arXiv:2010.07091v1 [cs.CV] 14 Oct 2020

A New Distributional Ranking Loss With Uncertainty: Illustrated in
Relative Depth Estimation

Alican Mertan, Yusuf Huseyin Sahin, Damien Jade Duff, and Gozde Unal
Istanbul Technical University, Istanbul, Turkey

{mertana, sahinyu, djduff, gozde.unal}@itu.edu.tr

Abstract

We propose a new approach for the problem of relative
depth estimation from a single image. Instead of directly
regressing over depth scores, we formulate the problem as
estimation of a probability distribution over depth and aim
to learn the parameters of the distributions which maxi-
mize the likelihood of the given data. To train our model,
we propose a new ranking loss, Distributional Loss, which
tries to increase the probability of farther pixel’s depth be-
ing greater than the closer pixel’s depth. Our proposed ap-
proach allows our model to output confidence in its estima-
tion in the form of standard deviation of the distribution. We
achieve state of the art results against a number of baselines
while providing confidence in our estimations. Our analysis
show that estimated confidence is actually a good indicator
of accuracy. We investigate the usage of confidence infor-
mation in a downstream task of metric depth estimation, to
increase its performance.

1. Introduction

Depth is a key factor of a scene and it has always been an
important challenge to estimate it, especially from monoc-
ular images. With the advancements in the deep learning
techniques, we started to see very successful attempts in
monocular depth estimation task such as [9, 14, 10], where
the aim is to estimate absolute depth. However, most of the
state of the art works focusing on absolute depth estimation,
utilize limited datasets such as indoor only (e.g. NYUDvV2)
or outdoor only (e.g. KITTI) datasets. While models trained
on limited datasets perform well on their immediate train-
ing domain, they do not generalize well to images coming
from different distributions.

In order to be able to estimate depth in-the-wild, a re-
formulation of the depth estimation problem is employed,
namely relative depth estimation. With this reformulation,
diverse datasets are collected and models that work in-the-
wild are trained [6, 36, 7]. However, these approaches are

(a) RGB

(b) Depth (c) Confidence

Figure 1: A model trained with the proposed Distributional
ranking loss learns to output a dense confidence map for
its predictions. Fig. la shows the input RGB image where
we see letters on the side of a vehicle. However in Fig.
1b, it can be seen that the model fails to account for the
smooth depth change across the letters, and produces un-
reliable depth estimates that normally should overlook the
letter boundaries. While this mistake would go unnoticed
for previous approaches, our model learns to express its es-
timation confidence. Fig. 1c clearly shows that the model is
not confident in its estimations for the letters, indicated by
darker pixels.

not capable of expressing model confidence, which we be-
lieve to be a very important information for the depth es-
timation problem, as the estimated depth map is usually
utilized for subsequent tasks or decision making processes.
For instance, both [23, 31] utilize uncertainty maps in 3D
reconstruction to increase performance and robustness.
While previous approaches directly estimate depth
scores as a regression task, we treat depth as it is normally
distributed, parameterized by mean p and standard devia-
tion o, and regress over these parameters for each pixel. We
believe that this representation is more natural as the ground
truth information is also uncertain about the actual depth
value. Furthermore, this representation effectively makes
our model capable of displaying its confidence in terms of
o. In order to learn from ordinal relations of pixels, we
propose a novel loss function, a distributional loss, which
attempts to increase the probability of farther pixel’s depth
being greater than closer pixel’s depth. An illustrative ex-



ample is shown in Figure 1, where our model outputs a
depth map as well as a separate confidence map for the es-
timated depth, which points to regions of uncertainty in the
estimation.

The contributions of our work are as follows:

* We formulate the problem of depth estimation as esti-
mating a probability distribution over depth where %
can be considered as the confidence. Given the ground
truth information, we believe this formulation is more
intuitive and it allows us to output confidence.

* We devise a new ranking loss, the distributional loss,
that allows us to learn parameters of the distribution
for each pixel from ordinal relations of pixels.

* We evaluate our approach against a number of base-
lines in the literature and achieve state of the art per-
formances.

* We analyze the confidence output and empirically ex-
hibit its usefulness.

2. Background

Absolute depth estimation Early works in the field uti-
lized hand crafted features and Markov Random Fields
while incorporating human expertise in terms of hand de-
signed constraints on optimization process [13, 19, 29, 30,

].  With the increasing success of convolutional neu-
ral networks on vision problems, a number of works em-
ployed convolutional neural networks in a standard super-

vised learning setting [9, 14, 3, 10]. Additional comple-
mentary tasks were also utilized to increase the performance
[8, 34, 24, 38, 39, 40, 5]. In order to eliminate the need

for real world ground truth data, number of works do self-
supervised learning [11, 12, 41, 33, 26], while [27] used
synthetic images.

Relative depth estimation To the best of our knowl-
edge, Zoran et al. [42] did the first attempt at relative depth
estimation by classifying ordinal relations of pixel pairs.
Since it is infeasible to classify all possible pixel pairs, they
superpixelated the input image and only compared centers
of superpixels, assuming that superpixels represent homo-
geneous depth patches. [6, 7] estimated a dense score map
in a regression setting and used a pairwise ranking loss to
learn from ordinal relations. In the same framework, [36]
applied an improved pairwise ranking loss which focuses
on a set of hard pairs and [37] proposed a sampling strat-
egy that focuses on image and object edges. [ 18] employed
a listwise ranking loss which allowed their model to focus
more on closer pixels.

In-the-wild datasets First dataset with relative depth an-
notations is Depth in the Wild (DIW) [6]. It consists of ran-
domly sampled images from internet and ground truth or-
dinal relation of one pair of pixels per image, annotated by

human annotators, and has an official train test split. After-
wards, two other datasets with relative depth annotations are
proposed: YouTube3D [7] and Relative Depth from Web
(RedWeb) [36]. While YouTube3D offers sparse ground
truth information, RedWeb dataset has dense relative depth
annotation that can be acquired from given ground truth
score map. YouTube3D and RedWeb do not have an official
train test split. Works that use these datasets, use the whole
dataset for training and test their performance on DIW test
split.

Ranking Ranking methods can be divided into two main
categories based on whether they directly optimize ranking
measures. [2, 28] proposes differentiable approximations
for ranking measures which allow them to be used in the
optimization process. On the other hand, a number of works
optimize surrogate measures in a pairwise [ 1, 32] or a list-
wise manner [4, 25, 35, 15]. Yet none of them learns to
output confidence.

3. Approach

In relative depth estimation, the ground truth informa-
tion consists of pixels’ ordinal relations which falls in three
categories as

Tij = 1, lfdl > dj
Vi,je 0 {r;=—1, ifd, <d; (1)
Tij = O, if dz = dj

where 2 represents the set of all pixels, d; is the metric
depth of pixel ¢, and r;; represents the ordinal relations of
pixel ¢ and j. The aim is to predict the ordinal relation for
pixel pair ¢ and j, 7;;, to minimize the following objective:

min Z 1(rij # 74j) ()

1,jEQ

where 1 () is the indicator function that evaluates to 1 if
Tij 7 T4 is true, otherwise it evaluates to 0.

We explain our approach to solve relative depth estima-
tion problem in two main parts. First, we discuss our for-
mulation of the relative depth estimation problem. Next,
we present the ranking loss that works with the proposed
formulation. Figure 2 depicts the overall framework that
we use to train neural networks for relative depth estima-
tion problem. Note that our approach does not depend on
any particular neural network architecture, or a particular
model for that matter. Any parameterized, differentiable
model can be used as a ranking function. Additionally, we
propose a general approach, in a sense that it is applicable to
any other ranking problems. Yet throughout the paper, we
are going to discuss our approach particularly for the rela-
tive depth estimation problem as we showcase our approach
in this domain.



Ground Truth Ordinal Relations

Score Map
(Y

Neural Network Model

_J

v

>

i —

Confidence Map
(1/0)

Figure 2: Depiction of our framework. A network model regresses over p and reciprocal of o, % which represent score map
and confidence map, respectively. Darker pixels show closer points in the score map and lower confidence in confidence

map.

3.1. Formulation

As previous works [6, 36, 7], we follow a pairwise ap-
proach. We consider two relations between pixels where
either pixel ¢ is farther compared to pixel j, or pixel j is far-
ther compared to pixel ¢. We omit the case where both pix-
els are at the same depth as DIW and YouTube3D datasets
do not have examples of equality case.

To solve the relative depth estimation problem, previous
works try to estimate a score for each pixel that can be used
as ordinal relations as follows:

if §; > .§j

Ty =1,
, 18 <5

) 3)

Vi, 5 € Q, {
Tij
where §; is the estimated score for pixel <.

However, we neither know the ground truth values for
Si, Vi, nor do care about actual value of s;, Vi, as long
as they satisfy Equation (3). In these circumstances, we
believe it is more intuitive to estimate a probability distri-
bution over depth values, rather than scalar values. In this
work, we investigate the employment of one natural choice
for this task, that is the normal distribution.

Probability of depth of pixel ¢ conditional on an image
1, is modelled as a normal distribution whose mean x; and
standard deviation o; is estimated from the image I by a
neural network model g(7;6):

P(di|I) ~ N (i, 07) @
where u;,0; = g(I;0).
We formulate the relative depth estimation problem as
a maximum likelihood estimation problem and try to find
the optimal parameters 6 that maximizes the probability of

observed data y as follows:

0 = arg max h(y;0) Q)
0co

where © represents the parameter space, and h is the data
likelihood function, which is to-be-defined (Eq. 6).

With this formulation, we can consider o; as an uncer-
tainty information for that pixel ¢’s depth estimation. As o;
increases, the range of values, into which the pixel 7’s score
value falls, increases. In practice, we model the function
g(I;0) with a neural network model. When we first ini-
tialize the network, we observe small values in the outputs,
indicating that there is very small uncertainty in model’s es-
timations. This is counter intuitive, since at the start of the
training we expect the uncertainty to start at high levels and
decrease as the training proceeds. Also, estimating o; is not
numerically stable for the very same reason. To overcome
this problem, we propose to learn to estimate the reciprocal
of 0y, 1.e. a%_, which can be interpreted as the “confidence”.
This formulation reflects the model’s knowledge in a better
way, particularly addressing the low confidence at the start
of the training. We also experiment with both of the formu-
lations and empirically show that learning the reciprocal,
i.e. the confidence rather than the uncertainty, is better.

3.2. Distributional Loss (DL)

In this section, we introduce our proposed ranking loss,
the distributional loss. It works in a pairwise fashion. Since
ground truth information consists of ordinal relations of pix-
els, we calculate the likelihood of the observed training data



as follows:

hy:0) = [[ (10rs; = 1) P(di > dj)+
iiEQ (6)

1(’/‘” = —1)P(dj > d,))
where P refers to the probability of depth of pixel ¢ being
greater than that of pixel j or vice versa depending on its

arguments, and 1(-) refers to the indicator function.
To simplify things, let us assume

iéﬁjéc, lfdz>dj

7
= fi%e ifd;>d; ™

W,jeﬂ,{

where f refers to the pixel that is supposed to be farther
and c refers to the pixel that is supposed to be closer for a
particular pairwise relation. Equation (6) now becomes

hy:0)= [ Plds>de), ®)
f,ceQ

which can be maximized by minimizing the following dis-
tributional loss

DL=—log | [] Plds>d)]|- )

frce
By rearranging the terms of P(ds > d.), we get

P(df > dc) = P(df —d. > O)
= P(z > 0),

10
where z ~ N (., 02), (10)

fe =y — pe, 02 2 0% + 072,

which can be calculated as

P(z>0)—Q<_'uZ> or

1 e (11)
=—|1-0| =
(+(3))

where @ is the error function erf(-) in mathematics that has
differentiable implementations in popular libraries. Overall,
our distributional loss in its full form is as follows:

1 —(pr — po)
DL = —lo —1-P | = .
f,czeﬂ g<2< <\@VU%+J%>>>

(12)
In test time, we choose 7;; as follows:
rii =1 if P(d; ; .
vijeqdla=h A Pi>d)>05
Tij = -1, if P(dl > d]) < 0.5.
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Figure 3: DL loss vs p1fy — . where /Ufc + 02 is fixed to
1.

In practice, we only compare p; and 1, as P(d; > d;) >
0.5 only when f1; > p; or vice versa.

Behaviour of the DL loss function Let us examine how
the proposed DL loss function behaves under certain condi-

tions. First we fix the standard deviation a}% +o02to1and
plot the change in the loss as py — (1. changes. As it can be
seen from Figure 3, the DL loss decreases monotonously as
the p1y — pi. increases. Similar to the ranking losses used
in previous works [6, 36, 7], the distributional loss also
encourages bigger differences between scores, but only to
some extent. The loss vanishes as ., increases since as long
as P(dy > d.) > 0.5 is satisfied, we gain no extra benefit
in terms of our objective Equation (2).

To see the effect of model’s uncertainty predictions on
the DL loss, we fix the pf — p. to 1 and —1, where the
model’s estimation is correct and incorrect, respectively.
Figure 4a shows that when the model’s estimation is correct,
increasing the uncertainty increases the loss. Similarly, Fig-
ure 4b shows that the DL loss decreases as the uncertainty
increases when the model’s estimation is incorrect. To sum
up, our loss encourages confidence when the estimation is
correct, encourages uncertainty when the estimation is in-
correct and to decrease the loss, the model would learn to
predict the correct confidence in its estimations.

Derivatives of the DL loss function First, we examine
the derivatives of our loss function in Equation (12). Its
derivatives with respect to iy and p. are given in Equa-
tion (14). Note that they only differ in sign, means that they
always change in opposite direction. Therefore, we only
plot and discuss gradients of 1 ¢.
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Figure 5 shows the gradients of j.y by fixing the o, and
plotting it against w. (Fig. 5a), and by fixing the 1, to +1
and —1 and plotting it against o, (Fig. 5b and 5c, respec-
tively). Since py is the estimated mean for the pixel that
is supposed to be farther away, it receives only negative
gradients which increases its value. Figure 5a shows that
the absolute value of the gradients increases as the mistake,
|pe-| when i, < 0, gets bigger, and it vanishes when the
estimation is corrected, pu, > 0, reflecting the behaviour
of the loss function shown in Figure 3. When we fix the
1z to 1 where the model’s prediction is correct (Fig. 5b),
the absolute value of gradients which p; receives increases
with the uncertainty to some extent meaning that it increases
.y more and more aggressively, which is intuitively as ex-
pected. Then the rate of the gradient decreases and levels
off while the uncertainty keeps increasing. This behaviour
is open to interpretation. As the confidence decreases, this
loss updates the mean score less aggressively than its value
at starting points. When the model’s prediction is wrong
(Fig. 5¢), puy changes rapidly if the model is confident and
the speed of change decreases as the confidence decreases.
Again, this reflects the behaviour of the DL loss that can be
seen in Figure 4b.

Equation (15) shows the derivatives with respect to oy
and o., which are equal except %f% scales with oy and

%’% scales with o.. Note that the sign of the gradients

depcend on (.. When the model’s prediction is correct, p, >
0, both oy and o receives positive gradients and confidence

(14)
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Figure 5: Gradients of iy vs. i, (a), 0 (b,C) .

increases or vice versa. Therefore, we only plot and discuss
the gradients of 0.
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Figure 6 shows the gradients of oy by fixing the o, and
plotting it against u, (Fig. 6a), and by fixing the u, to 41
and —1 and plotting it against o. (Fig. 6b and 6c, respec-
tively). As it can be seen in Figure 6a, when the model’s
prediction is incorrect, p, < 0, increase in the uncertainty
increases as the mistake, |u.|, gets bigger. However, when
the model’s prediction is correct, u, > 0, the decrease in
the uncertainty vanishes as p, increases since as long as
P(dy > d.) > 0.5, increase in the p, is only rewarded to
some extend by the loss function (see Fig. 3). Furthermore,
in both plots of (b) and (c), % vanishes as o, increases,
implying that the information gain decreases as the uncer-
tainty increases.
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4. Experiments and Results

We divide our experiments into three categories. First,
we conduct an analysis where we examine the confidence
prediction on the DIW test split, and devise an experiment
to empirically show the usefulness of confidence prediction
for the metric depth estimation task. Next, we compare
learning standard deviation o directly and reciprocal of it
%. Lastly, we compare our proposed approach with state of
the art baselines to show our method’s performance for the
relative depth estimation task.

For relative depth estimation tasks, we report weighted
human disagreement rate (WHDR) [42] as
D4y wigL(rii#ig)

* WHDR = S, i )

where w;; is the human confidence weight and set to 1 for
DIW test split, 7;; and 7;; represent ground truth and pre-
dicted ordinal relations, respectively. For metric depth esti-
mation tasks, we report the metrics from [9].

We measure calibration performance, which is the de-
gree of consistency between model’s predicted probabili-
ties of outcomes and the true probabilities of those out-
comes. To this end, we use expected calibration error
(ECE) [21], its variants maximum calibration error (MCE)
[21] and adaptive ECE (AdaECE) [20], and reliability plots
[22]. They are defined for classification settings where the
model’s probability output (interpreted as confidence) for a

Table 1: Calibration measures of DL_EDR on DIW test
split. First row shows the measures calculated with p pre-
dictions only. Second row shows the measures calculated
with ¢ predictions as well as p predictions. Lower is better.

P(r;;j =1)= ECE AdaECE MCE
i — b 0.25 0.27 0.43
Equation (11)  0.02 0.02 0.05

held out data set with /V instances is investigated. To cal-
culate ECE, the probability interval [0, 1] is divided into M
bins and test instances are divided into each bin based on
the model’s confidence. Let A; be the average accuracy at
bin 7, B; be the number of items at bin 7, and C; be the av-
erage confidence at bin 7. The aforementioned measures are
calculated as follows:

« ECE= Y, B4, — ¢y

* MCE = max;eq1,... vy |Ai — Ci
« AdaBCE=Y"" B |4, — ¢ st Vi, j-|Bi| = |Bj|

* reliability plots: plot of accuracies at each bin as a bar
chart.

All the experiments are conducted with the same setting.
We perform on-the-fly data augmentation. Specifically, we
horizontally flip the image, rescale and crop it to the input
size of 384 x384, and apply rotation. We experiment with a
common architecture used in previous works: EncDecRes-
Net [36]. We use stochastic gradient descent (SGD) with
cosine annealing learning rate scheduler [17] which cycli-
cally changes learning rate between [le — 3, 1le — 7] and
completes a cycle at every 5 epoch. Batch size is 8 in all
experiments. All of the hyperparameters are chosen heuris-
tically due to limited computational resources.

4.1. Investigating confidence prediction

To demonstrate the effectiveness of our approach for
confidence prediction, we measure the model calibration of
EncDecResNet trained with DL loss on RedWeb training
set, which we refer to as DL_EDR. We choose r;; = 1 as
positive class and calculate the class probability P(r;; = 1)
as P(d; > dj), as given in Equation (11). However, this
probability is affected by the y; and p; predictions as well.
To better show the effect of confidence prediction, we also
use p; — pj as P(r;; = 1) by mapping it to [0, 1] range (rep-
resented as P(r;; = 1) = p; — u;). The latter formulation
essentially calculates the confidence based on the distances
between the estimated centers of both pixels’ depth distri-
bution, i.e. confidence increases as the distances between
the centers increases.
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Figure 7: Left column: plots of P(r;; = 1) = p; — ;.
Right column: P(r;; = 1) =Equation (11). Top row: re-
liability plots with 25 bins (following the diagonal line is
better). Bottom row: histograms showing how many pairs
fall into each confidence bin.

Table 2: Results of experiments conducted on NYUDv2
with and without confidence map as an input.

Accuracy Error

thr = 1.25 thr = 1.25% thr — 1.25° “MSE RMSE -, ) sqrrel
(linear) (log)

W/0 CM
W/ CM

70.4%
71.78%

92.8%
92.9%

98.4% 0.73  0.26
98.3% 070  0.25

0.19 0.16
0.19 0.15

Table 1 shows the calibration measures ECE [21],
AdaECE [20], and MCE [21], and Figure 7 shows the relia-
bility plots [22] of DL_EDR with different interpretations of
P(r;; = 1). Both calibration measures and reliability plots
indicate that y1; — ; alone, is not a good indicator of con-
fidence. However, when we utilize confidence predictions
as well, model output becomes almost perfectly calibrated,
indicating that confidence predictions reflects the model’s
expected accuracy.

To empirically show the usefulness of confidence infor-
mation, we conduct the following experiment. We train the
EncDecResNet of [36] on the NYUDv?2 dataset for the ab-
solute depth estimation task. First, we train the network
using RGB images and the corresponding score map (SM)
estimation from DL_EDR as an input (RGB+SM, abbrevi-
ated as W/O CM). Next, we also input the confidence map
(CM) prediction of DL_EDR (RGB+SM+CM, abbreviated
as W/ CM) and repeat the training. Table 2 shows the re-
sults. Inputting confidence map alongside other inputs in-
creases the performance in most of the metrics, especially
the most challenging accuracy, thr = 1.25. We conjecture
that confidence predictions allow network to employ differ-
ent strategies for parts that are likely to have wrong relative
depth score, hence the performance gain.

Table 3: WHDR on DIW test split with different interpreta-
tion of the second output of the network.

Interpretation
WHDR

Uncertainty  Confidence
31.63% 16.15%

4.2. Learning confidence vs. uncertainty

We also conduct experiments to empirically show the
effectiveness of learning reciprocal of the standard devia-
tion, % We train EncDecResNet on RedWeb dataset and
experiment with learning standard deviation. In this case,
we can interpret the second channel of the output as uncer-
tainty map. We also repeat the same experiment with treat-
ing networks second output as % in loss formulation. In this
case, we can interpret the second channel of the output as
confidence map. Table 3 shows the results which indicate
that learning confidence performs much better when com-
pared to learning uncertainty. In the uncertainty version of
the model, we observe that standard deviation output of the
model diverges very quickly and the model converges to a
local optima.

4.3. Comparison with state of the art

To show the effectiveness of our approach for the rel-
ative depth estimation task, we compare our results with
several similar works [0, 36, 7]. We use the following nam-
ing convention in method names for ease of understanding.
The first part indicates the original work that publishes the
given result. The second part represents the neural network
model, HG being Hourglass [6] and EDR being EncDe-
cResNet [36]. To train EDR model with the proposed ap-
proach, we only add an additional head with Leaky ReLU
activation for confidence output without any further modifi-
cation. The last part represents the loss that is used where R
is the ranking loss in [6], IR is the improved ranking loss in
[36], and DL is the proposed distributional loss. Following
previous works [36, 7], we use ImageNet pretrained weights
for initializing encoder part of the EDR in all experiments.

Table 4 shows results on DIW test split. We achieve state
of the art performances on all experimented datasets. We
believe our good performances in all datasets with heuris-
tically chosen parameters indicate that our method is not
sensitive to hyperparameters. Figure 8 shows qualitative ex-
amples from DIW test split. We observe that model trained
on RedWeb dataset produce sharper results which indicates
that number of annotated pixel pairs is important for visu-
ally better results since RedWeb dataset has dense annota-
tion. In Figure 9, we see that model has indeed low confi-
dence for parts where the depth estimation is not accurate
or for parts where the depth estimation is hard to make such
as background or edges. For instance, in the first row of
images, although the wall background seems parallel to the



I 1
4 I ‘ || L

i

-ﬁnﬁﬂ.&

Pl L]

RedWeb  YouTube3D

RedWeb
+DIW

YouTube3D DIW

RedWeb
+DIW

RedWeb

Figure 8: Qualitative results of DL_EDR trained on different training sets.
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Figure 9: Qualitative results of confidence predictions of
DL_EDR on DIW test split. Green boxes indicate important
parts of the images. Better viewed digitally.

camera plane, the estimated depth is larger on the right side
of the person than that of the left. This is marked by a lower
confidence estimate. Similarly, see the indicated regions (by
dashed green boxes) where the confidence map correctly re-
produces the expected lower confidence scores.

Table 4: Comparisons with various baselines from the liter-
ature. Results are from DIW test split.

Training set Method WHDR
Chen_HG_IR [7] 19.01%

YouTube3D Chen_EDR_IR [7] 16.21%
Ours_.EDR_DL 16.08 %

Chen_HGR [6] 22.14%

DIW Xian_EDR R [36] 14.98%
Ours_EDR_DL 12.59 %

Chen_EDR_IR [7] 16.31%

RedWeb Ours EDRDL  16.15%
Xian_EDR_IR [36] 11.37%

RedWeb+DIW Chen_ EDR_IR [7] 12.03%
Ours_EDR_DL 11.01%
RedWeb+DIW+YouTube3D Chen EDR.IR [7] 10.59%

5. Conclusion

In this paper, we propose a new pairwise ranking ap-
proach, and illustrate it in the problem of relative depth esti-
mation. We estimate the probability distribution over depth
values, and maximize the likelihood of the observed pair-
wise ordinal relations by training a neural network model
with the proposed DL loss. With this formulation, we
achieve better or comparable performances with prior art
while outputting confidence for estimations as well. The
new ranking distributional loss with uncertainty that is pre-
sented in this work is not specific to relative depth estima-
tion, and can be utilized in other problems involving ordinal
relations between measurements.
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