4.10 21.12 4.10/5.09 17.79 4.87/5.27 24.44 6.22/7.09
Comp. VAE [2] 5.05 0.72/0.78 10.74 0.73/0.79 5.67 0.85/0.93 9.63 0.88/0.95 18.04 0.64/0.72 23.47 0.65/0.74 20.57 0.79/0.83 21.94 0.79/0.86
Ours 3.16 0.57/0.62 9.51 0.61/0.75 3.94 0.57/0.63 8.59 0.61/0.76 15.07 0.65/0.73 21.01 0.73/0.78 16.66 0.71/0.78 19.71 0.67/0.75

Table 1. Quantitative comparison to baseline methods. Error metrics are measured in mm. Bold indicates the best Ev . Our goal is to
achieve low vertex error Ev with reasonable point-to-plane error Ept and Eps.

4.2. Comparison to Baseline Methods

SyNoRiM [17] is a general-purpose non-rigid registration
method. Since SyNoRiM tends to produce over-smoothed
results lacking fine details like wrinkles, we further re-
fine SyNoRiM predictions by optimizing point-to-plane dis-
tance together with heuristic shape priors (Laplacian [28,
43] and ARAP [42]) as in classical ICP methods. In Ta-
ble 1, we quantitatively show that our full pipeline consis-
tently outperforms SyNoRiM and its heuristic refinement
on the metric of vertex error, which is our main goal. Qual-
itative results in Figure 5, 6 show that our method consis-
tently produces better registration with lower vertex error
and realistic wrinkles.

We also compare our approach to data-driven shape pri-
ors 3D-CODED [14], PCA, and compositional VAE [2].
In 3D-CODED, we model the 3D point translation and
3D patch deformation following the original setting. The
3D-CODED results can be further refined by optimizing
Chamfer distance (denoted 3D-CODED opt.). For PCA, we
model the per-vertex 3D displacement from mean shape,
and keep a number of principal components that retains
95% explained variance. At test time, we estimate the PCA
coefficients by solving least squares to dense target points
given by SyNoRiM. For compositional VAE, we model the
UV displacement map similar to our setting. At test time,
we initialize the latent code by feeding the SyNoRiM result
to the encoder, then optimize the latent code by minimiz-
ing point-to-plane distance in Equation (8). Table 1 shows
that our shape prior is more effective than baseline data-
driven shape priors. Please note that PCA achieves compa-
rable Ev to our method on Skirt 1 and Skirt 2, but it shows
significantly worse plane error Ept and Eps. As a linear
model, PCA may not be suitable for this inherently nonlin-
ear problem, so it is not flexible enough to achieve accurate
surface-level alignment. It cannot fit to large deformations
that are far from the mean shape as shown in Figure 5, 6,
even though they are from the interpolation set and close to
some training samples. Comparing to all baseline methods,
Figure 7 shows that our method consistently achieves the
best balance of lower Ev and Ept/Eps.

T-shirt 1
Interpolation set Extrapolation set
Ev Ept / Eps Ev Ept / Eps

τ = 40 32.16 0.67 / 1.29 36.46 0.72 / 1.93
τ = 30 3.39 0.57 / 0.62 9.40 0.61 / 0.73
τ = 20 3.16 0.57 / 0.62 9.51 0.61 / 0.75
τ = 10 3.47 0.58 / 0.64 9.82 0.63 / 0.79
τ = 0 3.82 0.59 / 0.67 10.10 0.66 / 0.86

Table 2. The effect of the guidance breakpoint τ . A large τ signif-
icant impair the performance.

4.3. Ablation Study

Guidance breakpoint τ . In Table 2, we quantitatively
show the impact of varying the guidance breakpoint τ in
Equation (6) on the T-shirt 1 sequence. The performance
with large τ is significantly worse, indicating that the first
stage of the manifold guidance plays a key role, and a coarse
registration module is necessary in our method. When τ is
in a reasonable range, it does not significantly affect the per-
formance, although a too small τ amplifies the influence of
error from the coarse registration.
Seam stitching. Given a 2D parameterization with multiple
islands for the clothing, it is important to enforce the con-
tinuity across the seams. Figure 8 illustrates that the pro-
posed seam stitching strategy prevents generating implausi-
ble shape with separated clothing parts.

4.4. Application

In real-world scenarios, clothing usually comes with tex-
tures that make visual keypoint tracking possible. Our
method is flexible in that it can take advantage of such in-
formation when available. To mimic the use case where
keypoint tracking is available, we experiment with a syn-
thetic setting where coarse registration is replaced by sparse
ground-truth guidance, as it could be provided by perfectly
accurate sparse texture tracking. Specifically, we randomly
select Nk vertices from the ground-truth mesh, and use
them to compute the distance in Equation 6 in the first stage
of manifold guidance with t > τ . This replaces the coarse
registration module, so coarse registration module is not
used under this setting.
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SyNoRiM Lap. reg. Lap. precond. ARAP reg. 3D-CODED 3D-CODED opt. PCA Comp. VAE OursInput point cloud
Ground-truth

Figure 5. Comparison to baseline methods on T-shirt 1 and T-shirt 2. In each example, the middle-left is the input point cloud, the bottom-
left is the ground-truth, the top-left is zoom-in view of ground-truth. The rest are the results of different methods, where the top row shows
side-by-side comparison to ground-truth, the middle row shows the geometry with normal rendering, while the bottom row shows vertex
error Ev in color (0mm > 50mm).

SyNoRiM Lap. reg. Lap. precond. ARAP reg. 3D-CODED 3D-CODED opt. PCA Comp. VAE OursInput point cloud
Ground-truth

Figure 6. Comparison to baseline methods on Skirt 1 and Skirt 2. See Figure 5 for explanation, and Supp. Mat. for more results.

7



Figure 7. Error plot of Ev vs. Ept/Eps. Closer to origin (lower
Ev and Ept/Eps) is a preferred solution.

Nk

T-shirt 1
Interpolation set Extrapolation set
Ev Ept / Eps Ev Ept / Eps

PCA
50 10.65 2.67 / 3.08 13.86 2.98 / 3.87

100 10.22 2.60 / 2.94 13.36 2.91 / 3.72
200 10.28 2.61 / 2.97 13.55 2.95 / 3.78

Comp.
VAE

50 30.08 1.67 / 6.00 37.16 1.45 / 8.23
100 28.41 1.24 / 5.94 34.55 1.07 / 7.93
200 25.41 1.03 / 5.67 30.54 0.87 / 7.44

Ours
50 3.59 0.58 / 0.65 6.10 0.62 / 0.79

100 2.62 0.57 / 0.62 4.89 0.61 / 0.74
200 2.39 0.57 / 0.62 4.53 0.61 / 0.74

Table 3. Sparse ground-truth guidance. Our method works with
sparse tracking signals. PCA performs similarly to the original
setting, while the performance of compositional VAE significantly
decreases.

No seam stitching Seam stitching

Figure 8. The effect of seam stitching strategy. Without seam
stitching, the generated clothing shape may have separated parts,
as continuity is not enforced across seams.

From Table 3 and Figure 9, we can see that our method
performs well with very sparse keypoint tracking signals,
and the accuracy improves when the number of sparse key-
points increases. As a compact linear model, PCA per-
forms similarly to the original setting, but increasing the
number of keypoint does not help. The compositional VAE
fails to learn a meaningful latent space for plausible cloth-
ing shapes, because large deformation and fine wrinkles are
coupled together. It may require a significant amount of
tracking signals to find a latent code corresponding to a
plausible clothing shape.

Keypoints PCA Comp. VAE Ours

Figure 9. Sparse ground-truth guidance. Keypoints used for track-
ing are shown in purple in the left column. Our method works
well with very sparse tracking signal. PCA cannot reproduce the
correct pose or wrinkles, and Compositional VAE fails to generate
a plausible clothing shape.

5. Conclusion
We have presented a diffusion-based shape prior for highly
deformable clothing geometry, and how the prior can be
incorporated into fine-grained non-rigid registration tasks.
Our approach, for the first time, achieves the adoption of
diffusion models into 3D cloth modeling by leveraging UV
parameterization. Our experiments using real data show the
versatility of the proposed multi-stage manifold guidance,
demonstrating superior performance with multiple clothing
types and diverse motions. As our approach is simple and
general, we believe it can open a new venue for various 3D
optimization problems that benefit from strong 3D shape
priors.
Limitations and future work. As our early stage guidance
relies on an off-the-shelf coarse registration module, large
error introduced by this module cannot be fully removed in
the following refinement stage. Eliminating the need of the
coarse registration or building a more robust shape prior is
an interesting venue for future work. Also, UV parameteri-
zation limits the capability of cross-garment generalization,
and leveraging a single UV parameterization may be non-
trivial for more complex clothing, which could be addressed
by extending diffusion models to other 3D representations.
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Diffusion Shape Prior for Wrinkle-Accurate Cloth Registration

Supplementary Material

Pattern registration 3D reconstruction

Rendered depth images

Figure 10. We generate 3D point clouds to mimic the typical 3D
reconstruction acquired by a 3D capture system. We render multi-
view depth images using the ground-truth registration, then we
fuse the multi-view depth images and sub-sample the 3D point
cloud.

T-shirt 1 T-shirt 2 Skirt 1 Skirt 2
Training 3575 4463 1699 2734
Int. set 188 234 90 144
Ext. set 200 150 150 150
Total 3963 4847 1939 3028

Table 4. Frame count in each sequence.

A. More experiment details

Dataset. As illustrated in Figure 10, we render seven
depth images for the ground-truth meshes from side and top
views, then fuse them into a 3D point cloud with proper
occlusion reasoning.

For each garment, there is a long sequence where the ac-
tor performs various movements (clips). All clips in the se-
quence form the full dataset. For extrapolation, we select a
clip where the actor performs a rare movement with unique
cloth deformation, not present in the rest of the sequence.
For the rest of the clips, every 20th frame is selected as in-
terpolation set, while the remaining frames are the training
set. The number of frames in each set is shown in Table 4.
Running time. We conduct the experiments on an NVIDIA
Tesla V100 GPU with 32GB memory. For each garment,
we train the diffusion model for 100k iterations, which takes
20 hours. The inference time is 53.57 seconds/frame.
SyNoRiM refinement in baseline comparison. We use the
Adam (UniformAdam for ”Lap. precond.”) with step size
10−3 for 200 iterations in all the refinement experiments.
The weights for the regularization terms are λLap. reg. = 103,

T-shirt 1
Int. set Ext. set

Ev Ept / Eps Ev Ept / Eps

No noise 3.16 0.57 / 0.62 9.51 0.61 / 0.75

Gaussian
noise

σ = 1 3.77 0.59 / 0.65 9.60 0.64 / 0.79
σ = 2 5.55 0.64 / 0.73 10.23 0.70 / 0.89
σ = 3 7.55 0.73 / 0.89 11.11 0.81 / 1.08
σ = 4 9.48 0.85 / 1.12 12.09 0.92 / 1.32
σ = 5 11.30 0.96 / 1.37 13.21 1.03 / 1.60

Laplace
noise

b = 3 10.74 0.82 / 1.10 12.66 0.89 / 1.31
b = 4 13.53 0.96 / 1.43 14.51 1.03 / 1.68
b = 5 17.73 1.11 / 1.93 16.96 1.17 / 2.14

Table 5. The quantitative evaluation of our method on noisy input
point cloud. Error metrics are measured in mm.

λLap. precond. = 10 (Eq. (14) in [27]), and λARAP reg. = 10−3.

B. Registration to noisy point cloud

We evaluate the robustness of our registration method to
noisy measurement. Specifically, we perturb the input point
cloud of the T-shirt 1 sequence by adding Gaussian noise
and Laplace noise to the 3D point locations

yG
i = yi +N (0, σ2I) (10)

yL
i = yi + L(0, bI) (11)

where yi is the i-th point of the input point cloud Y . yG
i is

the point cloud perturbed by Gaussian noise, with σ being
the standard deviation of the Gaussian noise. yL

i is the point
cloud perturbed by Laplace noise, with b being the scale of
the Laplace noise. Comparing to Gaussian noise, Laplace
noise has longer tail noise distribution that can mimic out-
liers. In our experiments, we add Gaussian noise to the in-
put point cloud with σ = 1, 2, 3, 4, 5 mm, and Laplace noise
with b = 3, 4, 5 mm, as shown in the top row of Figure 13
and Figure 14.

We take the noisy point cloud as input, and quantitatively
evaluate the registration result of our method in Table 5. We
also compare our method to baseline methods in Figure 11,
Figure 13 and Figure 14. The performance of our method
drops with the increase of noise level, but it consistently out-
performs the baseline methods. Please note in Figure 11 (c),
PCA shows comparable Ev to our method when b = 5.
However, PCA consistently shows worse plane error Ept

and Eps as discussed in the main manuscript. This can be
qualitatively verified in Figure 14 as well.
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(a) (b) (c) (d)

Figure 11. Vertex error of the registration results given noisy point cloud as inputs. (a) and (b) Adding Gaussian noise to input point cloud,
then testing on interpolation set and extrapolation set, respectively. (c) and (d) Adding Laplace noise to input point cloud, then testing on
interpolation set and extrapolation set, respectively

Data
prediction

Noise
prediction

Figure 12. The difference between predicting data x0 and pre-
dicting noise ϵ. Data prediction cannot represent fine details like
wrinkles.

C. Data prediction vs. noise prediction

Conceptually, it is equivalent to use a data prediction net-
work that predicts x0, or a noise prediction network that
predicts ϵ in the diffusion model. In practice, however, we
find that noise prediction is more effective. As shown in
Figure 12, a data prediction network has difficulty model-
ing high-frequency signals like wrinkles. It cannot enforce
continuity across the seams even if the seam stitching strat-
egy is applied.

D. Cross-subject generalization

The same clothing worn by different subjects may deform
differently because of the variation of body shapes. In Ta-
ble 6 and Figure 15, we empirically show that the proposed
method can generalize to unseen subjects. Specifically, T-
shirt 1 is worn by 4 different actors in 4 long sequences
”subject 00”, ”subject 01”, ”subject 02”, and ”subject 03”.
In this experiment, we take T-shirt 1 on all subjects as the
full dataset, and divide it into 4 parts, each contains one
subject. We conduct 4-fold cross-validation, where each
time we use 3 subjects for training, and the 4th subject for
validation. In each validation, the training set consists of

all frames of the 3 subjects, while the validation set only
contains every 20th frame of the 4th subject. In Table 6,
we report the quantitative evaluation of the 4-fold cross-
validation, showing that the proposed method consistently
outperforms the baseline methods on the cross-subject gen-
eralization task.

Please note that T-shirt 1 on ”subject 01”, ”subject 02”,
and ”subject 03” are only used in the cross-subject gener-
alization experiment, while other experiments on T-shirt 1
are done with ”subject 00”.

E. Additional qualitative results
We show more qualitative results on T-shirt 1, T-shirt 2,
Skirt 1 and Skirt 2 sequences in Figure 16, Figure 17, Fig-
ure 18 and Figure 19, respectively.
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Validation subject subject 00 subject 01 subject 02 subject 03
Ev Ept/Eps Ev Ept/Eps Ev Ept/Eps Ev Ept/Eps

SyNoRiM [17] 10.62 1.38 / 1.66 13.59 1.54 / 2.16 8.50 1.33 / 1.57 10.67 1.40 / 1.80
Lap. reg. [43] 10.32 0.66 / 0.64 12.99 0.64 / 0.67 8.13 0.61 / 0.62 10.21 0.65 / 0.65
Lap. precond. [28] 10.09 0.53 / 0.59 12.97 0.55 / 0.63 8.10 0.52 / 0.58 10.20 0.56 / 0.62
ARAP reg. [42] 10.04 0.52 / 0.60 12.57 0.54 / 0.65 7.87 0.51 / 0.58 9.94 0.54 / 0.65
3D-CODED [14] 36.94 3.93 / 15.77 18.17 4.09 / 6.05 23.91 4.03 / 6.76 15.80 3.25 / 4.58
3D-CODED opt. 33.03 3.13 / 13.13 16.04 3.00 / 4.17 20.52 3.35 / 5.34 14.14 2.77 / 3.72
PCA 11.65 3.02 / 3.44 12.11 2.72 / 3.28 10.19 2.87 / 3.27 10.41 2.38 / 2.71
Comp. VAE [2] 10.35 1.21 / 1.23 13.12 1.06 / 1.19 8.21 1.05 / 1.08 10.27 0.97 / 1.04
Ours 9.85 0.61 / 0.69 11.77 0.60 / 0.75 7.58 0.56 / 0.68 9.69 0.60 / 0.72

Table 6. Quantitative results for cross-subject generalization. For each validation, the models are trained on the other 3 subjects. Error
metrics are measured in mm. Bold indicates the best Ev .
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Input
point cloud

SyNoRiM

Lap.
reg.

Lap.
precond.

ARAP
reg.

3D-CODED

3D-CODED
opt.

PCA

Comp.
VAE

Ours

No Noise 𝜎 = 1 𝜎 = 2 𝜎 = 3 𝜎 = 4 𝜎 = 5

Figure 13. Registration results of baseline methods and our method on noisy point cloud, where σ is the standard deviation of the Gaussian
noise measured in mm. Vertex error Ev is shown in color (0mm > 50mm).
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Input
point cloud

SyNoRiM

Lap.
reg.

Lap.
precond.

ARAP
reg.

3D-CODED

3D-CODED
opt.

PCA

Comp.
VAE

Ours

No Noise 𝑏 = 3 𝑏 = 4 𝑏 = 5

Figure 14. Registration results of baseline methods and our method on noisy point cloud, where b is the scale of the Laplace noise measured
in mm. Vertex error Ev is shown in color (0mm > 50mm).
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Input point cloud
Ground-truth SyNoRiM Lap. reg. Lap. precond. ARAP reg. 3D-CODED 3D-CODED opt. PCA Comp. VAE Ours

Figure 15. Qualitative comparison for cross-subject generalization. Each example is from a different subject. For each example, the model
is trained on the other 3 subject, so the test subject is always unseen during training. See Figure 16 for explanation of the figure.
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Input point cloud
Ground-truth SyNoRiM Lap. reg. Lap. precond. ARAP reg. 3D-CODED 3D-CODED opt. PCA Comp. VAE Ours

Figure 16. Comparison to baseline methods on T-shirt 1. In each example, the middle-left is the input point cloud, the bottom-left is the
ground-truth, the top-left is normal map of ground-truth. The rest are the results of different methods, where the top row shows normal
map, the middle row shows the geometry with normal rendering, while the bottom row shows vertex error Ev in color (0mm
> 50mm).
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Input point cloud
Ground-truth SyNoRiM Lap. reg. Lap. precond. ARAP reg. 3D-CODED 3D-CODED opt. PCA Comp. VAE Ours

Figure 17. Comparison to baseline methods on T-shirt 2. See Figure 16 for explanation.
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Input point cloud
Ground-truth SyNoRiM Lap. reg. Lap. precond. ARAP reg. 3D-CODED 3D-CODED opt. PCA Comp. VAE Ours

Figure 18. Comparison to baseline methods on Skirt 1. See Figure 16 for explanation.
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Input point cloud
Ground-truth SyNoRiM Lap. reg. Lap. precond. ARAP reg. 3D-CODED 3D-CODED opt. PCA Comp. VAE Ours

Figure 19. Comparison to baseline methods on Skirt 2. See Figure 16 for explanation.
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