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Abstract

We provide a novel approach for aligning geometric models
using a dual graph structure where local features are map-
ping probabilities. Alignment of non-rigid structures is one
of the most challenging computer vision tasks due to the high
number of unknowns needed to model the correspondence.
We have seen a leap forward using DNN models in template
alignment and functional maps, but those methods fail for
inter-class alignment where non-isometric deformations ex-
ist. Here we propose to rethink this task and use unrolling
concepts on a dual graph structure - one for a forward map
and one for a backward map, where the features are pulled
back matching probabilities from the target into the source.
We report state of the art results on stretchable domains’
alignment in a rapid and stable solution for meshes and point
clouds’.

1. Introduction

The alignment of non-rigid shapes is a fundamental problem
in computer vision. It plays an important role in multiple
applications such as pose transfer [40], cross-shape texture
mapping [63], 3D body scanning [3], and simultaneous lo-
calization and mapping (SLAM) [59]. The task of finding
dense correspondence is especially challenging for non-rigid
shapes, as the number of variables needed to define the map-
ping is vast, and local deformations might occur. To this end,
a variety of solutions were offered to solve this problem, us-
ing axiomatic and learnable methods. From defining unique
key-points or local descriptors and matching such descriptors
between the shapes [49, 1, 43, 50], spectral-based methods
that try to align the spectra of the shapes [29, 42, 21, 18], or
template-based approaches that assume a known pre-defined
structure closely resemble all shapes and find the correspon-
dence from each shape to that template [20].

Many algorithms for non-rigid alignment relax the problem
to matching probabilities which grants them the possibility to
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Figure 1. Dense shape correspondence maps generated by DG2N.
Similar colors represents correspondence mapping from the source
shape (left) to the target (right).

consider noise and variability in the pipeline. The transition
from soft mapping to vertices alignment, or directly match-
ing points, requires a post-processing step to remove outliers
and smooth the results. Unfortunately, this is a slow pro-
cess and is not performed in a network, as those algorithms
are resource-demanding and require a large number of repe-
titions [54, 27].



In this work, we focus on the refinement of a non-rigid align-
ment map. We unroll the refinement process into a multi-
block graph neural network that performs the map denois-
ing. To denoise the alignment in a learnable manner, we con-
struct a dual graph structure, one for the forward map and
one for the backward map, where we claim that the features
are the actual probabilities for mapping pulled back from the
target. In simple words, what best describes a point in the
source, is not just its local features but how do all the points
in the target resemble it. We call that structure a Dual Geo-
metric Graph Network (DG2N). As the method does not de-
pend on the modality of the input, DG2N is able to refine
both meshes and point-clouds under various deformations,
as demonstrated in the experimentation section 4. We report
state-of-the-art results on multiple benchmarks and succeed
in providing a stable solution even under large non-isometric
deformations.

Contributions We present three key contributions:

* Build a new architecture for self-supervised non-rigid
alignment based on a residual pipeline that converges
into a clean, soft mapping matrix for each pair of models
(zero-shot).

 Present a novel concept for graph features derived from
the soft alignment map between the shapes.

* Report state of the art results in a wide range of bench-
marks, including FAUST, TOSCA, SURREAL, SMAL,
and SHAPENET.

2. Background

This work is focused on alignment refinement of an initial
map between non-rigid models , motivated by denoising con-
cepts of graph neural networks. Let us elaborate on each one
of those elements.

Graph neural networks While deep learning effectively
captures hidden patterns in grid sampled data, we witness an
increasing number of applications where the information is
better represented in graphs or manifolds [26, 9, 57]. New
challenges arise from a non-Euclidean structures due to the
variable size of neighbors and unordered nodes.

Graph neural networks go back to 1997, working on acyclic
graphs [48], but the notion of graph neural network was of-
ficially introduced by Gori ef al. in 2005 [19]. Within the
idea of graph neural networks, the most relevant to this work
are convolutional graph neural networks, also known as Con-
vGNN. Under this umbrella, we can find two main streams;
spectral and spatial. The first prominent research on spec-
tral networks was presented by Bruna et al. [5]. On the other
hand, a spatial convolutional structure was addressed more
than a decade ago by Micheli [34], which has recently been
resurfacing, showing its usefulness for multiple tasks in ge-
ometry and computer vision.

A variety of modern graph learning algorithms [ 1, 53, 26,
, 35, 16] replaced the traditional Euclidean convolution
with a general concept of pulling that can be implemented
on a graph. Among popular modern graph neural network
architectures for computer vision tasks, we can find PointNet
[38], its successor PointNet++ [39] and DGCNN [57], which
provides useful tools to convolve over a set of points.
In this paper, the unit blocks we use are based on top of the
graph convolution network [25], the vertices are points in
space, edges are based on the input modality, which is the
triangulation for meshes or euclidean nearest-neighbors for
point clouds, and the features are alignment probabilities in
between the source and the target.

Non-rigid shape correspondence Non-rigid shape match-
ing is built out of aligning points with similar features, ge-
ometric and/or photometric, and a smoothness term, making
sure a point can not be mapped farther from its neighbor. Un-
der this umbrella, we had seen various axiomatic methods fo-
cused on distances, angles, and areas [43, 50] where a large
leap forward was made when deep learning was applied on
top of geometric data. We can split deep models into two cat-
egories - spatial and spectral. Under the spatial approach, we
usually see a flow mechanism where the models’ changes are
minor [61, 30] or an all-to-all correlation approach [37] that
can cope with large displacements. When the domain is well
defined, then template matching showed great results, as seen
in [20] and in [23]. On the spectral side, various methods
based on functional maps [29, 18, 21] showed superb results
on meshes and points and even excelled on partial alignment
[29]. Those papers’ goal was to construct deep local features
such that the spectra of the shapes would align following a
point-to-point soft correspondence matrix.

One of the challenges in non-rigid alignment is the lack of la-
beled data. That is mainly because there is no feasible way to
own the exact dense correspondence of bendable and stretch-
able domains on real scanned sets. To overcome this obstacle
and remain within the learnable regime, we consider a self-
supervised approach. In the spatial domain, we have seen
several useful cost functions that use templates while forc-
ing smoothness on the structures [20]. More sophisticated
assumptions on the domain, such as isometry, were able to
learn a mapping by minimizing the Gromov Hausdorff met-
ric as it only needed to compare distances between pairs [2 1],
but failed to converge once stretching appeared. A recent
mapping with a cyclic loss measuring the error only on the
source showed superior results even under local stretching
[18].

All those methods break once there isn’t enough data to train.
As reported by the authors, either the system can not con-
verge, or we witness a high number of outliers. To overcome
this limitation, we present a zero-shot alignment architecture
between two-shapes, where we rethink the alignment pro-
cess as denoising a soft correspondence matrix. By that, we



quickly converge into a clean outlier-free model and can cope
with inter-class alignments even under large deformations.

Correspondence refinement While the methods men-
tioned in the previous section brought for the first time the ca-
pability to densely align between 3D objects with satisfying
results, still, most output maps were noisy, partial, or sparse.
For the extent of our knowledge, we are the first to offer a
learnable refinement pipeline, nevertheless, many axiomatic
methods have tried to iteratively refine and sharpen these
maps. Most refinement methods solve the optimal transport
problem between the shapes under various constraints de-
rived from the input mapping. One example of such approach
was even presented in the original functional maps paper,
where the authors showed how ICP [2] applied to the spectral
features improves the map dramatically. Others [32] solve
the transport problem directly under constraints as geodesic
distance preservation or variance minimization of the map-
ping. Methods as the Product Manifold Filter (PMF) [55]
use linear or quadratic assignment solvers [27] to determine
the solution to the transport problem. Lately, an important
method named ZoomOut [33] showed how one can refine
the initial map in the spectral domain by progressively in-
creasing the dimension of the functional mapping, refining at
each step. While the above axiomatic methods are milestones
in the field, methods that try to solve the transport problem
in the spatial space become computationally unfeasible and
slow even under relatively sparse input sampling. On the
other hand, spectral methods solve the alignment problem
with a decent outcome for low-frequency maps but strug-
gle with high frequencies. Furthermore, the functional maps
setting used in methods like ZoomOut assume isometry be-
tween shapes, thus present degraded results in local scaled
and deformable shape matching. Adding to the above, all
spectral methods are based on the Laplace Beltrami operator
which is known to be unstable and generate poor spectra un-
der modalities different that meshes, like point clouds. Due
to that, such methods tend to show inconsistent results, or
even harm the initial map in some settings, as we present in
the results section 4.

Graph denoising Denoising graph signals is a ubiqui-
tous problem that plays an important role in many areas
of machine learning [26, 58, 51], and was proven to im-
prove results on a wide range of problems [8, 46]. The
two main approaches for analyzing graph signals are graph
regularization-based optimization and graph dictionary de-
sign [22, 47]; The optimization approach applies a regu-
larization term that promotes certain characteristics on the
model, such as smoothness or sparsity [0, 8]. The optimiza-
tion function itself usually takes the form of

argmin ||t — x||§ + AQ(x)
xr

where ¢ is the noisy graph signal, and () is the regularization
term.

When smoothness of the graph signal is assumed, one pop-
ular choice is the quadratic form of the graph Laplacian, the
Dirichlet energy, discretized as 7 L2 where x is the graph
signal, which captures the second-order difference of a graph
signal [36]. For sparsity of the graph signals, a graph total
variation term that captures the first-order difference of the
graph signals was proven effective [58, 9]. Recently, denois-
ing graphs using deep architecture showed superior results
by unrolling the L, regularization term into several layers,
converging iteratively into the desired cost function [7].

3. Method

The proposed method is a self-supervised learnable pipeline.
To align two non-rigid models, we use point embeddings
generated by a black box model we refer as the initiator. Us-
ing these embeddings we define the soft-alignment map as
the cosine similarity between the source and target embed-
dings. We learn how to iteratively update the soft correspon-
dence matrix to improve the results and remove outliers 3.1.
Our cost function is based on the understanding that each
point’s best features are the correspondence probabilities to
the target points. Specifically, if P is a soft correspondence
matrix, i.e., if P € RV*M and P;; € [0,1] is the proba-
bility that point ¢ matches point j, then in the primal graph,
the features of point ¢ are the ¢’th row of P, and the features
of the dual graph are represented by the columns (or rows of
PT). We denote this primal-dual structure as the Dual Graph
Geometric Network (DG2N).

While we use the cosine-based soft correspondence map as
P, DG2N can work with any soft-alignment matrix, such as
the soft-alignment map proposed in [29], and extended in
[21, 18].

In the scenario of point clouds, where there is no relevant
dense-correspondence initiator (Section 4), we use a rigid-
alignment algorithm such as DCP [56] as our feature extrac-
tion network. This is an extremely weak learner that pro-
duces outliers and inaccurate alignments, but it is sufficient
to train the proposed DG2N architecture and converge to a
very good mapping.

DG2N is composed of our new graph attention mechanism,
activated on the two graphs (primal and dual) simultaneously.
We refer to the new convolution blocks by differential-GAT,
or DGAT. Inspired by [53], we consider a pulling strategy
in-between points and their neighbors, where we concatenate
the differences between the node features for a fixed number
of neighbors.

To keep improving the outcome and not collapsing during
the denoising process, we present four cost functions. We
require the alignment to be injective, smooth, not too far from
the previous iteration, and to keep the most valuable points
in place.

In what follows, we elaborate on the main three components
of the architecture’s pipeline and the four cost functions.
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Figure 2. Our dual graph geometric network. Given two input graphs we first pass them through an initiator to have the initial soft correspon-
dence matrix P, representing correspondence probabilities between all vertex-pairs in the mapping. We then pass the graphs induced by P
and PT through stacked layers of DG AT with residual connections, where the output is a refined soft correspondence matrix. The 4 loss
objectives (Section 3.2) allows iterative refinement over P, where the input P for the next iteration is the output of the previous one.

3.1. Architecture

All-to-All mapping To achieve a coherent and smooth cor-
respondence map between two shapes, our dual graph unit
(DG2N) uses the soft correspondence mapping P as an in-
put. We can use any known method which has a soft corre-
spondence matrix in the pipeline as an initiator, for example
[18, 29, 21].

In detail, [29] showed that using the functional mapping C,
with the graphs laplacian eigendecomposition of the shapes
@, U the soft correspondence is constructed by

P o |TCPT. (1

In the scenarios where spectral methods are unstable or fail
to create reasonable results (Section 4) we show here that
an elementary all-to-all correlation matrix can be constructed
from popular rigid alignment networks such as DCP [56]. We
found that to be good enough as an initiator for the refine-
ment. Specifically, we use the last hidden layer of DCP as a
point descriptor h,,. The soft correspondence is constructed
by the cosine similarity between the descriptors:

he, - hy,
P= 2 )
Y a2 e, [l
where h;, and h,; represent two feature vectors of points z;

and ;.

In Section 4 we show such a simple solution finds a noisy cor-
respondence between non-isometric pairs but provides suffi-
cient initialization for our architecture.
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Figure 3. Single DGAT layer. Phase I: Create the difference guiding
feature vector [hi|h;|h; — h;] € R*M and pass it through a first
learnable architecture. Phase II: stack phase I features H; € RM*K
and regress each feature individually through the second module
forming the output feature per point hi € RM,

hy
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Differentiable GAT DG2N is composed of two paral-
lel GNN modules based on the Differential Graph Atten-
tion (DGAT) layer. Inspired by GAT [53], DGAT perform
weighted local pooling, only here we stack the output fea-
ture vector from the per-pair stage and apply a per-feature
network to learn the best refinement step.

The most generalized structure associated with GNNs is

fi =0 (fi,Ojeni o (W (fi, £ 1))

where f and f / represent the input and output data channels
respectively, [] is some differentiable aggregation function,
Yo, ¢o denote non-linear transmission functions, and ¢ de-
fines the feature-fusion method applied before the features
propagate through ¢¢g.

DGAT set [] to be stacking of the per-neighbor output fea-



ture vector, v is the guiding vector function

V(fi, fireza) = [fil f51fi = £il, (3)

and the graph’s edges determine the neighborhood. g, and
¢e are variants of a multi-layer perception (MLP) with nor-
malization and non-linear activation function layers. In prac-
tice, DGAT takes the form

fi = DNNo( ||
JEN(3)

(DNNy([filflfi = f51) &)

where ||
JEN(3)
illustration can be found in Figure 3.

is the concatenation of DN N; outputs. An

One crucial emphasis here is the role of DNN, and
the distinction to other suggested aggregation functions.
One optional aggregation would be to concatenate the
output difference features resulting in a feature vector of
dimension H; € REM  while we stack the features resulting
in H; € RM>*X_ Qur construction not only produces a
learnable module with a factor of M? fewer parameters as
DN N2 is applied on the k& dimensional vectors but, more
significantly, acts as a learnable weighting function that
incorporates the various per-neighbor refinements into a
refinement step per-node.

Dual Geometric Graph Network In the heart of the pro-
posed architecture, is our understating that the soft corre-
spondence matrix P induces a graph. The nodes of the pri-
mal graph are the source points, and the features are the cor-
respondence measure for all target points, i.e., the rows of P
are the features. The dual graph has the same structure only
based on PT. Here the nodes are the vertices of the target
shape, and the columns of P are the features. We provide
a visualization of the architecture in Figure 2. Each primal-
dual pair (P, PT) is passed through k layers of DGAT in
a res-net structure; i.e. the output of each DG AT layer is
DGAT(P) + P for an input soft correspondence matrix P,
and similar for P7, the dual graph pipeline. In each iteration,
we fuse P and P7 into one aligned soft correspondence ma-
trix’.
The output of each iteration of DG2N refinement is also a soft
correspondence matrix. As the correspondence statistics vary
between one iteration to the next, we use different weights
per iteration. As we continue to iterate, the soft correspon-
dence matrix improves and converges to a clean, outlier-free
soft mapping. At inference, the output map is the maximum-
likelihood solution derived from the soft correspondence ma-
trix, which is:

m(X); = argmax P;;. 5)

J

Where X', Y are the source and target shapes respectively.

2There are several reasonable options for the fusion, as element-wise
max or mean. In practice, no consistent improvement was noted by one
option over the other.

3.2. Losses

We combine four different losses in this pipeline. £ Lapla-
cian loss, £;; Sparsity loss, £ 4 Anchors guidance loss and
L2 Denoising regularization.

These constraints form together the loss objective of a single
refinement step of DG2N, which is:

L=Lr+Lpn+Lag+ L2 (6)

All four losses are evaluated separately and summed together
both for the primal and dual graphs and executed for every
iteration output.

Let us elaborate on each term in the loss.

Laplacian loss Laplacian regularization term pushes to-
ward graph smoothness. It takes the form of:

Lo =MPTLpP =X Y wijl|Pi—Pi.l}

(i,J)€EEx

where Lp = D — A is the graph Laplacian of the source
shape X', D is the degree of each node, A is its adjacency
matrix, and P; , is the 7’th row of P. Two important items to
note here, the first is that this term can be used on any struc-
ture inducing a graph. Second, while all other methods use
Laplacians on the shape coordinates in space, we claim that
smoothness should apply directly to the soft correspondence
matrix. Since the features are the mapping probabilities, we
claim the smoothness on P is a better goal.

Sparsity regularization We add the £; regularization on
the rows of P. Specifically,

N
L1=X1 Y [Pish. (7)

i=1

As the rows of P represent the alignment probabilities, we
wish to promote sparsity. Each source point corresponds to
a single target point, meaning one element should hold most
of the energy, and the rest should decline rapidly. Note that
we are not normalizing the rows or columns in each iteration,
thus P is in fact a pseudo probability matrix, where each row
does not guaranteed to sum to one.

Anchors guidance loss One of the caveats with the Lapla-
cian regularization is its tendency for over-smoothing and
thus hurt the overall performance [60]. In our case, this phe-
nomenon takes the shape of pushing all correspondence prob-
abilities of P towards the average. While this decreases the
Laplacian loss, it results in significant degradation of the re-
sults, as shown in the ablation study (Table 3).

To solve the mentioned problem, we present a self-
supervised anchor guidance mechanism. Motivated by node
classification tasks [17, 44], a few anchor points are sam-
pled from the initial soft correspondence map, and we seek



to use their initial mapping as guidance through the refine-
ment. Bear in mind that those points are not fixed and are
part of the learnable pipeline, only we provide extra attention
to points we believe in their mapping.

Analyzing soft correspondence mappings generated from
different pipelines (FMnet [29], SURFMNet [42], DCP
[56]), we observed two attributes that reoccur by all algo-
rithms:

1. Source nodes where the highest correspondence proba-
bility of P is two orders of magnitude larger than the
average probability (%) usually point to the true corre-
spondence.

2. High probability correspondences reside in clusters, that
is, if a source node corresponds to some target node
with high probability, it is usually the case its neighbors
will also have high probability correspondence to some
neighbor of this corresponding point.

We utilize the above observations to attend the over-
smoothing caused by the Laplacian. For each X', P,) we
first sample k& < |Vx| disconnected nodes using FPS [15]
noted as Vi ., and assign their soft label by defining

9; = argmax P; .  Vv; € Vi,
I ®)
O(@z) = ,P?'/,Z}i

where C(-) is the confidence x; corresponds to ;.

Using the above formulation, we define a soft-classification
problem. We constrain the network to label the anchor points
similarly to how they were classified before the refinement
layer. The penalty for each wrong classification is directly
proportional to the confidence C(-).

We use the anchors’ notations and define the anchor loss as
the cross-entropy between the presumed label, and the output
features of DG2N Layer. Specifically,

Lac= Y, C@) ©
Ti €EVK 5
[V -1
(—wilpl +108 (Y exp(@ili])),
i=0

where x;[m] is the m’th element in the row of P correspond-
ing to vertex ;.

Denoising regularization For each iteration, we assume
the output is similar to the input. By that we force the net-
work to penalize for large gaps, and de-facto promote minor
updates, usually referred to as noise or outliers in this paper.
Denoting the previous layer matrix as P and the output of
a single DG2N iteration as P*, the denoising regularization
takes the form of:

Lo = \ip||P* = P2 (10)

4. Experiments

The following section presents multiple scenarios in which
our self-supervised architecture surpasses current state-of-
the-art algorithms for non-rigid alignment. In addition, we
will present our zero-shot pipeline that achieves near-perfect
results for non-isometric deformable shape matching. To ad-
just DCP [56] for the dense correspondence task we follow
FMnet [29] loss and optimize for £ = ||P — I||3, as during
DCP training the map is given by 7 (X;) = ;.

We evaluate DG2N on a wide range of popular datasets for
dense shape correspondence. To assess the network’s robust-
ness, we test it on multiple datasets with different statistical
and topological attributes as humans datasets (FAUST[3] and
SURREAL [52]), animals (SMAL [64] and TOSCA [4]) or
chairs and plains (SHAPENET[6]). We use a remeshed and
down-sampled version of FAUST, SURREAL, and SMAL,
as suggested by [41]. In the generated datasets, each shape
has approximately 1000 vertices. These re-meshed datasets
offer significantly more variability in terms of shape struc-
tures and connectivity than the original datasets [14].

Mesh Error Evaluation The measure of error for the cor-
respondence mapping between two shapes will be according
to the Princeton benchmark [24], that is, given a mapping
7 (X,Y) and the ground truth 7*, (X, Y), the error of the
correspondence matrix is the sum of geodesic distances be-
tween the mappings for each point in the source figure, di-
vided by the area of the target figure.

() 3 D)

= area()) ’

where the approximation of area(-) for a triangular mesh is
the sum of its triangles area.

Humans datasets - FAUST and SURREAL We follow
the suggested setting [14] for these human datasets and split
both datasets into training sets (80 shapes) and test sets (20
shapes). The specific shape splits are identical for all tested
methods for a fair comparison. We test two scenarios, one in
which we train and evaluate on the same dataset and one in
which we test on the other dataset (e.g., training on FAUST
evaluating on SURREAL). This experiment aims attesting
the generalization power of all methods to small re-meshed
datasets, as well as their ability to adapt to a different dataset
at test time.

Table 1 stresses some of the key advantages of DG2N com-
pared to other self-supervision methods and refinement tech-
niques, as robustness and generalization. While almost all
learnable methods perform reasonably well on the same-
dataset benchmark, we see significant performance gaps
compared to other methods when conducting the cross-
dataset test; this is due to the fact we are self-supervised
and shape-pair specific, thus are almost invariant to noise



FAUST [3] SURREAL [52] FonS SonF SMAL[64] SMAL onTOSCA [4]
FMNet [29] 12.1 18.7 35.3 334 * *
3D-CODED [20] 8.5 15.5 28.5 26.0 8.8 35.7
Deep GeoFM [14] 3.8 42 7.8 14.2 * *
DCP(Unsup) [56] 19.3 21.2 26.4 28.9 16.8 27.3
SURFMNet(Unsup) [42] 7.1 11.3 31.5 42.3 * *
Unsup FMNet(Unsup) [21] 13.1 14.6 33.2 38.5 * *
PMEF [55] on DCP 18.1 19.8 21.6 25.8 14.0 23.9
PMF [55] on GeoFM 3.5 4.1 6.6 8.5 * *
ZoomOut [33] on DCP 22.9 18.5 28.0 29.9 14.6 26.8
ZoomOut [33] on GeoFM 29 3.8 6.3 8.4 * *
Ours(Unsup) on DCP [56] 15.3 12.9 21.1 254 7.9 19.5
Ours(Unsup) on FMNet [21] 9.6 11.8 13.5 14.9 * *
Ours(Unsup) on SURFMNet [42] 5.9 8.1 9.3 10.5 * *
Ours(Unsup) on GeoFM [14] 34 4.1 6.2 8.1 * *

Table 1. Mean geodesic error (MGE) comparison by different methods on FAUST(F), SURREAL(S), SMAL and TOSCA datasets. No post
processing filters are used for any of the methods except the specified refinement procedures. We remark that due to the numerical instabilities
of the Laplacian decomposition we were not able to run the spectral methods with the code published by the authors (results marked with *)
on our re-sampled SMAL dataset. ZoomOut presents slightly better results than DG2N for refining GeoFM, where GeoFM already achieves
remarkable results on FAUST, without any post-processing filters. However, when refining imperfect initiators, such as DCP, ZoomOut
compromises the initiators’ results, degrading the MGE by 3.6 points. In contrast, our DG2N is robust to imperfect initiators, and improves

the noisy correspondence of DCP by 4.0 points.

added to the system by changing the statistical attributes of
the data. Comparing to PMF [55], having an average refine-
ment time of two minutes per shape-pair, we see that DG2N
outperforms its results in both settings while refining in two
orders of magnitude faster. PMF is extremely sensitive to
the optimization hyper-parameters, and in our experiments
we observed variability of up to 5X in the MGE score un-
der different parameters. We report here the results under
the optimal parameters. Compared to ZoomOut refining Ge-
oFMNet, which receives remarkable results without any post
processing filters, ZoomOut presents 0.5 cm MGE less in the
same-dataset setting, and worst results compared to DG2N
in all other experiments. When ZoomOut is examined on
noisy initial maps, as in the case of using unsupervised ini-
tiators, ZoomOut presents results that are often worse than
not using filters at all. We attribute that phenomena to the
use of the hard mapping 7(X) by ZoomOut. 7(X) of noisy
initiators often include cases where neighbor points map to
geodesically distant target vertices, using such outliers as the
initial conditions for the refinement process may cause di-
vergence, as happened in our evaluations. Unlike ZoomOut,
DG2N takes advantage of the soft alignment matrix, which
indicates the pipeline for possible outliers, and offer other
mappings that are coherent to the point neighborhood.

Animals datasets - SMAL and TOSCA To better under-
stand the different models’ generalization capabilities and
ensure the models are not hand-crafted for human-like struc-
tures, we also assess the network’s performance on animal
datasets. SMAL [64] dataset provides a generative model
for synthetic animals creation in different categories as cats,

horses, etc.; SMAL is extracted from a continuous parametric
space with a fixed number of vertices and same triangulation
for all shapes, with the possibility of generating “infinitely
many” training samples. Unlike SMAL, TOSCA [4] con-
tains a fixed selection of shapes, including 9 cats, 11 dogs,
3 wolves, etc. Which is both dramatically smaller and has
no topological guarantees, meaning no two shapes have the
same triangulation. The animals datasets experiment was
conducted as follows: For each SMAL category, we create
80 shapes for training and 20 for the test, resulting in 500
samples. We must emphasize that previous methods [20]
that worked with SMAL used two orders of magnitude more
training samples in their experiments. Table 1 expresses the
advantages of DG2N over previous works that are consid-
ered state-of-the-art in this regime. The tested spectral based
methods (FMnet variant [29, 21]) failed to converge on the
remeshed datasets, probably due to the unstable and noise
process of the decomposition of the Laplacians. Compared
to ZoomOQOut and PMF we see similar trains to the FAUST
and SCAPE experiments, where both achieve an average of
4 cm MGE worse results than DG2N.

Deformable irregular correspondences - point clouds reg-
istration Point cloud registration is undoubtedly one of
the hardest registration tasks for 3D shapes, while it is the
most common scenario in real-world cases. We evaluate the
different methods of chosen classes from SHAPENET [6],
namely chairs, cars, and plains; Each category contains mul-
tiple subjects, where no pair is isometric, nor has the same
number of points. Unlike meshes, point clouds suffer from
noise and topology ambiguity due to the sampling process
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Figure 4. Dense correspondence on point clouds - spectral solutions
fail to create smooth or coherent results due to the noisy nature of
the Laplacian for point clouds, Elementary structures [12] and other
reconstruction based methods do not enforce smoothness resulting
in noisy maps.

involved in generating them and the surface-approximation
heuristics needed to define each point’s neighborhood. Spec-
tral based methods undergo significantly degradation in the
results, since spectral decomposition of point clouds is in-
accurate and unstable [28, 31]. GeoFMNet is a super-
vised pipeline, thus irrelevant for this evaluation as ShapeNet
doesn’t contain any correspondence labels. The authors of
SURFMNet did not evaluate on point-clouds nor offered the
tools for such evaluation. For fairness, we used [45] which
is a new tool for Laplacian decomposition on point clouds
for the evaluation of SURFMNet. No dataset currently ex-
ists with ground-truth correspondences between deformable
point clouds, so we turn to evaluate the performance of the
different methods visually, in terms of smoothness, coher-
ence’, and robustness to deformations.

Zero-shot correspondence “Zero-shot” self-supervised
methods are essential and brought great achievements and
new capabilities in other domains as super-resolution and
image generation [13, 62]. Having a zero-shot registration
method for 3D shapes is considered exceptionally difficult,
with only a few [18, 21] that tried to tackle the problem.
Unfortunately, as seen in previous experiments (Section 4),
spectral methods are sensitive and limited in terms of the in-
put domain. To present our self-supervision capabilities, we
chose randomly 10 inter-class shape pairs for the FAUST-
remeshed dataset. For each pair, we trained DCP [56] only
on the inference pair until convergence exposing new linear
augmentations each training step and ran the inference. On
the provided output we ran DG2N refinement scheme. Nat-
urally, only unsupervised methods are relevant for compari-
son. We present a comparison to other zero-shot methods in
Table 2.

3 A good alignment will map a guitar neck of one shape to the other.

Method Mean geodesic error
SURFMNet(Unsup) [42] 36.2
Unsup FMNet(Unsup)[2 1] 16.5
Cyclic-FMnet(Unsup) [ 18] 14.1
DCP(Unsup) [56] 19.5
Ours(Unsup) on DCP 11.0

Table 2. Mean geodesic error in a zero-shot setting on FAUST-
remeshed. We present best results among all unsupervised methods
that are relevant to this experiment setting.

4.1. Ablation

DG2N training is constructed of 4 different loss functions,
each plays an important and substantial role in the refine-
ment process. We provide table 3 as numerical evidence to
the significance of the different cost functions, as well as our
DGAT module importance. While some objectives improve
the refinement effect, some, as L4 or Lo are indispens-
able, with substantial degradation to the results without their
regularization effect to the denoising process. Inspecting the
effect of replacing DGAT with GAT [53] or GCN [25] we
witness substantial performance decrease, where the baseline
alternatives bring degraded results compared to the initiator
mapping. The ablation was done on FAUST resampled, with
the initial correspondence generated by SURFMNet.

Ablation MGE
Baseline SURFMNet 7.1
L+ L 47.5
L+ Lpn+ Lac 381
Loss Lo+ Lac 9.9
Lr+Ln+ L 6.7
Lp+ L+ Lac 6.2
DGCNN [57] 25.1
GNN GCN [25] 21.9
GAT [53] 14.3
Full DG2N 5.9

Table 3. Ablation study

5. Summary

We presented a novel line of thought for aligning non-rigid
domains using a learnable iterative pipeline. Motivated by
graph denoising and presenting a dual graph structure built
on top of soft correspondences, we rapidly converge into
an accurate and free of outliers mapping even under severe
non-isometric deformations. We report state-of-the-art re-
sults on multiple benchmarks and different scenarios, where
other methods suffer poor outcomes or fail altogether.
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