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Retrieval of Forest Parameters Using a Fractal-Based
Coherent Scattering Model and a Genetic Algorithm

Yi-Cheng Lin, Member, IEEE,and Kamal Saraband§enior Member, IEEE

Abstract—In this paper, a procedure for retrieval of forest Over the past two decades, significant effort has been
parameters is developed using the recently developed fractal- devoted toward the development of scattering models for
based coherent scattering model (FCSM) and a stochastic opti- e getation canopies [10]-[15] as well as inversion models to
mization algorithm. Since the fractal scattering model is compu- .
tationally extensive, first a simplified empirical model with high retrieve forest parameters from th? measured data [16]-[18].
fidelity for a desired forest stand is constructed using FCSM. So far, the emphasis of the scattering model development has
Inputs to the empirical model are the influential structural been on the construction of simplified models with as few
and electrical parameters of the forest stand, such as the tree input parameters as possib|e’ so that the inversion prob|em

density, tree height, trunk diameter, branching angle, wood heoomes tractable. In this process, the importance of struc-
moisture, and soil moisture. Other finer structural features are

embedded in the fractal model. The model outputs are the tural features of the canopy (particle arrangement), coherence
polarimetric and interferometric response of the forest as a effects, and multiple scattering were ignored. Even with these
function of the incidence angle. In this study, a genetic algorithm simplifications, the inversion process is rather complex. In [16]
t(t?A) is temployefl as ]? g][obalts?arc(;jhfroutine t? (;haracterizg and [18], neural network approaches are suggested for the
e input parameters of a forest stand from a set of measured . : . . . ; .
polarir%etrﬁ:/interferometric backscatter responses of the stand. |nverS|on process, in which extensive .computer S|mulat|ons
The success of the inversion algorithm is demonstrated using a setOf €xperimental results are used to train a neural network in

of measured single-polarized interferometric synthetic aperture reverse order (the model outputs are fed as the input to the

radar (SAR) data and several FCSM simulation results. program). This method is computationally extensive and its
|ndex Terrns_Eccﬂogyl interferometric SAR’ inversion a|go_ success dependS on the flde“ty and the eXtent Of the tra|n|ng
rithm, polarimetric SAR, radar remote sensing. data. In [17], a gradient-based search routine is applied to

a nested linearized model. This model is computationally
efficient; however, its applicability is limited to models with
small dimensionality, and its success depends on the fidelity
ETRIEVAL of gross biophysical parameters of forespf the forward model.
stands, such as basal area, tree height, and leaf are@his paper describes the application of a high-fidelity scat-
index (LAI), is of great importance in many environmentalering model in an inversion process based on a stochastic
research programs. Radar remote sensing at lower microwgysbal search method. Basically, a recently developed coherent
frequencies has been proposed as a sensitive instrumentsfgittering model that preserves the structural features of tree
such applications [1], [2]. In support of programs pertaininganopies using fractal models is employed to generate sim-
to radar remote sensing of vegetation, many advanced polalified empirical models (for different tree species) that can
metric (SIR-C, AIRSAR) [3] and interferometric (TOPSAR)predict the polarimetric and interferometric radar response of
[4] radar instruments have been developed. a forest stand efficiently and accurately. The premise for the
The study of the inversion problems in geophysical scienggccessful development of such empirical models stems from
and engineering has been of great importance from the onggi fact that the model outputs are averaged quantities, such as
of the remote-sensing science [5], [6]. For example, in Miackscattering coefficients or the mean height of the scattering
crowave remote sensing of vegetation, the inverse problgfRase center, and therefore are very gentle functions of model
is defined as the application of the measured quantities, sqﬁﬁuts_
as the polarimetric backscattering coefficients [from synthetic o5 gemonstrated in [15], the fractal-based coherent scatter-
aperture radar (SAR)] [7] and/or the scattering phase cenfgg model (FCSM) offers two advantages over traditional scat-
heights (from an interferometric SAR) [8], [9] in an algorithMering models; namely, FCSM is more versatile and accurate.
to retrieve forest parameters, such as tree type, tree dengifically, FCSM is a first-order scattering model and capable
and height, and moisture content of vegetation and soil. 4t simulating the fully polarimetric (including the phase statis-
tics) and polarimetric—interferometric (scattering phase centers

) ) ) _and correlation coefficients for any polarization configuration
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Fig. 1. Sensitivity analysis of the C-band polarimetric scattering phase center height as a function of the physical parameters: (a) trunkojitneeter,
height, (c) tree density, (d) branching angle, (e) soil moisture, and (f) wood moisture, simulated at incidende angj€.

scattering and extinction profiles. This versatility and accuracsignificant parameters, the number of which determines the
however, has been achieved at the expense of the modiehensionality of the input vector space. A red pine stand
complexity, which demands extensive computational powes. chosen in this paper, and six parameters are selected as
For example, the number of input parameters needed the input parameters. Each selected parameter is allowed to
accurately characterize the tree structures and the environmteante about 30% variation with respect to a centroid. Using
may easily exceed 30 (it should be noted that once a tree type Monte Carlo simulation results obtained from FCSM, a
is chosen much fewer free parameters are needed to modeldhtabase is constructed by varying the individual parameters
natural variabilities). On the other hand, to obtain a solutiosver a prescribed range of the input vector space around the
with a reasonable accuracy in the Monte Carlo simulation,cantroid. The parameters at the centroid are obtained from the
sufficiently large numberx100) of realizations are required.ground truth data of a red pine test stand (Stand 22) in Raco,
The required computational time for each simulation limits thigll.
model’s utility in inverse processes, which may demand theFor the inversion process, first a least-squares estimator
calculation of the forward problem many times. is used and shown to work properly when the number of

To circumvent the aforementioned problem, development nfeasured channels is equal to or larger than the dimension
empirical models based on FCSM is proposed. Constructioh the input vector space. But since this may not be the
of an empirical model can be achieved using a standatdse in general situations, a genetic algorithm (GA) [20] is
procedure, such as a curve-fitting and regression methdéveloped and employed as a search routine for the nonlinear
Unlike physical models, empirical models are simple matleptimization problem. GA’s are known to be very successful
ematical expressions formed from a set of data acquired frovien the dimension of the input vector space is large and/or
measurements or a physical model prediction. Once empirizeten the objective function is nonlinear.
formulas are obtained, they are easy to use and require
minimal computation time. It should be noted, however, that
an empirical model is usually valid only for a specific case
within a certain range of the parameter space over which theln general, the output of the Monte Carlo coherent scattering
model is constructed. model can be expressed as

For the development of the empirical model used in this
study, first a sensitivity analysis is conducted to determine the M = L(f, p, 6; do, Hy, Dy, 6, ms, my,) ()

Il. EMPIRICAL MODEL DEVELOPMENT
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Fig. 2. Sensitivity analysis of the C-band polarimetric backscattering coefficient as a function of the physical parameters: (a) trunk diatnestéreifit,
(c) tree density, (d) branching angle, (e) soil moisture, and (f) wood moisture, simulated at incidencé ang@ig®.

TABLE | the radar frequency, the polarization configuratiop, and
RANGES OF THE SELECTED GROUND TRUTH PARAMETERS AND THE the incidence anglé. The number of target parameters can
CORRESPONDINGPERCENTAGE VARIATIONS TO THE CENTROID .
L - be very large, consisting of the tree structural parameters and
Parameter Range Variation i : H i
Tk G5 T80 T the dielectric properties of thg constituent components. The
“Tree Height |7 RO~ 90(m) 1T oy number of these parameters is reduced drastically, however,
Tree Density 807 ~ 1027 ({rees/Hectare) 24 % H H
BrancTing Angle 158 ~ 158 (deg) 7 once a tree type is chgsen. In this case, only a few .strl_J_cj[uraI
Soil Moisture 0.36 ~ 0.56 (g/s) 3% parameters are sufficient to allow for natural variabilities
Wood Moisture | 028 ~ 0.18 (g/g) R observed for that type of tree. The rest of the structural
parameters are embedded in the fractal code of the tree. In this
TABLE II paper, we demonstrate development of an empirical model for
INVERSION RESULTS USING THEINTERFEROMETRICTOPSAR [x1A a red pine tree, where only six free parameters are sufficient to

AS THE MEASURED CHANNELS M. HERE x IS THE ACTUAL GROUND . . .
TRUTH DATA AND %/ IS THE OUTPUT OF THE INVERSION PROCESS describe the stand. These include the trunk diaméietree

e — o — height H,, tree densityD;, branching angl®,, soil moisture
Measurec . 2700 =139°) = 3.6 Y0 = 39°)= -10.26 d3 .
" 7! i m,, and wood moisturen,,. It should be noted that these

Channels M ; 250 =537 = 6.1 o r7“1(0 ;7)350); -13.07 d13

Pavawelers | d,(cm) | Hilm) | D@ Heelure) | O, | o, | o parameters themselves are statistical in the coherent model
Ground truthx 12.9 9.00 907 LSS ] 6016 0.38 : : H H H : H
e o T g5 TS o or with prescribed distribution functions and we are referring

here to their mean value.

Multifrequency polarimetric SAR systems operate at dis-
where£ is a complex operator relating the input and output ¢fete frequencies, usually at P-, L-, C-, and X-band, and
the model and the outpm¥I is a vector that may contain thethe polarization configurations are V'V, VH, and HH. In
backscattering coefficientsf,, o2, 0%,), scattering matrix this study, we demonstrate a model with three fundamental
phase difference statistics, the scattering phase center helfitkscattering coefficients and the associated mean scattering
Z., or the interferogram correlation coefficient. The inpuphase center height as the model output and fix the frequency
parameters are divided into two categories: 1) radar systamnC-band (5.3 GHz). The empirical model is developed to
parameters and 2) target parameters. Radar parameters inchplrate over the angular range 25%70herefore, the output
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Fig. 3. Angular dependence of the polarimetric backscatter in terms of (a)
the scattering phase center height and (b) the backscattering coefficient
a¥. The simulation results are fitted with polynomials of degree 3.

and input vectordM andx are defined as
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As mentioned earlier, since no resonance behavior is expec
the output vectoiM is a gentle function of the input vector
x and the incidence angtethat may be related to each othe

via a simple empirical relationship
M = £(6; x)

whereZ is the simple empirical operator qmﬁ is the output
of the empirical model. It is expected thM be as close to

M as possible.

In general, the output parameters are nonlinear functions of
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relationship between the backscattering coefficient (linear in
decibel scale) and a linear relation between the scattering phase
center height and the input parameters exist. The dependence
on the incidence angle was found to be nonlinear.

The first step in the construction of the empirical model
is to choose the domain of the input vector space. In this
investigation, we chose the structural parameters of a young
red pine stand, a test forest stand in Raco (Stand 22), and
the seasonal average of soil and vegetation moisture as the
centroid of the input domain. These parameters and their range
of variation used in the model development are shown in
Table I. The range of parameter space is chosen so that the
measured parameters of a red pine test stand (see Table II)
is at the centroid of the parameter space. The Monte Carlo
simulation was then carried out for specific incidence angles
by varying the six free parameters within the prescribed ranges.
The average scattering phase center height9 for each
polarization configuration and backscattering coefficieats (
in dB) are shown in Figs.1 and 2 as a function of each
parameter, respectively. These figures clearly demonstrate the
linear relationship previously described. Hence, the output
vector can be readily approximated by the Taylor series
expansion of the exact model to the first order, and it is given

by
/j(x) =L(x0) + A (x—x0) 3)

wherex, denotes the input vector at the centroid akds the
matrix of partial derivatives whosgth element is given by

(4)

a;; simply represents the derivative of thié output channel
L, with respect to thgth input parametet;, evaluated at the
centroid xg.

In this matrix, each element was evaluated by calculating
the slope of a fitting line over five sample points based on a
least-squares method. In Figs. 1 and 2, the sym@9lare the
simulation results and the lines are the best linear estimation. It
should be pointed out that each point in each figure represents
an ensemble average of 200 realizations of the Monte Carlo
simulation. This indicates that the initial task of generating
a matrix of coefficients is very tedious and timeconsuming.
@Hfze the empirical model is obtained, however, it can provide
a highly accurate solution to an arbitrary input in almost
real time. This property of the empirical model is especially
important in the inversion processes.

Results in Figs. 1 and 2 are for a fixed incidence angle
6 = 25°. The simulations at other incidence angles, however,
show that the general form of (3) is valid for all incidence
angles with the exception thal(x,) and A are functions of
the incidence angle, i.e.,

L(6; x) = L2(6) + A(6) - (x — x0). (5)

the incidence angle and other input parameters. In order to

establish these relationships, the coherent model must be huis found that £°(8) and A(6) are nonlinear, but gentle,
by varying the incidence angles and other input parametefisnctions of the incidence angk over the range of interest
Through an extensive sensitivity study, it was found th&5—70). In order to obtain the functional form &° and A
over a finite domain of the input vector space, a logarithman 8, the aforementioned Monte Carlo simulation was repeated
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Fig. 4. Comparison between the empirical model and the Monte Carlo coherent scattering model for a red pinelStaqblatization configuration.
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Fig. 5. Comparison between the empirical model and the Monte Carlo coherent scattering model for a red pinelatAmbkrization configuration.
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Fig. 6. Comparison between the empirical model and the Monte Carlo coherent scattering model for a red pinefstdnRabtrization configuration.

at several different incidence angles and the correspondimigMonte Carlo simulations with independent input vectors
values £° and A were evaluated. Polynomial functions aravere carried out. Figs. 4-6 show the comparison between the

used to capture the angular variations&f and A. It was results of the empirical model and those of the Monte Carlo co-

found that£° and A can be accurately expressed by

and

where/L; and A; are 6x 1 and 6x 6 matrices whose values

LO(6) =Lo+ L10 + L2607 + L36°

AB)=Ap+ A0+ A0% + Az0° + AL0°

herent model using 200 independent input data sets randomly
selected within the aforementioned domain of the empirical
model. The figures show excellent agreement between the
empirical model and the Monte Carlo coherent model, noting
that the convergence criteria for the Monte Carlo model is
£0.5 dB. Having confidence on a fast and accurate empirical
model, the inversion processes can be attempted, which is the

are reported in the Appendix. Fig. 3 compares the results of %\?oject of the next section.
empirical model given by (5) with those of the Monte Carlo

simulation at the centroidx( = xg). It should be noted that

the choice of the output parameters are arbitrary and depends

on the available set of input data. For example, an empiricalConsider a physical system whose input-output relation

IIl. | NVERSION ALGORITHMS

model for a two-frequency system with three backscattering expressed byM = L(x), where in generalM and x

coefficients could be developed using the same procedure.are multidimensional vectors of arbitrary length. The inverse

Equation (5) represents the overall empirical model whogeoblem is mathematically defined as= £~!(M), subject

accuracy can be evaluated through a comparison with tteecertain physical constraints. Although the inverse problem
Monte Carlo simulations. For this comparison, a large numberay be well-defined mathematically, in practice, the inverse
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solution may not exist for two reasons: 1) mathematical

construction of the model may not be exact and 2) the " Discretization of 1
measured vectdvI may not be exact because of measurement ;?;:me‘e' Space and o
. . . ry Transformation Population Size
errors. Hence, instead of casting the problem in terms of an — e
inverse problem, the problem of finding is usually cast in ) l )

1

terms of a constraint minimization problem. becoding of Genss Initialization of |

Suppose there exists a set of measureni®htshe problem S - | _ Pepulation
is defined as characterizationzofo that the objective function
(or error function), defined by Random Number

Generator

£(x) = ||£(x) - M2 ® v e
Evaluation of |
is minimized over a predefined domain farHere,||-|| denotes _ Cest Function

the norm of the argument. As mentioned earlier, there are

Convergence Check  -— Natural Selection

a number of inversion processes available in the literature; Yes
however, in this paper, by constructing a simple empirical ;ﬂw | Mating
model, a traditional least-squares minimization approach and Stop ‘ l 77777
a stochastic global minimization method are examined. - —_ } _

| Decoding of Genes™+—— Mutation

A. Least-Squares Approach

As shown in Section 1, the scattering problem can be cast,gb_ 7 Elow chart of a GA.
terms of a linear system of equations of the fofffu) = Au,
whereA is anm x n matrix andu is ann-dimensional vector
in D, D c R™. For a givenm-dimensional vectofz, (8) can
be expanded as

This happens whed * A is ill-conditioned. Basically, some
elements of( A*A)~! become very large, which amplify the

, errors inM [22].

E=Y "> ajui—ai| - (9) B. Genetic Algorithms
=1 \s=t In recent years, applications of GA’s to a variety of opti-
A solution that minimizes must satisfy mization problems in electromagnetics have been successfl_JIIy
demonstrated [24], [25]. The fundamental concept of GA’s is
9¢ =0, j=1,2--,n (10) based on the concept of natural selection in the evolutionary
u; process, which is accomplished by genetic recombination and

and is referred to as the least-squares solution. It is shown tA4ftation. The algorithms are based on a numbeadfoc
the solution of (10)uy) can be obtained from the solutionStePS: including the following:

of the following matrix equation [21]: 1) discretization of the parameter space;
. . - 2) development of an arbitrary encoding algorithm to es-
(A"A) uy =A" -G (11) tablish a one-to-one relationship between each code and

the discrete points of the parameter space;
3) random generation of a trial set known as the initial
population;
selection of high-performance parameters according to
the objective function known as natural selection;
5) mating and mutation;
6) recursion of steps 4) and 5) until a convergence is
L(x)—L°=A(x—x0). (12) reached.
Fig. 7 shows the flow chart of GA’s. Note that the population

H i _ NN/ 0
Thus, we use the substitution= x —xp andG =M — L. g6 5 provided by the user and an initial population of the
Here £° and A are evaluated from (6) and the solution IYiven size is generated randomly.

Here, A* is the transpose oA. It is also demonstrated that
the solutionu,,, = (A*A)~1A*G exists if ranKA) = n. This
requirement states that the number of independent equationﬁ)
should exceed the number of unknowns.

To apply (11) to our empirical model using (3), it is noted
that

given by In this study, since we have as many as six input ground
X = Xo + (A*A)—lA*(M — L9, (13 tru_th p.aramete.rs a_nd six output cha!’mels, it is_ expected tha_lt the

objective function is complex and highly nonlinear containing

The least-squares solution may not be suitable for tiheany local minima. In this case, the traditional gradient-based

inverse problem at hand for two reasons. First, the numbaptimization methods usually converge to a local minimum
of output channelsr is usually less than that of unknownand fail to locate the inverted data. One interesting feature

parametersq. In this case, rarkd) < n and A*A is not of GA’s is that the method would provide a list of optimal

invertible. Even when the number of channels is larger than thelutions instead of a solution. This is important in the sense
unknowns, the solution provided by (13) may not be accuratbat a solution that best meets the physical constraints (not
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Fig. 8. Comparison of the input parametesy @nd the output of the inversion algorithnt’j using the synthetic data obtained from the Monte Carlo
simulation, for (a) trunk diameted,, (b) tree heightH,, (c) tree densityD,, (d) branching angl®,, (e) soil moisturem,, and (f) vegetation moisture
m,,. Heren is a measure of the average error in the inversion process defined by (15).

included in the objective function) may be selected from thte polarimetric backscattering coefficients and the scattering
list of optimal solutions. phase center heights at 5.3 GHz. The output of FCSM for

For this problem, each of the input parameters was digiese simulations were used as a synthetic measured data set
cretized and encoded into a 4-bit binary code, creatingM for the inversion algorithm. Fig. 8 shows the performance
discrete input vector space wit* members. A population of of the inversion algorithm through comparisons of the input
240 members was used for each generation and the objecteeametersx and the inverted parametex$. Also shown in

function was defined by each of the figures is the calculated average efrdefined by
Ex)=|lw-[M—L°— A (x—x0)]I? 14 Al
(%) = [|w - | x-xo)ll*  (14) Sy — )
where w is a user-defined weighting function assigned to n= =t (15)

individual output channels. To examine the performance of NAx

this GA-based inversion algorithm, many arbitrary pointehere N is the number of points = 10 in this case) and
within the domain of the input vector space were selectellz is the range of validity of the parameter according to the
and then the Monte Carlo simulation was used to evaluaepirical model. It should be noted here that the quantization
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Fig. 9. Comparison of the input parametexy @nd the output of the inversion algorithm’§ using the synthetic data obtained from the empirical model,
for (a) trunk diameter,, (b) tree heightH;, (c) tree densityD,, (d) branching angl®,, (e) soil moisturem s, and (f) vegetation moisture:,,. Here
n is a measure of the average error in the inversion process defined by (15).

error for 4-bit quantization £3%) is also included in the improve the overall accuracy drastically as the errors inherent
results. To examine the importance of the quantization errior the empirical model and those caused by the stochastic
and the stochastic nature of the solution in the inversigmature of the GA solution are independent of quantization
process, the inversion process was applied to another &gpr.

of synthetic measurement data generated by the empiricaft last, the developed inversion algorithm is tested using the
model. Fig. 9 shows the comparison between the actual ing&él measured data acquired by the Jet Propulsion Laboratory
x and the inverted solutiont’. It is noticed that the error TOPSAR over a test stand of red pine forest in Raco. Although
in Fig. 9 is slightly smaller than those obtained from Fig. &@nly four data points (C-bandV-polarized backscattering
This indicates that the quantization error and the stochasgefficients and scattering phase center heights at incidence
nature of the solution are considerable factors on the over@flgles? = 39° and53°) are available, the inversion algorithm
error. Increasing the quantization level to five bits increas€§n be easily modified via the objective function of the GA.
the members of the input vector space by factoedfThis [N this case, the objective function is given by

slows down the inversion process since the population in each
generation must also be increased. This does not, however,

E(x) = &1(x) + E(x) (16)
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r—3.1051 0.2642 —0.0020 0.0000
3.6061 —0.0659 0.0029 0.0000
3.6264 —0.3188 0.0094 —0.0001
Lo L1 L2 Lsl=| 199843 02713 —00079  0.0000
—50.1483 2.1623 —-0.0431 0.0003
L 3.5502 —0.3062 —0.0005 0.0000
and
r 1.5294 —0.2244 49.0879 10.8663 5.2289 — 59.6487
—0.6424 0.2687 — 0.5762 0.7727 —2.4209 — 7.0918
Ao — 7.1314 0.1875 10.3344 —7.0854 —3.6540 — 2.5728
07| —13.5348 —1.8434 —45.9425 16.2122 2.2269 —108.8944
—1.0359 —1.0341 22.6264 5.2748 6.6677 — 73.7306
L —4.7396 —2.3518 —224.1260 —6.9444 —4.8994 114.7993
r—0.1943 0.0320 —4.2781 —-0.9772 —0.7657 5.5036
0.0581 —0.0244 0.0609 —0.0693 0.1572 0.5872
Al = —0.7710 —0.0071 — 0.5252 0.6810 0.3879 0.3659
1.3292 0.1763 3.9880 —1.3883 0.3188 11.9278
0.0508 0.1137 —2.1445 —-0.2531 —-0.5110 6.0220
L 0.6771 0.1919 19.5566 0.7884 0.9928 —-10.1014
r 0.0086 —0.0013 0.1302 0.0316 0.0312 —0.18447
—0.0019 0.0010 —0.0025 0.0029 —-0.0038 —0.0198
A, — 0.0297 —0.0002 0.0005 -0.0233 —-0.0161 —-0.0121
27 1-0.0469 —0.0057 —0.1266 0.0433 —0.0218 —0.4499
—0.0010 —0.0040 0.0673 0.0035 0.0144 —-0.1697
—0.0305 —0.0052 —0.6039 —0.0325 —0.0354 0.3303 |
r—0.0002 0.0000 —0.0017 —0.0004 —0.0005 0.0027 7
0.0000 —0.0000 0.0000 —-0.0001 0.0000 0.0003
Ag— —0.0005 0.0000 0.0002 0.0003 0.0003 0.0001
0.0007 0.0001 0.0017 —0.0006 0.0004 0.0072
0.0000 0.0001 —0.0009 -—-0.0000 —0.0002 0.0021
L 0.0005 0.0001 0.0079 0.0006 0.0005 —0.0047
r 0.0097 —0.0013 0.0795 0.0222 0.0306 —0.14177
—0.0014 0.0009 —0.0025 0.0033 —0.0016 —-0.0148
A, = 0.0278 —0.0008 —-0.0218 —-0.0176 —0.0142 —0.0044 104
—0.0390 —-0.0038 —0.0831 0.0302 —-0.0284 —-0.4111
—0.0003 —0.0033 0.0469 —0.0002 0.0079 —0.0906
[—0.0339 —0.0023 —-0.3794 -0.0357 —0.0218 0.2407 |
where to be incorporated in an efficient inversion algorithm. The
E1(x) =|w-[M; — £2 — A; - (x — x0)]|? 17) empirical model was spe_cifically develqped for a red pin.e for-_
£5(x) = ||w - [1\7[2 S0 AL (x— x| (18) est stand that provides simple expressions for the polarimetric

backscattering coefficients and scattering phase center heights
Here the subscripts 1 and 2 denote, respectively, the casedbC-band as a function of the incidence angle. The accuracy
the incidence anglé = 39° and 53°. Note that the weighting of the empirical model was examined by comparing its output

function and the measured vectors in this case are written @fth that of the Monte Carlo FCSM. The empirical model

w=[1 0 0 1 0 0] (19) in conjunction with a stochastic search algorithm (GA) were
M, = [Z7(0=39°) 0 0 o°(8=39°) 0 0 (20) ysed t.o CoTsm'Jt(r:]t an mvgrsmn atlgotn:jhrg\. ]Ih(ta agcuracytgf tt.he
- - oo o inversion algorithm was demonstrated by first using synthetic-

M =[Z°(6=53°) 0 0 o),(6=53) 0 0. (2) measured data generated from the empirical model and the
The simulation results are compared with ground truth datgonte Carlo FCSM. It was shown that the inversion algorithm

[2] in Table I, where a very good agreement is shown.  can accurately estimate the input parameters when synthetic
data were used. Next, we applied the inversion algorithm

IV. CONCLUSIONS to an actual data set, obtained from TOPSAR, composed of

In this paper, a simplified empirical model was developedV-polarized backscattering coefficient and scattering phase
using a high-fidelity Monte Carlo coherent scattering modeknter height at C-band and at two incidence angles. Excellent
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agreement was obtained between the ground truth data and the radiative transfer theory,J. Electromagn. Waves Applicatol. 6, pp.

output of the inversion algorithm.

[13]

APPENDIX [14]

In this appendix, the values of coefficient matricgsand
A; used in (6) and (7) are reported for the red pine startpl
investigated in this study, as shown at the top of the previous

page.

(1]

(2]

(3]

(4]

(5]

(6]

(7]
(8]

(9]

[10]

[11]

[12]

[16]

REFERENCES [17]
M. C. Dobson, F. T. Ulaby, T. L. Toan, A. Beaudoin, and E. S.
Kasischke, “Dependence of radar backscatter on conifer forest biomass,”
IEEE Trans. Geosci. Remote Sensingl. 30, pp. 402—-415, Mar. 1992. [18]
M. C. Dobson, F. T. Ulaby, L. E. Pierce, T. L. Sharik, K. M. Bergen, J.
Kellndorfer, J. R. Kendra, Y. C. Lin, A. Nashashibi, K. Sarabandi, and
P. Siqueira, “Estimation of forest biophysical characteristics in Northerf19]
Michigan with SIR-C/X-SAR,”IEEE Trans. Geosci. Remote Sensing,
vol. 33, pp. 877-895, July 1995.

R. L. Jordan, B. L. Huneycutt, and M. Werner, “The SIR-C/X-SAR[20]
synthetic aperture radar systeniZEE Trans. Geosci. Remote Sensing,
vol. 33, pp. 829-839, July 1996. [21]
H. A. Zebker, S. N. Madsen, J. Martin, K. B. Wheeler, T. Miller, Y. Lou,

G. Alberti, S. Vetrella, and A. Cucci, “The TOPSAR interferometric[22]
radar topographic mapping instrumentPEE Trans. Geosci. Remote
Sensingyol. 30, pp. 933-940, Sept. 1992. [23]
V. Dimri, Deconvolution and Inverse Theory: Application to Geophysi-
cal Problems. Amsterdam, The Netherlands: Elsevier, 1992.

M. K. Sen, Global Optimization Methods in Geophysical Inversion.[24]
Amsterdam, The Netherlands: Elsevier, 1995.

F. T. Ulaby and C. ElachiRadar Polarimetry for Geoscience Applica-
tions. Norwell, MA: Artech House, 1990.

K. Sarabandi, Ak-radar equivalent of interferometric SARs: A theoret-
ical study for determination of vegetation heigh2?EE Trans. Geosci.
Remote Sensingpol. 35, pp. 1267-1276, Sept. 1997.

R. N. Treuhaft, S. N. Madsen, M. Moghaddam, and J. J. van Zyl, “Veg-
etation characteristics and underlying topography from interferometric
radar,” Radio Sci.,vol. 31, pp. 1449-1485, 1996.

[25]

19-51, 1992.

M. A. Karam, A. K. Fung, R. H. Lang, and N. H. Chauhan, “A mi-
crowave scattering model for layered vegetatidEEEE Trans. Geosci.
Remote Sensingol. 30, pp. 767—-784, July 1992.

N. S. Chauhan, R. H. Lang, and K. J. Ranson, “Radar modeling of
a boreal forest,”IEEE Trans. Geosci. Remote Sensingl. 29, pp.
627-638, July 1991.

Y.-C. Lin and K. Sarabandi, “A Monte Carlo coherent scattering model
for forest canopies using fractal-generated treSEE Trans. Geosci.
Remote Sensingol. 37, pp. 440-451, Jan. 1999.

L. Pierce, K. Sarabandi, and F. Ulaby, “Application of an artificial neural
network in canopy scattering inversionrit. J. Remote Sensingol. 15,

pp. 3263-3270, 1994.

P. F. Polatin, K. Sarabandi, and F. T. Ulaby, “An iterative inversion
algorithm with application to the polarimetric radar response of veg-
etation canopies,|EEE Trans. Geosci. Remote Sensing|. 32, pp.
62—71, Jan. 1994.

F. Amar, M. S. Dawson, and A. K. Fung, “Inversion of the relevant
forest and vegetation parameters using neural networks,Pric.
Progress Electromagn. Res. Symp. (PIERSE3.

K. Sarabandi and Y. C. Lin, “Simulation of interferometric SAR
response for characterizing the scattering phase center statistics of forest
canopies,”IEEE Trans. Geosci. Remote Sensit@be published.

D. E. Goldberg,Genetic Algorithms in Search, Optimization and Ma-
chine Learning. Reading, MA: Addison-Wesley, 1989.

S. H. Friedberg, A. J. Insel, and L. E. Spentimear Algebra. Engle-
wood Cliffs, NJ: Prentice-Hall, 1979.

A. Ishimaru, Wave Propagation and Scattering in Random Medial,

II.  New York: Academic, 1978.

J. Bosworth, “Comparison of genetic algorithms with conjugate gradient
methods: Technical report,” Tech. Rep. UMR0554, Comput. Commun.
Sci. Dept., Univ. Michigan, Ann Arbor, 1972.

K. Sarabandi and E. S. Li, “Characterization of optimum polarization
for multiple target discrimination using genetic algorithm&EE Trans.
Antennas Propagatio be published.

R. L. Haupt, “An introduction to genetic algorithms for electromagnet-
ics,” IEEE Antennas Propagat. Magvpl. 37, pp. 7-15, 1995.

Yi-Cheng Lin (S'92-M'98), for a photograph and biography, see p. 451 of

K. Sarabandi, “Electromagnetic scattering from vegetation canopiesiie January 1999 issue of thiRANSACTIONS

Ph.D. dissertation, Univ. Michigan, Ann Arbor, 1989.

F. T. Ulaby, K. Sarabandi, K. MacDonald, M. Whitt, and M. C. Dobson,
“Michigan microwave canopy scattering moddht. J. Remote Sensing,
vol. 11, pp. 1223-1253, 1990.

L. Tsang, C. H. Chan, J. A. Kong, and J. Joseph, “Polarimetric signatkamal Sarabandi (S'87-M'90-SM’'92), for a photograph and biography, see
of a canopy of dielectric cylinders based on first and second order vecior35 of the January 1999 issue of thirANSACTIONS



