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Similarity and Affine Invariant Distances
Between 2D Point Sets

Michael Werman and Daphna Weinshall

Abstract—

We develop expressions for measuring the distance be-
tween 2D point sets, which are invariant to either 2D affine
transformations or 2D similarity transformations of the sets,
and assuming a known correspondence between the point
sets. We discuss the image normalization to be applied to
the images before their comparison so that the computed
distance is symmetric with respect to the two images. We
then give a general (metric) definition of the distance be-
tween images, which leads to the same expressions for the
similarity and affine cases. This definition avoids ad-hoc deci-
sions about normalization. Moreover, it makes it possible to
compute the distance between images under different con-
ditions, including cases where the images are treated asym-
metrically. We demonstrate these results with real and sim-
ulated images.

Keywords— image matching, pattern analysis, 2D affine in-
variance, 20 similarity invariance, image metric.

1 Background

When comparing images to other images or models, one
would like to somehow cancel camera transformations. In
general there is no way to normalize images of 3D objects
so that all the projections of the same object are equiv-
alent (other than a normalization that makes all images
equivalent). However, under the weak perspective (scaled
orthographic) projection model assumed here, it is possi-
ble to remove the effects of certain camera transformations,
such as rotations about the optical axis and translations.

More specifically, there exist standard methods of image
normalization with respect to the following image transfor-
mations [3]:

Translations: the image is shifted so that its centroid is
at the origin.

Rotations: the image is rotated so that its principal axis
has some standard orientation.

Normalization with respect to rotations can be replaced
by normalization with respect to linear transformations, or
normalization by moments, where an image is transformed
with a linear transformation so that its second moments
have given values. This method is related to the Whiten-
ing transformation, a linear transformation of data which
transforms its covariance matrix into the unit matrix [1, 4].
This transformation does not preserve Euclidean distances.

In Section 2 we give the expression for the distance be-
tween images up to 2D similarity transformations, which
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uses normalization with scale and rotations, and the ex-
pression for the distance up to 2D affine transformations,
which uses normalization by moments. In Section 3 we
show a different way to look at the difference between two
point sets, which entails looking at all the possible trans-
formations of a point set as a single object and measuring
the distance between these objects. This approach defines
distance measures between images that have metric proper-
ties. We show that both definitions are equivalent, leading
to the same expressions. Finally, Section 4 contains ex-
amples with real and simulated images (see [5] for a more
advanced use of metric).

2 Normalization and comparison

We assume here objects composed of n three dimensional
fiducial points. An image of the object is obtained by a
rigid transformation (of the object or the camera), fol-
lowed by weak perspective (or scaled orthographic) projec-
tion from three dimensional space to the two dimensional
image.

An image is a set of n image points {(z;, )}’ ;. An
equivalent representation of the image is the 2 x n matrix
P, whose i-th column is the image coordinates of the i-th
feature of the object. The use of matrix P to represent
an image of an object implies a correspondence between
the image features and the object features, where differ-
ent correspondences lead to permutations of the matrix’s
columns.

Given two images, or the two matrices P and Q, the
question of comparing them is equivalent to matrix com-
parison. We are using the “usual” metric, which is the
Frobenius norm of the difference matrix, and which is the
same as the Euclidean distance between points in the im-
ages:

IP—Qll > IIPli, 51— Qi 411 (1)

= tr[(P-Q)-(P-Q)]

Henceforth we will omit the subscript F', and an unsub-
scripted matrix norm will be the Frobenius norm.

Before taking the norm of the difference between the im-
ages, we want to remove differences which are due to irrele-
vant effects, such as the size of the image (which is arbitrary
under scaled orthography) or the exact location of the ob-
ject (e.g., due to an arbitrary translation and rotation of
the object in the image). The following two operations,
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which remove irrelevant effects, are easy to do:

Normalization: the size of the images is normalized to
some standard size.

Image alignment: a 2D alignment transformation, taken
from a group of 2D transformations which includes 2D
rotations, translations and scale, is applied to one im-
age to obtain optimal alignment with the other image.

The normalization stage is intended to guarantee that
the distance between two images, defined in Eq. (1), is sym-
metric in the sense that we get the same distance when, in
the alignment stage, one image is aligned with another im-
age or vice versa. The normalization enables us, therefore,
to compare between different images of the same object and
of different objects, since distances are always measured in
a normalized frame.

For alignment we consider two groups of 2D transfor-
mations: the similarity group, which includes 2D rotations,
translations, and scale, and the affine group, which includes
2D linear transformations and translations. An alignment
with a similarity transformation is necessary, since under
weak perspective projection, images that differ by image
rotation or translation can be obtained from the same ob-
ject, and should therefore be considered the same image.

Since the group of affine transformations includes the
similarity group as a sub-group, the alignment with affine
transformation is more general: it makes images that differ
by 2D rotation and scale appear the same as needed, but it
also makes images of different objects appear the same. It
therefore leads to false identifications of different images as
the same image. On the other hand, for planar objects, the
affine alignment makes all the images of an object (from all
viewpoints) appear the same (under the weak perspective
assumption), which is advantageous when planar objects
are expected. Both measures are therefore useful, and we
discuss both possibilities here.

2.1 The similarity measure

Let us define the normalization, alignment, and compar-
ison operations described above, where the alignment is
done with a 2D similarity transformation, as applied to
the matrix representations of two images P and Q. We
assume w.l.o.g. that the images are centered on their cen-
troid, so that their first moments are 0 (this turns out to be
the optimal translation when measuring distance by sum
of square distances). To accomplish this normalization, we
use a 2D translation. Therefore the remaining free com-
ponents of the similarity transformation are a 2D rotation
and scale.

Scale normalization:

7 P 1 Q
P = _ = —
P Y Tl

Alignment: w.l.o.g. we align image P’ with Q' using a
scaled rotation

(2)

P’ =sk-P’

where s 1s a scalar and R is a 2 x 2 rotation matrix

e (S i)

cos(4)
To accomplish optimal alignment, we choose g and s
which obtain

IsBP' — Q'|I* = min |l RP' - Q|

This can be solved by differentiating the distance ex-
pression, tr[(sRP’ — Q') - (sRP’ — Q’)T], with respect
to u and s, and equating the partial derivatives to 0.
Having done that, we get!:

VrEPIQ)T] + tr2[P(Q)]
rt[P/(Q)7]
r[P(Q)T]

Therefore the 2D alignment transformation is:

o ( PUQ)T) r[P(Q)T]
A=sR= (—T‘t[PI(Ql)T] tr[P’(Q/)T]) @

Note that if we decompose the 2 x 2 matrix P/(Q’)%
into its curl, div and def components we see that the
optimal 2D similarity alignment transformation A is
the sum of the non-distorting components of P’(Q’)7,
that is, the sum of its curl and div.

Comparison: The similarity distance between images P

and Q is

tanp =

D}in(P, Q) = || AP — Q||

for P’, Q' defined in Eq. (2) and A defined in Eq. (3).

In order to express Dsim (P, Q) directly in term of P, Q
(rather than P’  Q’), the similarity measure can be shown
to be equal to

D%n(P.Q) = sRP - Q
= %tr[(sRP - Q) (sRP —Q)7]
where
_ /r?[PQT] + tr2[PQT]
5T tr[PPT]
; _ rt[PQT]
BT 1
h = tr[QQT]

This expression can be simplified as follows:

D2 (P.Q) = 117[(AP — Q) - (AP — Q)]

1tr[] of a matrix returns the sum of its diagonal elements. In analogy,
and for simplicity of presentation, we use the complementary operator
rt[]; rt[] of a 2 X 2 matrix returns the difference between its off-diagonal
elements.



IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(8):810-814, 1995 3

where
1
A = ———[QPT +det(PQT)(PQT)™!
tr[PPT][Q + det(PQ")(PQ" )™ ]
h = r[QQ"] =]’
(Note that A is an orthogonal, but not orthonormal, 2 x 2
matrix.)

Additional simplifications give us the final form:

_ IQPT|]? + 2det(QPT)
P2l

(4)

2.2 The affine measure

We now define the normalization, alignment, and compar-
ison operations for an alignment done with a 2D affine
transformation, as applied to the matrix representations
of the two images P and Q. Once again, we can assume
w.l.o.g. that the images are centered on their centroid, so
that their first moments are 0. To accomplish this normal-
ization, we use a 2D translation. Therefore the remaining
free component of the affine transformation is a 2D linear
transformation.

Moment normalization:
P'=S,P, Q =8,Q (5)

where §, and S, are 2 x 2 invertible matrices such that
P'(P) = Q(Q")T = I, and I denotes the 2 x 2 unity
matrix.

Alignment: w.l.o.g. we align image P’ with Q' with a
linear transformation

P// — AP/

where A is a 2 x 2 invertible matrix. To accomplish
optimal alignment, we choose A which obtains

IAP’ - Q'|]* = min | AP’ - Q|

The matrix A which obtains the above least square
distance is the pseudo-inverse:

A= QI(P/)+ _ Q/(P/)T(P/(P/)T)—l _ Q/(P/)T
Comparison: The affine distance between images P and
Qis
Diff(P: Q) = ||API - QIH2
for P/, Q' defined in Eq. (5) and 4 = Q'(P")?.

In order to express Dgysr(P, Q) directly in term of P, Q
(rather than P’  Q’), the affine measure can be shown to
be equal to

D25 (P,Q) =tr[(QQ") (AP — Q) - (AP — Q)]
where A = QPT.

Additional simplifications give us the final form:

Diff(P,Q):Q_tT(P+P'Q+Q) (6)

3 Metrical image comparison

In the previous section we showed how to normalize point
sets in order to compare them in a “good” manner. In this
section we give a different definition for the comparison
between images, which gives a metric interpretation to the
expressions developed above. The reason for bringing this
new definition is that it gives another, maybe cleaner, way
of looking at the comparison problem. It also allows us
to compare images which undergo transformations from
different classes.

We first identify an image, which is a set of k& planar
points {(z1,¥1), (€2,y2), ..., (zk,yr)}, with a single point
in R*: p = (z1,%2,...,%k,Y1,Y2---,Yk). P is a vector
representation of the image, containing the concatenation
of the rows of the matrix representation P. In this space,
all the similarity transformations of the image can be iden-
tified with a four-dimensional subspace of R?* that includes
P, where the four parameters correspond to scale, rotation,
and translation in the z and y directions. Similarly, all the
affine transformations of the image can be identified with
a six-dimensional subspace of R?* that includes the ori-
gin and point p. Thus a natural distance between images
matched up to similarity is the distance between their cor-
responding four-dimensional subspaces, and the distance
between images matched up to affine transformation is the
distance between their corresponding six-dimensional sub-
spaces.

We use the following distance between subspaces [2]: a
subspace of R?** can be identified with the matrix that
corresponds to the linear operator of orthogonal projection
into that subspace. The distance between subspaces is the
norm of the difference between their corresponding projec-
tion matrices. A projection matrix can be built from a set
of basis vectors, which span the subspace, as follows:

1. the basis is orthonormalized;

2. asintermediate matrix C'is constructed whose columns
are the orthonormal basis vectors;

3. CC7 is the projection matrix.

The computation for the similarity case is as follows: if
another image S is a similarity transformation of P, then
there exist four parameters a,b, e, f such that (using the
matrix representation of the images)

() o

We define four vectors in R2*

vy (1,22, Tk, Y1, Y2y - - -5 Uk)

vo = (Yy1,¥Y2, -, Yk, —%1, —Ta, ..., —L})
vi = (1,1,...,1,0,0,...,0)

vi = (0,0,...,0,1,1,...,1)

Changing Eq. (7) to vector representation, we get

s = avy + bvy + evs + fvy.
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Therefore the four vectors {v;}{_, span the subspace of
all images obtained from p by a similarity transformation.
We use this basis to construct the projection matrix of this
subspace as described above.

Let Vp denote the matrix corresponding to the orthogo-
nal projection into the similarity subspace of image p, and
similarly Vq denotes the projection matrix for image q.
The distance between p and q is:

Dsim(P: Q) = ||Vp - VQH

(here we use again the Frobenius norm of the difference).

The computation for the affine case is the same as in the
similarity case, except that the subspace corresponding to
p is spanned by the six vectors:

w; = (z1,22,...,2;,0,0,...,0)
wy = (Y1,Y2,---,¥%,0,0,...,0)
ws = (0,0,...,0,21,22,...,2)
wy = (0,0,...,0,y1,92,.--,Uk)
ws = (1,1,...,1,0,0,...,0)
ws = (0,0,...,0,1,1,...,1)

This is because an image S in the subspace corresponding
to all the affine transformations of image P can be written

s= (4 4)re(5)

for 6 parameters a,b,c,d,e, f. Changing to vector repre-
sentation, we once again get

as

s = awy + bwa + cws + dwa + ews + fwg

The projection matrix Wp of the affine subspace of p can
be built from the basis {w;}_, as described above. The
affine distance between points P and Q is:

Duss(P,Q) = ||Wp — Wq|

Note that if the vector p is normalized so that the sum
of the #’s is zero and the sum of the y’s is zero, then there
is no need to include the vectors (1,1,...,1,0,0,...,0) and
(0,0,...,0,1,1,...,1) in the basis of the similarity and
affine subspaces. This leaves a two-dimensional sub-space
for the similarity case, and a four-dimensional subspace for
the affine case.

After some tedious simplifications, it can be shown that
the above expressions for D,y and Dy, are exactly twice
the expressions obtained in the previous section given in
Egs (4),(6). Note, however, that the present definition is a
metric, and we can therefore conclude that the affine and
similarity distances are in fact metrics, defining two metric
spaces on the space of all images.

The general definition used here enables us to obtain
more than just rederivations of the results of the previ-
ous section. For example, we match two images, one of

which is allowed to go similarity transformations and the
other is allowed affine transformations. This is done by
again comparing their respective projection matrices. The
squared distance between P, where P can undergo affine
transformations, and Q, where Q can undergo similarity
transformations, is

tr(P*P-Q7Q)
Il

(where the points are centered on their centroid).

D2, (P,Q)=1-

mix

4 Examples

Flgure 1: 1st row - a reference image of a cube, to be aligned with other
images; 2nd row - two other images of a cube; 3rd row - the reference
image aligned with the images in the second row using the optimal affine
transformation; 4th row - the reference image aligned with the images in
the second row using the optimal similarity transformation. The left and
right columns depict two different examples.

Fig. 1 shows simulated images of a cube, aligned with
the optimal 2D similarity and affine transformations.

Fig. 2 shows a real reference image of a toy tiger. Three
additional images of the tiger are shown in Fig. 3. We used
ears, eyes, knees, tail and nose as features. Next to each of
the three images in Fig. 3 we show a scaled rotated version
of it, which is the same image rotated and scaled by the
optimal similarity transformation that aligns it with the
reference image given in Fig. 2.

Table 1 summarizes the similarity and affine distances
between the images in F 5 ig. 3 to the image in Fig. 2.
The images in Fig. 3 were taken increasingly further away
from the image in Fig. 2, as measured by the distance be-
tween them on the viewing sphere. The distances in Table 1
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Figure 2: An image of a toy tiger.

[

Flgure 3: Three images of a tiger; below each of the first two, and to
the right of the third one, we show a scaled rotated version of the image,
which is the same image rotated and scaled by the optimal similarity
transformation that aligns it with the image shown in Fig. 2.

similarity distance | affine distance
0.124 0.412
0.206 0.822
0.341 0.854

Table 1: The similarity and affine distances between three images of a
tiger, shown in Fig. 3, to a reference image shown in Fig. 2.

demonstrate that both the affine and similarity distances
increase with the inter-view distance on the viewing sphere.

5 Discussion: an application

In [5] we used these expressions to analyze the stability and
likelihood of 2D images of 3D objects. There we compared
different images of the same 3D object, and we therefore
used the three 2D image metrics developed above. After
defining the concepts of stability and likelihood, we showed
that both the stability and likelihood of images depend only
on the three second moments of the object. We developed
explicit expressions, from which the stability and likelihood
of any image of a general object can be computed from
its three second moments. We also showed that the most
stable and the most likely views of an object are the same
view, which is the “flattest” view of the object.

6 Summary

We described a general (metric) approach to compute the
distance between two sets of 2D points. The distance is
computed relative to an equivalence class of each set (im-
age), defined by a group of 2D image transformations. We
developed the specific distance expressions in the following
cases:

e Each set is given up to a similarity transformation
(this metric is invariant to similarity transformations):

_ [1QPT|1? + 2det(QPT)
P2l

e Each set is given up to an affine transformation (this
metric is invariant to affine transformations):

Dep;(P,Q)=2—-tr(P*P-Q*Q)

D% (P,Q)=1

sim

e One set is given up to a similarity transformation, and
the other up to an affine transformation:

tr(P*P - Q' Q)

D (P,Q)=1-
. Q) 1alr

mix
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