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Retrieval of Forest Parameters Using a Fractal-Based
Coherent Scattering Model and a Genetic Algorithm
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Abstract—In this paper, a procedure for retrieval of forest
parameters is developed using the recently developed fractal-
based coherent scattering model (FCSM) and a stochastic opti-
mization algorithm. Since the fractal scattering model is compu-
tationally extensive, first a simplified empirical model with high
fidelity for a desired forest stand is constructed using FCSM.
Inputs to the empirical model are the influential structural
and electrical parameters of the forest stand, such as the tree
density, tree height, trunk diameter, branching angle, wood
moisture, and soil moisture. Other finer structural features are
embedded in the fractal model. The model outputs are the
polarimetric and interferometric response of the forest as a
function of the incidence angle. In this study, a genetic algorithm
(GA) is employed as a global search routine to characterize
the input parameters of a forest stand from a set of measured
polarimetric/interferometric backscatter responses of the stand.
The success of the inversion algorithm is demonstrated using a set
of measured single-polarized interferometric synthetic aperture
radar (SAR) data and several FCSM simulation results.

Index Terms—Ecology, interferometric SAR, inversion algo-
rithm, polarimetric SAR, radar remote sensing.

I. INTRODUCTION

RETRIEVAL of gross biophysical parameters of forest
stands, such as basal area, tree height, and leaf area

index (LAI), is of great importance in many environmental
research programs. Radar remote sensing at lower microwave
frequencies has been proposed as a sensitive instrument for
such applications [1], [2]. In support of programs pertaining
to radar remote sensing of vegetation, many advanced polari-
metric (SIR-C, AIRSAR) [3] and interferometric (TOPSAR)
[4] radar instruments have been developed.

The study of the inversion problems in geophysical science
and engineering has been of great importance from the onset
of the remote-sensing science [5], [6]. For example, in mi-
crowave remote sensing of vegetation, the inverse problem
is defined as the application of the measured quantities, such
as the polarimetric backscattering coefficients [from synthetic
aperture radar (SAR)] [7] and/or the scattering phase center
heights (from an interferometric SAR) [8], [9] in an algorithm
to retrieve forest parameters, such as tree type, tree density
and height, and moisture content of vegetation and soil.
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Over the past two decades, significant effort has been
devoted toward the development of scattering models for
vegetation canopies [10]–[15] as well as inversion models to
retrieve forest parameters from the measured data [16]–[18].
So far, the emphasis of the scattering model development has
been on the construction of simplified models with as few
input parameters as possible, so that the inversion problem
becomes tractable. In this process, the importance of struc-
tural features of the canopy (particle arrangement), coherence
effects, and multiple scattering were ignored. Even with these
simplifications, the inversion process is rather complex. In [16]
and [18], neural network approaches are suggested for the
inversion process, in which extensive computer simulations
or experimental results are used to train a neural network in
reverse order (the model outputs are fed as the input to the
program). This method is computationally extensive and its
success depends on the fidelity and the extent of the training
data. In [17], a gradient-based search routine is applied to
a nested linearized model. This model is computationally
efficient; however, its applicability is limited to models with
small dimensionality, and its success depends on the fidelity
of the forward model.

This paper describes the application of a high-fidelity scat-
tering model in an inversion process based on a stochastic
global search method. Basically, a recently developed coherent
scattering model that preserves the structural features of tree
canopies using fractal models is employed to generate sim-
plified empirical models (for different tree species) that can
predict the polarimetric and interferometric radar response of
a forest stand efficiently and accurately. The premise for the
successful development of such empirical models stems from
the fact that the model outputs are averaged quantities, such as
backscattering coefficients or the mean height of the scattering
phase center, and therefore are very gentle functions of model
inputs.

As demonstrated in [15], the fractal-based coherent scatter-
ing model (FCSM) offers two advantages over traditional scat-
tering models; namely, FCSM is more versatile and accurate.
Basically, FCSM is a first-order scattering model and capable
of simulating the fully polarimetric (including the phase statis-
tics) and polarimetric–interferometric (scattering phase centers
and correlation coefficients for any polarization configuration
[19]) radar responses of coniferous and deciduous forest
stands. High accuracy is achieved by FCSM through incor-
porating the coherent effects among the individual scatterers
and scattering components and by accounting for the accurate
position of scatterers, which is manifested in inhomogeneous
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Fig. 1. Sensitivity analysis of the C-band polarimetric scattering phase center height as a function of the physical parameters: (a) trunk diameter,(b) tree
height, (c) tree density, (d) branching angle, (e) soil moisture, and (f) wood moisture, simulated at incidence angle� = 25

�.

scattering and extinction profiles. This versatility and accuracy,
however, has been achieved at the expense of the model
complexity, which demands extensive computational power.
For example, the number of input parameters needed to
accurately characterize the tree structures and the environment
may easily exceed 30 (it should be noted that once a tree type
is chosen much fewer free parameters are needed to model the
natural variabilities). On the other hand, to obtain a solution
with a reasonable accuracy in the Monte Carlo simulation, a
sufficiently large number (100) of realizations are required.
The required computational time for each simulation limits the
model’s utility in inverse processes, which may demand the
calculation of the forward problem many times.

To circumvent the aforementioned problem, development of
empirical models based on FCSM is proposed. Construction
of an empirical model can be achieved using a standard
procedure, such as a curve-fitting and regression method.
Unlike physical models, empirical models are simple math-
ematical expressions formed from a set of data acquired from
measurements or a physical model prediction. Once empirical
formulas are obtained, they are easy to use and require
minimal computation time. It should be noted, however, that
an empirical model is usually valid only for a specific case
within a certain range of the parameter space over which the
model is constructed.

For the development of the empirical model used in this
study, first a sensitivity analysis is conducted to determine the

significant parameters, the number of which determines the
dimensionality of the input vector space. A red pine stand
is chosen in this paper, and six parameters are selected as
the input parameters. Each selected parameter is allowed to
have about 30% variation with respect to a centroid. Using
the Monte Carlo simulation results obtained from FCSM, a
database is constructed by varying the individual parameters
over a prescribed range of the input vector space around the
centroid. The parameters at the centroid are obtained from the
ground truth data of a red pine test stand (Stand 22) in Raco,
MI.

For the inversion process, first a least-squares estimator
is used and shown to work properly when the number of
measured channels is equal to or larger than the dimension
of the input vector space. But since this may not be the
case in general situations, a genetic algorithm (GA) [20] is
developed and employed as a search routine for the nonlinear
optimization problem. GA’s are known to be very successful
when the dimension of the input vector space is large and/or
when the objective function is nonlinear.

II. EMPIRICAL MODEL DEVELOPMENT

In general, the output of the Monte Carlo coherent scattering
model can be expressed as

(1)
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Fig. 2. Sensitivity analysis of the C-band polarimetric backscattering coefficient as a function of the physical parameters: (a) trunk diameter, (b)tree height,
(c) tree density, (d) branching angle, (e) soil moisture, and (f) wood moisture, simulated at incidence angle� = 25

�.

TABLE I
RANGES OF THESELECTED GROUND TRUTH PARAMETERS AND THE

CORRESPONDINGPERCENTAGE VARIATIONS TO THE CENTROID

TABLE II
INVERSION RESULTS USING THEINTERFEROMETRICTOPSAR DATA

AS THE MEASURED CHANNELS ~M. HERE x IS THE ACTUAL GROUND

TRUTH DATA AND x0 IS THE OUTPUT OF THE INVERSION PROCESS

where is a complex operator relating the input and output of
the model and the output is a vector that may contain the
backscattering coefficient ( ), scattering matrix
phase difference statistics, the scattering phase center height

, or the interferogram correlation coefficient. The input
parameters are divided into two categories: 1) radar system
parameters and 2) target parameters. Radar parameters include

the radar frequency , the polarization configuration, and
the incidence angle. The number of target parameters can
be very large, consisting of the tree structural parameters and
the dielectric properties of the constituent components. The
number of these parameters is reduced drastically, however,
once a tree type is chosen. In this case, only a few structural
parameters are sufficient to allow for natural variabilities
observed for that type of tree. The rest of the structural
parameters are embedded in the fractal code of the tree. In this
paper, we demonstrate development of an empirical model for
a red pine tree, where only six free parameters are sufficient to
describe the stand. These include the trunk diameter, tree
height , tree density , branching angle , soil moisture

, and wood moisture . It should be noted that these
parameters themselves are statistical in the coherent model
with prescribed distribution functions and we are referring
here to their mean value.

Multifrequency polarimetric SAR systems operate at dis-
crete frequencies, usually at P-, L-, C-, and X-band, and
the polarization configurations are , , and . In
this study, we demonstrate a model with three fundamental
backscattering coefficients and the associated mean scattering
phase center height as the model output and fix the frequency
at C-band (5.3 GHz). The empirical model is developed to
operate over the angular range 25–70. Therefore, the output
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Fig. 3. Angular dependence of the polarimetric backscatter in terms of (a)
the scattering phase center heightZe and (b) the backscattering coefficient
�
0. The simulation results are fitted with polynomials of degree 3.

and input vectors and are defined as

and

As mentioned earlier, since no resonance behavior is expected,
the output vector is a gentle function of the input vector

and the incidence anglethat may be related to each other
via a simple empirical relationship

(2)

where is the simple empirical operator and is the output
of the empirical model. It is expected that be as close to

as possible.
In general, the output parameters are nonlinear functions of

the incidence angle and other input parameters. In order to
establish these relationships, the coherent model must be run
by varying the incidence angles and other input parameters.
Through an extensive sensitivity study, it was found that
over a finite domain of the input vector space, a logarithmic

relationship between the backscattering coefficient (linear in
decibel scale) and a linear relation between the scattering phase
center height and the input parameters exist. The dependence
on the incidence angle was found to be nonlinear.

The first step in the construction of the empirical model
is to choose the domain of the input vector space. In this
investigation, we chose the structural parameters of a young
red pine stand, a test forest stand in Raco (Stand 22), and
the seasonal average of soil and vegetation moisture as the
centroid of the input domain. These parameters and their range
of variation used in the model development are shown in
Table I. The range of parameter space is chosen so that the
measured parameters of a red pine test stand (see Table II)
is at the centroid of the parameter space. The Monte Carlo
simulation was then carried out for specific incidence angles
by varying the six free parameters within the prescribed ranges.
The average scattering phase center heights () for each
polarization configuration and backscattering coefficients (
in dB) are shown in Figs. 1 and 2 as a function of each
parameter, respectively. These figures clearly demonstrate the
linear relationship previously described. Hence, the output
vector can be readily approximated by the Taylor series
expansion of the exact model to the first order, and it is given
by

(3)

where denotes the input vector at the centroid andis the
matrix of partial derivatives whose th element is given by

(4)

simply represents the derivative of theth output channel
with respect to theth input parameter , evaluated at the

centroid .
In this matrix, each element was evaluated by calculating

the slope of a fitting line over five sample points based on a
least-squares method. In Figs. 1 and 2, the symbolsare the
simulation results and the lines are the best linear estimation. It
should be pointed out that each point in each figure represents
an ensemble average of 200 realizations of the Monte Carlo
simulation. This indicates that the initial task of generating
a matrix of coefficients is very tedious and timeconsuming.
Once the empirical model is obtained, however, it can provide
a highly accurate solution to an arbitrary input in almost
real time. This property of the empirical model is especially
important in the inversion processes.

Results in Figs. 1 and 2 are for a fixed incidence angle
. The simulations at other incidence angles, however,

show that the general form of (3) is valid for all incidence
angles with the exception that and are functions of
the incidence angle, i.e.,

(5)

It is found that and are nonlinear, but gentle,
functions of the incidence angle over the range of interest
(25–70 ). In order to obtain the functional form of and
on , the aforementioned Monte Carlo simulation was repeated
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Fig. 4. Comparison between the empirical model and the Monte Carlo coherent scattering model for a red pine stand atV V -polarization configuration.

Fig. 5. Comparison between the empirical model and the Monte Carlo coherent scattering model for a red pine stand atVH-polarization configuration.

Fig. 6. Comparison between the empirical model and the Monte Carlo coherent scattering model for a red pine stand atHH-polarization configuration.

at several different incidence angles and the corresponding
values and were evaluated. Polynomial functions are
used to capture the angular variations of and . It was
found that and can be accurately expressed by

(6)

and

(7)

where and are 6 1 and 6 6 matrices whose values
are reported in the Appendix. Fig. 3 compares the results of the
empirical model given by (5) with those of the Monte Carlo
simulation at the centroid ( ). It should be noted that
the choice of the output parameters are arbitrary and depends
on the available set of input data. For example, an empirical
model for a two-frequency system with three backscattering
coefficients could be developed using the same procedure.

Equation (5) represents the overall empirical model whose
accuracy can be evaluated through a comparison with the
Monte Carlo simulations. For this comparison, a large number

of Monte Carlo simulations with independent input vectors
were carried out. Figs. 4–6 show the comparison between the
results of the empirical model and those of the Monte Carlo co-
herent model using 200 independent input data sets randomly
selected within the aforementioned domain of the empirical
model. The figures show excellent agreement between the
empirical model and the Monte Carlo coherent model, noting
that the convergence criteria for the Monte Carlo model is

0.5 dB. Having confidence on a fast and accurate empirical
model, the inversion processes can be attempted, which is the
subject of the next section.

III. I NVERSION ALGORITHMS

Consider a physical system whose input–output relation
is expressed by , where in general and
are multidimensional vectors of arbitrary length. The inverse
problem is mathematically defined as , subject
to certain physical constraints. Although the inverse problem
may be well-defined mathematically, in practice, the inverse
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solution may not exist for two reasons: 1) mathematical
construction of the model may not be exact and 2) the
measured vector may not be exact because of measurement
errors. Hence, instead of casting the problem in terms of an
inverse problem, the problem of finding is usually cast in
terms of a constraint minimization problem.

Suppose there exists a set of measurements, the problem
is defined as characterization ofso that the objective function
(or error function), defined by

(8)

is minimized over a predefined domain for. Here, denotes
the norm of the argument. As mentioned earlier, there are
a number of inversion processes available in the literature;
however, in this paper, by constructing a simple empirical
model, a traditional least-squares minimization approach and
a stochastic global minimization method are examined.

A. Least-Squares Approach

As shown in Section II, the scattering problem can be cast in
terms of a linear system of equations of the form ,
where is an matrix and is an -dimensional vector
in , . For a given -dimensional vector , (8) can
be expanded as

(9)

A solution that minimizes must satisfy

(10)

and is referred to as the least-squares solution. It is shown that
the solution of (10) can be obtained from the solution
of the following matrix equation [21]:

(11)

Here, is the transpose of . It is also demonstrated that
the solution exists if rank . This
requirement states that the number of independent equations
should exceed the number of unknowns.

To apply (11) to our empirical model using (3), it is noted
that

(12)

Thus, we use the substitution and .
Here and are evaluated from (6) and the solution is
given by

(13)

The least-squares solution may not be suitable for the
inverse problem at hand for two reasons. First, the number
of output channels is usually less than that of unknown
parameters . In this case, rank and is not
invertible. Even when the number of channels is larger than the
unknowns, the solution provided by (13) may not be accurate.

Fig. 7. Flow chart of a GA.

This happens when is ill-conditioned. Basically, some
elements of become very large, which amplify the
errors in [22].

B. Genetic Algorithms

In recent years, applications of GA’s to a variety of opti-
mization problems in electromagnetics have been successfully
demonstrated [24], [25]. The fundamental concept of GA’s is
based on the concept of natural selection in the evolutionary
process, which is accomplished by genetic recombination and
mutation. The algorithms are based on a number ofad hoc
steps, including the following:

1) discretization of the parameter space;
2) development of an arbitrary encoding algorithm to es-

tablish a one-to-one relationship between each code and
the discrete points of the parameter space;

3) random generation of a trial set known as the initial
population;

4) selection of high-performance parameters according to
the objective function known as natural selection;

5) mating and mutation;
6) recursion of steps 4) and 5) until a convergence is

reached.

Fig. 7 shows the flow chart of GA’s. Note that the population
size is provided by the user and an initial population of the
given size is generated randomly.

In this study, since we have as many as six input ground
truth parameters and six output channels, it is expected that the
objective function is complex and highly nonlinear containing
many local minima. In this case, the traditional gradient-based
optimization methods usually converge to a local minimum
and fail to locate the inverted data. One interesting feature
of GA’s is that the method would provide a list of optimal
solutions instead of a solution. This is important in the sense
that a solution that best meets the physical constraints (not
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Fig. 8. Comparison of the input parameters (x) and the output of the inversion algorithm (x
0) using the synthetic data obtained from the Monte Carlo

simulation, for (a) trunk diameterda, (b) tree heightHt, (c) tree densityDt, (d) branching angle�b, (e) soil moisturems, and (f) vegetation moisture
mw. Here � is a measure of the average error in the inversion process defined by (15).

included in the objective function) may be selected from the
list of optimal solutions.

For this problem, each of the input parameters was dis-
cretized and encoded into a 4-bit binary code, creating a
discrete input vector space with members. A population of
240 members was used for each generation and the objective
function was defined by

(14)

where is a user-defined weighting function assigned to
individual output channels. To examine the performance of
this GA-based inversion algorithm, many arbitrary points
within the domain of the input vector space were selected
and then the Monte Carlo simulation was used to evaluate

the polarimetric backscattering coefficients and the scattering
phase center heights at 5.3 GHz. The output of FCSM for
these simulations were used as a synthetic measured data set

for the inversion algorithm. Fig. 8 shows the performance
of the inversion algorithm through comparisons of the input
parameters and the inverted parameters. Also shown in
each of the figures is the calculated average error, defined by

(15)

where is the number of points ( in this case) and
is the range of validity of the parameter according to the

empirical model. It should be noted here that the quantization
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Fig. 9. Comparison of the input parameters (x) and the output of the inversion algorithm (x
0) using the synthetic data obtained from the empirical model,

for (a) trunk diameterda, (b) tree heightHt, (c) tree densityDt, (d) branching angle�b, (e) soil moisturems, and (f) vegetation moisturemw. Here
� is a measure of the average error in the inversion process defined by (15).

error for 4-bit quantization (3%) is also included in the
results. To examine the importance of the quantization error
and the stochastic nature of the solution in the inversion
process, the inversion process was applied to another set
of synthetic measurement data generated by the empirical
model. Fig. 9 shows the comparison between the actual input

and the inverted solution . It is noticed that the error
in Fig. 9 is slightly smaller than those obtained from Fig. 8.
This indicates that the quantization error and the stochastic
nature of the solution are considerable factors on the overall
error. Increasing the quantization level to five bits increases
the members of the input vector space by factor of. This
slows down the inversion process since the population in each
generation must also be increased. This does not, however,

improve the overall accuracy drastically as the errors inherent
in the empirical model and those caused by the stochastic
nature of the GA solution are independent of quantization
error.

At last, the developed inversion algorithm is tested using the
real measured data acquired by the Jet Propulsion Laboratory
TOPSAR over a test stand of red pine forest in Raco. Although
only four data points (C-band -polarized backscattering
coefficients and scattering phase center heights at incidence
angles and ) are available, the inversion algorithm
can be easily modified via the objective function of the GA.
In this case, the objective function is given by

(16)
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and

where

(17)

(18)

Here the subscripts 1 and 2 denote, respectively, the case for
the incidence angle and . Note that the weighting
function and the measured vectors in this case are written as

(19)

(20)

(21)

The simulation results are compared with ground truth data
[2] in Table II, where a very good agreement is shown.

IV. CONCLUSIONS

In this paper, a simplified empirical model was developed
using a high-fidelity Monte Carlo coherent scattering model

to be incorporated in an efficient inversion algorithm. The
empirical model was specifically developed for a red pine for-
est stand that provides simple expressions for the polarimetric
backscattering coefficients and scattering phase center heights
at C-band as a function of the incidence angle. The accuracy
of the empirical model was examined by comparing its output
with that of the Monte Carlo FCSM. The empirical model
in conjunction with a stochastic search algorithm (GA) were
used to construct an inversion algorithm. The accuracy of the
inversion algorithm was demonstrated by first using synthetic-
measured data generated from the empirical model and the
Monte Carlo FCSM. It was shown that the inversion algorithm
can accurately estimate the input parameters when synthetic
data were used. Next, we applied the inversion algorithm
to an actual data set, obtained from TOPSAR, composed of

-polarized backscattering coefficient and scattering phase
center height at C-band and at two incidence angles. Excellent
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agreement was obtained between the ground truth data and the
output of the inversion algorithm.

APPENDIX

In this appendix, the values of coefficient matricesand
used in (6) and (7) are reported for the red pine stand

investigated in this study, as shown at the top of the previous
page.
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