
470 IEEE TRANSACTIONS ON , SOFTWARE ENGINEERING, VOL. 18, NO. h, JUNE 1992

Knowledge Representation and Reasoning
in the Des ign o f Compos ite Systems

Stephen Fickas and B. Robert Helm

Abstract- Our interest is in the design process that spans
the gap between the requirements acquisition process and the
implementation process, in which the basic architecture of a
system is defined, and functions are allocated to software, hard-
ware, and human agents. We call this process composite system
design. Our goal is an interactive model of composite system
design incorporating deficiency-driven design, formal analysis,
incremental design and rationalization, and design reuse. We
discuss knowledge representations and reasoning techniques for
the product (composite system) that we are designing, and for the
design process, which support these goals. To evaluate our model,
we report on its use to rationally reconstruct the design of two
existing composite systems.

Index Terms-Automated analysis, composite systems, knowl-
edge-based design, rational reconstruction, software specification.

I. INTRODUCTION

0 UR group’s historical interest has been in knowledge-
based software development (AI and SE). However, in

the course of our research, we found that we could not formally
explain or reproduce the features of s tandard software designs,
such as those of elevator controllers and library databases [24]
by focusing solely on the software and its immediate interface
to human and hardware systems. Further ev idence of this
di lemma was found in human systems analysts in the domains
we studied [16]; they focused on policies and concerns that
cut across human, hardware and software components. This
has led us to an interest in the design of composite systems,
ones that encompass multiple agents involved in ongoing,
interactive activities [13]. In composite systems, software
agents are treated the same as human and physical agents,
as components to be integrated together to solve larger system
constraints.

W e have developed an interactive design model, called Crit-
ter, for producing composite systems. The model is founded
on an earlier design tool called Glitter [15], which used
automated problem-solving techniques to assist a human in
implementing a formal specification. W e have tested Critter
by attempting to rationally reconstruct or reproduce existing
wel l -documented composite system designs, some containing
no software components (e.g., pre-computer transportation
systems), some containing a mixture of software, human, and
physical components (e.g., the canonical elevator system [24]),

Manuscript received October 1, 1991; revised February 11, 1992. Recom-
mended by M. Jarke and A. Borgida. This work was supported by the National
Science Foundat ion under Grant CCR-8804085.

The authors are with the Department of Computer Science, University of
Oregon, Eugene, OR 97403-1202.

IEEE Log Number 9200172.

and some containing software components solely (e.g., email
transport systems). Our work on Critter is tied to the special
issue as follows.

Software engineer ing goal: W e wish to address the stage
between the requirements acquisit ion process and the im-
plementat ion process, in which the basic architecture of a
system is defined, and functions are al located to software and
hardware components, or to the users. For the design process,
in particular, we are interested in representat ions that promote
deficiency-driven design, formal design analysis, incremental
design and rationalization, and design reuse.

Knowledge content: There are two types of knowledge
we must address in designing composite systems: 1) the
knowledge of the artifact (composite system) that we are
designing, and 2) the knowledge we use in designing the
artifact. Our knowledge of an artifact is a formal model of
its behavior and the constraints it lives under. For design
knowledge, we have focused on the knowledge necessary
1) to decompose a global specification into specifications of
its components, and 2) to modify the global specification so
that realistic implementations can be found. W e introduce the
notion of a minimally restricted design step as a means to
effectively play out a complex design. W e also discuss the
form of analysis our tools produce. In particular, we want
our analysis tools to output not only “correct design” or
“incorrect design,” but the plans/counterexamples/scenarios
that led to such a judgement. Our goal is to use this
information in formulating the next step in the design
process.

Knowledge representat ion and reasoning: W e are most con-
cerned with represent ing the design process. In contrast, for
represent ing the artifact (i.e., the design state) we have chosen
off-the-shelf formal languages (a form of temporal logic to rep-
resent design constraints, and a form of Petri net to represent
artifact behavior). Our representat ion of the design process is
based on a traditional AI paradigm, that of state-based search.
It has two parts: 1) a representat ion of the design operators,
heuristics, and analysis tools necessary for a design (search) to
incrementally progress, and 2) a representat ion of the search
manager, the component that keeps track of alternative search
states and paths, allows browsing, exploration, etc. Our focus
is on the first component , which Section III d iscusses in more
detail.

W e will a rgue for the strength of our knowledge content
and knowledge representat ion choices through two examples
in Sections IV and V. W e will discuss the weaknesses of our
choices, in the context of these two examples and other larger

0162-8828/92$03.00 0 1992 IEEE

FICKAS AND HELM: KNOWLEDGE REPRESENTATION AND REASONING

Fig. 1. Critter and its associated development processes.

examples we have begun, in Section VI. Section VII d iscusses
work related to the Critter model.

II. OUR PLACE IN THE LIFECYCLE

Fig. 1 places Critter in the more general system lifecycle
we envision.

To briefly summarize the figure, the requirements acquisi-
tion process involves analysts acquir ing informal requirements
from users and other concerned parties, in the form of dia-
grams, text documents, interview transcripts, and so on. The
output of this process typically remains informal.

W e have included a condit ioning process in Fig. 1 to
map the requirements produced by requirements acquisit ion
tools to a form acceptable by our design tools. Clearly, this
condit ioning process may be a major effort g iven the lack
of consistency in the requirements engineer ing field, where
formality, representations, and even definitions may vary from
organization to organization.

The composite system design process, the center of our
research interest, decomposes formally specif ied global con-
straints and infrastructure into a specification of a composite
system, a set of components or agents which interact to satisfy
the global constraints. For example, the input to composite
system design might be a formal version of the following:

Infrastructure = Internet
Constraint 1 = given an email message of

form M, deliver M to its recipient
Constraint 2 = given an email message of

form M, notify the sender when it is del ivered
. . . .

The output of the composite system design process would be
the specification of a set of email agents running on the Internet
that took responsibility for satisfying the set of constraints.
The informal SMTP specification (the standard email system
on the Internet) is an excellent real life example of what we are
trying to produce formally. The focus of this paper is on a tool,
Critter, that supports the interactive design of such systems.

The bottom three processes implement each agent class
according to the composite system specification. A single
composite system specification may require that each imple-
mentat ion process be applied: producing software, acquir ing or
manufactur ing hardware, and writing legal statutes or training
manuals which prescribe the actions of human workers taking
the role of an agent. The first example we describe, that
of a train management system, has forced us to look, at

Fig. 2. Critter state-based search model of composite system design.

least superficially, at the hardware and rule-writing processes.
Our second example, that of an email transport system, is
principally composed of software.

The next section introduces composite system design in
more detail, and the Critter tools that support it.

III. THE CRI-ITER MODEL

The Critter design model (Fig. 2) helps a human designer
develop a composite system design using the paradigm of
state-based search. Starting from an initial problem state,
Critter helps an analyst apply design operators until he arrives
at a composite system design state that solves the problem.

The Critter model is the sum of the following components:
l a design state representation,
l a solution state or leaf-node checker,
l a set of move or design operators,
l a set of heuristics for selecting design operators,
l a search management component that manages the design

space, allows browsing, etc.
W e discuss the knowledge content, representation,

soning tools of each of these components in turn.

3.1. Design States

Each design state in our search space represents a single
composite system design. A state in Critter has two compo-

and rea-

nents:
1) The generat ive or system portion of a design state

denotes a set of possible behaviors. A behavior is a
sequence of events that could occur in the composite
system. In our model, the system is represented by a
specification in a language we have adapted for com-
posite system specification as explained below.

2) The constraining port ion of a design state consists of
a set of constraints, i.e., constraints on behavior. Con-
straints are expressed declaratively in terms of system-
wide properties. They are formal versions of statements
such as “Trains get to their destinations,” or “Trains
don’t crash into each other.”

The overall goal of the search is to bring the two into
“consistency” in a single state-the behaviors produced by
the system should satisfy the constraints. As this implies, the
system and constraint components may be misaligned in any
one state, i.e., the system may generate behavior that breaks
the constraints. Be aware that this is a twist on most state-

472 IEEE TRANSACTIONS ON , SOFFWARE ENGINEERING. VOL. 18. NO. 6, JUNE lYY2

based problem solving where the “goals” of the system are
the “goals” of the search. The goals of our system are the
constraint port ion of the design state. The goal of the search
is to find a match between the two state components.

The problems that we have focused on can be character-
ized as l iveness-safety problems [28]. Typically, they involve
constraints of two general forms.

Liveness: For each behavior B, find some state JJ in B s.t.
io satisfies Cachieurment.

Safety: For each behavior B, no state p in B should satisfy
Gnsa,e.

In toy worlds we may be able to drop one class of constraints
almost entirely, or pretend that all constraints can be met
strictly. In the real world there is often an intricate balance
between the two classes.

The system portion of a design state is further divided
into two parts. First, there is what we call the infrastructure.
Examples of an infrastructure are the rail-lines of a railroad
system and the communication-l ines of a network system.

The system portion also includes a set of agents. Agents
use the infrastructure of the system and interactions with
each other to produce behaviors. In general, an agent is a
component of a composite system that can sense a port ion
of the system’s state, make decisions, and perform or prevent
actions of the system that the agent controls. An agent class
in our representat ion thus has the following attributes.

1) A set (possibly empty) of the system state an agent can
directly observe.

2) A set (possibly empty) of actions an agent can perform
that affect the system state.

3) A set (possibly empty) of local state information.
4) A set (possibly empty) of responsibilities for achieving

a constraint or goal of the system.
Assigning responsibility for a constraint to a class of agents

requires that all agents in that class limit their actions so
the constraint is achieved. Only those agents responsible
for a constraint are expected to limit their own behavior
to ensure satisfaction of that constraint. For example, if a
train engineer/agent is solely responsible for keeping her train
from colliding with another, then she must limit her actions
accordingly, and in particular, cannot rely on other agents to
constrain their actions to avoid collision. An agent may be
over loaded in our representation: It may have more than one
responsibility in any single composite system, and it may have
separate responsibilities in two or more different composite
systems. It may also share responsibility for a constraint with
another agent in the same system or a different system.

Both the constraining and system port ions are represented
in notations we have adapted from existing work in formal
specification. No existing notations had exactly what we need,
so we have followed the approach of Feather [12], who
shows how to extend the Gist language to support composite
system design. W e have adopted less powerful languages than
Gist, however, so that we can use the automated reasoning
techniques we introduce in later port ions of the paper.

Our constraint language is a style of modal, temporal logic
roughly similar to that of that of the ERAE language [lo], and

is very similar to the “temporal-causal logic” independent ly
developed by Castro [5]. It allows expression of both safety
and strong l iveness requirements [28].

The language for the system portion can be viewed, alter-
natively, as a subset of Gist [30] or a superset of Numerical
Petri Nets (NPN) [46] that adds the notion of agents. W e
will use the Petri net view in this paper for presentat ion
purposes.

3.2. Leaf Node Checkers

The overall goal of the Critter search is to bring the
system and constraint port ions into “consistency” in a single
design state. A consistent state is called a “leaf’ or “solution”
state. Our model semi-automatically checks design states for
consistency (leafhood) using three tools.

Analysis Tool 1: A planner or scenario generator called
OPIE [2]. In general, OPIE attempts to show that a state is
not congruent by showing that safety or l iveness constraints
are not met. OPIE does this by finding a plan that violates
the constraints, in effect producing a counterexample for the
constraint. For example, it might prove that the constraint “no
two trains are ever in the same block of track” is violated
by generat ing a plan for putting two trains in a block. As
we discuss below, we believe generat ing counterexamples to
constraints, rather than verifying constraints are met, can give
the designer useful gu idance on the operators to apply to a
state if it is not a leaf (solution).

However, in addit ion to testing leafhood, we also use OPIE
to show that a set of constraints could be met if agents
cooperated in the right way. OPIE does this by producing
a plan that satisfies the set of constraints, effectively proving
the existence of a correct behavior. As with counterexamples,
an existence plan may provide insight into what operators to
apply to a nonleaf state to transform it into a solution.

Analysis Tool 2: An NPN simulator. W e have implemented
an NPN simulator that “runs” an NPN forward. At nonde-
terministic choice points, alternatives can be either presented
to the human designer for selection, or controlled by simple
rules, e.g., always choose transition A over transition B. For
example, we might run the NPN simulator on a test case that
attempts to put two trains into the same block of track to show
that a safety constraint is not satisfied in the current state. The
details of this tool, and a semi-automated means of selecting
appropriate test cases to feed it, is d iscussed in [16].

Analysis Tool 3: A reachabil i ty-graph (RG) tool. The tool
first produces a reachability graph from a static analysis of
the NPN, and then allows queries about reachable states. For
example, the tool can reply to queries such as, “Is it possible
for a train to fail to reach its destination?” It uses omega values
[23] to represent infinite plans/behaviors. As with OPIE, these
queries can be used to provide existence proofs.

3.3. Search Operators
Search operators (henceforth, design operators) are what

transform one composite design state into another, and may
apply to either the constraint or the system part of the
state. They are appl ied to a nonleaf node N to remedy
a deficiency found in N. Hence, we loop through the se-

FICKAS AND HELM: KNOWLEDGE REPRESENTATlON AND REASONING 473

quence analysis+deficiency+remedy in Critter until the anal- tools [18], in this paper we will focus on the more general
ysis tools report success. model of composite system design.

Because our interest is in composite system problems, our
design operators are tailored to multi-agent distributed-action IV. APPLYING THE CRIITER MODEL: THE MCGEAN DESIGN

concerns. Among the types of design operators we use are the W e have tested the Critter model descr ibed above by a
following. methodology of rational reconstruction. In general, this means

l Introduction of agent classes. There are operators for using our design model on a study problem for which there are
introducing new types of agents, or for splitting existing already wel l -documented designs, preferably designs that have
types. For example, an operator might split a class of evolved over time and that have well-known strengths and
“protocol entities” into “clients” and “servers.” weaknesses. W e believe the rational reconstruction method-

* Assignment and merging of responsibility. As descr ibed ology provides a useful check on the sufficiency of our
above, agents can be given responsibility for constraints. model, i.e. can we generate interesting, existing designs?
They can share their responsibilities with one or more Moreover, applying the methodology to wel l-understood en-
other agents. They can also be over loaded; each agent gineering problems helps identify the knowledge our tool
can have multiple responsibilities. would need to automate the now manual heuristic evaluation

l Communicat ion and synchronizat ion among agents. of designs. W e have used the Critter model to rationally
Critter includes operators which introduce simple reconstruct several designs, two of which we will summarize
communicat ion and synchronizat ion protocols (such as
request-reply interactions) between agents.

l Weaken ing of constraints. In many real-world problems,
we may find it necessary to achieve consistency not by
changing the system, but by changing the constraints. In
particular, the initial constraints may be idealized and
open for modification and compromise. In these cases,
a constraint may be weakened to make illegal behaviors
legal ones.

3.4. Heuristic Evaluation

There is a relatively small number of design operators
that are able to produce the composite systems we have
studied. However, they are capable of producing a large set
of alternative designs, enough so that blind search becomes
intractable. W e currently rely on the user to provide the
necessary domain knowledge to guide the search. From our
study of composite system design heuristics [14],[17], we
suspect that the human designer will cont inue to be the main
source of heuristic evaluation in Critter for the foreseeable
future.

3.5. Implementation

Critter is partially automated. The tools that make up the
leaf-node checker are automated, a l though they require some
set up as explained above. The design space is represented
in an extended form of IBIS [7] that provides for separate
development states. Each development state represents the
current design state and the current set of design issues.

Design operators are represented by posit ions at tached to an
issue, and design heuristics as arguments at tached to a position.
In the current implementation, the user manual ly “applies”
design operators by attaching the appropriate posit ions and
updat ing the agents and infrastructure using a Petri net editor.
The user also must attach any selection heuristics as arguments
to the positions. Critter then automatically generates a new

in the remainder of the paper. The success criterion for our
rational reconstruct ions is the ability to model the original in-
frastructure and reproduce the final responsibility assignments
through the use of our design operators.

A word of motivation on our choice of the two study
problems is in order. The first example we present in this paper
is a train management system descr ibed in McGean [32]. The
system, known as “manual absolute block clearing,” originated
in the 19th century; we will refer to it as the “McGean design”
for brevity.

W e arrived at this problem after work on the canonical
elevator problem [12],[24], which in turn derives from [25].
Our switch from the elevator problem was motivated by the
following.

l W e found it difficult to evaluate the elevator designs that
we produced. While there are elevator guidelines, books,
and journals publ ished, we failed to find enough detailed
design rationale to evaluate our results. W e did, however,
find intricate and detailed evaluation criteria for train
systems [32], including a history of major train accidents
and their causes [42].

l A train system is a more interesting composite system
problem. There are more agents involved and more ways
to split responsibility among them.

l This same domain has been studied for its connect ion to
network protocols by [22]. This leads cleanly into our
second example.

The second problem we have chosen is a simple network-
ing problem, that of flow control dur ing email transport. In
particular, our target is the reconstruction of the OS1 MOTIS
(aka MHS) Pl protocol design. This example has two useful
properties.

l Its design can be validated at a product ion level. That is,
we can implement a MOTIS email transport design leaf
node produced by our model as a network application

development state (a new IBIS state) after the operator has and run it under product ion condit ions (albeit, OS1 pro-
been applied. In this way, the entire design space is main- duct ion conditions). This is a feature of only one of the
tained, allowing a designer to move to any node and explore four canonical IWSSD problems, namely the text editing
alternatives. While there are interesting issues on the use of problem. It is certainly not a feature of the elevator or
an IBIS style f ramework for implementing incremental design train problems, at least for our group.

474 IEEE TRANSACTIONS ON , SOFTWARE ENGINEERING, VOL. 18, NO. 6, JUNE 1992

Fig. 3. Simplified McGean design.

Fig. 4. Excerpt of the McGean example design space.

l MOTIS, and network applications of its ilk, have well-
studied and formal evaluation criteria [44]. Many network
applications also have a written chronology of their design
(see, for instance, the RFC’s maintained by the Internet
NIC).

Taking up the McGean design first, Fig. 3 shows the target of
our design process. This design attempts to prevent collisions
of trains by allocating regions of track of 5- to 15-mi lengths
(called blocks) to a single train at a time. Looking at the final
solution from a composite system view, the design designates
Engineer agents as responsible for entering a block between
stations only if the signal for that block reads clear (vertical).
Station Operator agents are given the responsibility of 1)
setting the distant and home signals for a block to “occupied”
(horizontal) when a train enters a block, 2) resetting the signal
to clear when notified that a train has left a block, and 3)
notifying other station operators when a block becomes clear.
Finally, Dispatcher agents (not shown in Fig. 3) are responsible
for making sure trains enter a system in a safe fashion.

Fig. 4 summarizes the first part of the path Critter takes to
arrive at the target design in Fig. 3; it roughly represents the
IBIS form of search tree we maintain as part of Critter. As
in Fig. 2, arcs coming out of a design state (node) represent
alternative design moves out of that node. In the initial state
Dl, the system has one l iveness and one safety constraint:
Trains should get to their destinations, and trains should not
collide. In the example, we show how these constraints are
decomposed into a set of agents and inter-agent protocols that
interact to satisfy the constraints.

4.1. The Initial State

Critter’s search process requires an initial design state. W e
rely on the analyst to produce this initial state for the McGean
design, guided by some considerat ions we descr ibe in this
section. This section also introduces the notation we use for
design states throughout the paper.

The initial state of the train example is shown in Fig. 5.

Fig. 5. Initial state Dl of the McGean example

W e use an enhanced version of an NPN [46] to represent both
infrastructure and agents of a system. The initial constraint
port ion appears at left, the system portion at right. There are
two constraints in state Dl: two trains should never be at the
same location (safety); trains should eventually get to their
destination (liveness). W e can paraphrase the specification of
the system portion in this figure as follows.

l Trains can be created. The transition (drawn as a box)
enter in the upper left corner can fire nondeterministi-
tally, since it has no input arcs; when it fires, it introduces
a train token t (drawn as a train icon) on the place (drawn
as a circle) labeled Ready(t) at the end of the arrow. The
Readyplace denotes the relation “Train t is ready to start.”

l A train t for which Ready(t) holds can be assigned a
destination block by the assign - destination transition.
The arc between the transit ionassign - destination and
Ready(t) is doubled-headed. This means that the transi-
tion needs a token (i.e., a train t) from Ready(t) to fire,
but the token is simply replaced in Ready(t), unmodif ied,
on firing. In contrast, the move transition changes a train’s
location; hence, we have drawn two separate arcs between
move and Location(t, b).

l If a train t is Ready, has a Destination, and has an
available Block to start in (shown as blocks 1,2,3 in
the Block place), it can start (transition start can fire).
Starting puts t at a location block b, denoted by the place
Location(t, b).

l Trains for which Location(t. b) holds can move to
Adjacent blocks (shown as block numbers connected by
lines) by firing the transition move, which places them at
a new location adjacent-to their original location.

l Trains at their Destination location can leave the system
by firing the leave transition.

The initial state Dl represents the train management system
that immediately preceded that of McGean-a schedule-based
system that relied on clever timing of trains to avoid collisions.
As noted in [42], the schedule-based design had its problems,
causing an unacceptable number of accidents. This, a long with
the invention of telegraph, sparked an interest in finding a new
design.

More generally, we view the initial state as the infrastructure
that is already in place when design commences (or what
we later refer to as brownfield constraints). Typically, the
infrastructure represents the piece of the system that has the
greatest modification cost, and hence, is the piece one tries to
design around, or in a more positive light, on top of.

FICKAS AND HELM: KNOWLEDGE REPRESENTATION AND REASONING

As for the actual construction of the initial state, we assume
that it is the output of a requirements acquisit ion process,
possibly a ided by a system such as the KAOS [45] assistant
d iscussed in Section VII.

4.2. Deficiency-Driven Composi te Design
Our general style of design is deficiency-driven. W e use the

automated analysis tools of Critter to identify deficiencies, i.e.,
behaviors of the system that violate the constraints. W e then
apply design operators to overcome those deficiencies. This
section illustrates this process and our representat ions in more
detail.

The designer uses the p lanner-based leaf-checker OPIE
(descr ibed in Section 3.1) in state Dl to see whether the safety
constraint is met. OPIE cannot verify systems written in the
full NPN language, but only a subset that is roughly equivalent
to the language of STRIPS [2]. W e rely on the designer to
restrict the system to this subset.

OPIE returns a plan in which two trains collide at start-up.

The constraint ProtectTrains is violated by
scenario Sl in state Dl:
1. given Block(h1);
2. enter(tllTrain) produces Ready(t1);
3. enter(t2ITrain) produces Ready(t2);
4. assign - destination(t1, bl) produces

Destination(t1, bl)
5. assign - destination(t2, hl) produces

Destination(t2, bl)
6. start(t1, bl) produces Location(t1, bl);
7. start(t2. bl) produces Location(t2, bl);
Violation: ProtectTrains in Dl

To eliminate a negat ive scenario such as Sl, the designer
can choose among three complementary strategies.

1) Modify the infrastructure. The designer could decide to
provide separate arrival points for each train, making it
impossible to generate the “crash on arrival” scenario
of Sl.

2) Weaken the safety constraint. Some train systems take
this approach by allowing more than one train in a block
[Ql.

3) Assign responsibility for the safety constraint to a class
of agents. This requires agents in the class to control
their actions so that the constraint is met.

The designer chooses the third option. Critter has several
operators that could accomplish this.

1) Never allow a specific condit ion in the constraint to be
true (e.g., never allow trains in the system).

2) Ensure that two condit ions in the constraint are mutually
exclusive (never allowing more than one train in the
system).

3) Manipulate transitions so that some but not all the
constraint conjuncts are al lowed to become true at the
same time.

The designer chooses 3), whose general class we call
br inkmanship. The set of br inkmanship operators modify the
system so that an agent assigned to the constraint prevents
transitions that are the last step in breaking the constraint. The

outcome of this in our example is that a designated agent will
never allow a train to start at the same location as another train.

Before we descr ibe the br inkmanship operator in detail, we
descr ibe Critter design operators in general. Design operators
take a cooperat ive form.

l The operator contains the framework of a composite
system design strategy, for instance, the means of dividing
responsibility among agents in a particular setting. This
is represented by a matching pattern that establ ishes the
right setting and a replacement pattern that introduces
the concept into the design. A design operator may also
introduce domain assumptions and failure modes. These
are discussed in more detail in the next section.

l The human designer 1) supplies important pieces that
fill out the matching and replacement patterns, 2) ei-
ther confirms each assumption the operator makes, or
decides that an assumption is uncertain enough to call
for further remedial design, and 3) attempts to mitigate
any troublesome behavior introduced by the operator. All
of these actions typically require the designer to supply
domain-specif ic knowledge to the design process.

In summary, the designer uses her knowledge of the domain
to select operators and guide their application to the current
state. The operators add the necessary components to the sys-
tem description and track open assumptions for the designer. In
this way, our design operators are much like the skeleton plans
of the MOLGEN system that addressed the strategic aspects
of a design, relying on the user to supply the domain-specif ic
details and fix the plan when problems were discovered [19].

The particular br inkmanship operator we will employ
matches on constraints of the form

where P is a relation (or place in NPN form), 2, y, z are
vectors, and there is an implicit “for all behaviors” qualifier
on the front. This pattern, a long with the agent A assigned to
the constraint, is shown as part of the br inkmanship operator
in Fig. 6. The result of applying the operator is a new system
where a “brink transition” (T in the figure) is controlled by
the agent A.

The application of the br inkmanship operator is interactive.
1) The designer factors the constraint into a “controlled”

condit ion and a “brink” condition. In our example, P
is the Locat ion relation, and the controlled and brink
condit ions are both partial instantiations of P.

2) The designer chooses an agent class A to be responsible
for the factored constraint. In this case, the designer
chooses a train Dispatcher agent to be the responsible,
hence controlling, agent.

3) The designer identifies a transition T that can produce
the controlled condit ion when the brink condit ion is true,
violating the constraint. The agent responsible for the
constraint will control T so that it cannot fire when the
brink condit ion is true, prevent ing T from pushing the
system over the “brink” by producing P(x, 2) A P(y, 2).
In our example T is the start transition.

476 IEEE TRANSACTIONS ON , SOFTWARE ENGINEERING, VOL. 18, NO. 6, JUNE 1992

Fig. 6. Brinkmanship operator

4) The designer def ines how control begins and ends. The
designer must identify some place that triggers an agent
in A to take control. The designer also identifies a
condit ion under which that agent can release control.
In our example, a Dispatcher agent takes control of a
train tl when Ready(t1) is true. The dispatcher releases
control of tl when start fires.

As can be seen in Fig. 6, the result of applying the operator
is that the T in the top pattern is split into two parts, one that
is controlled (T - c) and one that is uncontrol led (T - u).
The controlled transition T - c has a new piece of subnet
associated with it that al locates (and potentially loses) control.
T - c also has a not-arc (represented as a line ending in a
circle) at tached to it from the place P. This represents the
brink check: if the brink condit ion exists already (e.g., there
is another train at the same starting location), then block any
firing of T-c that would cause the control condit ion to become
true (e.g., a second train would end up at the same starting
location).

Fig. 7 shows the parts of the McGean design state affected
by the br inkmanship operator. Places and transitions drawn
with short, nondirected arcs designate elision; we have left off
either incoming or outgoing arcs that have no bear ing on the
current figure. W e can paraphrase Fig. 7 as follows.

Trains ready to start are assigned a dispatcher. More
than one dispatcher can be assigned to control the
same train, either simultaneously or after loss of
control. However, a single train cannot be under
the control of the same dispatcher more than once
simultaneously.

Trains under the control of at least one dispatcher
do not start until their starting block is clear. If no
dispatcher is in control of a train then it is possible
for the train to start unrestricted via the transition
start-u (including cases where a train starts before
control can be assigned).

Fig. 7. System state 02 (excerpt): Application of br inkmanship
operator to start transition.

The br inkmanship operator has also introduced a set of domain
assumptions (not shown in the figures), and has added two
failure mode transitions (start-u. and lose - control - start).
Dealing with these is the next step in the McGean develop-
ment.

4.3. Validating Operator Application:
Dismissal and Certification

Critter design operators do not guarantee a provably correct
design by themselves. This is a major and conscious departure
from the work in formal transformation systems. Instead
of concentrat ing on tightly restricted correctness-preserving
operators, we have focused on general operators that in-
corporate knowledge to validate their use in a particular
problem setting. The next two sections illustrate and defend
this strategy.

Critter attempts to validate the changes an operator makes to
the specification by two means. First, design operators include
domain assumptions, condit ions that must hold in the design
domain for the operator to be effective. When an operator
is applied, Critter records its domain assumptions as open
issues. For instance, in Fig. 7, the domain assumptions of
br inkmanship are that dispatchers can be found, that they can
gain control of a train, that they have direct access to the start
transition, and that they can see or sense that a starting location
is clear or occupied. Each of these assumptions will remain
open until actually validated by the designer.

Second, design operators include failure modes, represent-
ing behaviors that have been found to cause trouble for the
systems where the operator was applied. For example, the
lose - control - start and start-u transitions of Fig. 7
represent undesirable behavior which may occur if the control
regime for starting trains fails.

The designer can address open domain assumptions by dis-
missing them, or by adjusting the composite system to satisfy
the assumptions. The McGean design we are reproducing
assumes that all of the new control components (transitions,
arcs, and places) added by the br inkmanship operator are valid.
W e assume the designer certifies them as such (not shown in
Fig. 7).

Similarly, the designer can address failure modes in a design
by certifying they will not occur, or by redesigning the system
to tolerate them. The McGean design we are reproducing does

FICKAS AND HELM: KNOWLEDGE REPRESENTATION AND REASONING

Fig. 8. Design state 03: Application of certification operator

not address either the lose - control - start or the start-u
transition, i.e., there are no new agents in the target design that
are introduced to overcome either problem. Hence, we will
allow the designer to certify that uncontrol led entry (start-u)
and loss of control (lose-control-start) can be ignored from a
composite system design viewpoint.

The result, design state 03, is shown in Fig. 8. The certifica-
tion token, cl, can be paraphrased as “all scenarios involving
uncontrol led train arrival have been considered and dismissed
as either preventable at the implementation level or unlikely
to occur in the real world.” The certification token c2 works in
a similar fashion for loss of control. The certification tokens
provide a hook where the designer can insert data backing
their claims, such as standards, or court cases setting limits
on what negat ive impact must be considered in designing
artifacts. If these standardsf later become false, or if we want
to experiment in a hypothetical world where they are false,
the certification tokens can be removed and the corresponding
transitions will become unblocked.

In general, dismissal and certification act as an escape when
our tools lack the knowledge to reason formally about the
subsequent implementation process or the domain in which
the system will reside. They provide two crucial p ieces of
information: 1) they record that a negat ive outcome has been
considered, and 2) they often point to a body of relevant
domain knowledge for which we currently lack a formal
representation.

The previous step also illustrates the phi losophy underlying
Critters design operators. Applying an operator got us a little
bit further toward a “safe” design, but was not provably
correct, even with respect to the local goal for which it was
applied. W e have de-emphasized provably correct design in
Critter for several reasons. First, provably correct operators
would have a lengthy set of operator precondit ions that a)
might require a large up-front theorem proving effort, and
b) would narrow operator application to a small class of
settings, and hence, require a large subgoal ing or jittering effort
before the operator is ever attempted. In our exper ience with
Glitter, both of these problems led to much wasted design
effort-it wasn’t until an operator/transformation had actually
put a concept in place that it could adequately be judged.
Second, validation of an operator frequently relies on domain-
specific knowledge unavai lable to Critter. Again, we prefer to
postpone this validation process until after the operator has put
the concept in place within the system.

477

In summary, our approach is to use a minimal set of
precondit ions to get a general design strategy (as represented
by an operator) into play, including stereotypical issues and
bugs associated with the strategy. W e then use analysis tools
and the human designer to point to places where further design
is necessary. In essence, we promote a style of design that
allows a designer to “test drive” a strategy before committing
enormous energy into making it work at a detailed level.

4.4. Reuse of Operators: Splitting Control

Critters operators are intended to provide reusable strategies
for composite design. The next step of the McGean rational-
ization suggests how reuse occurs within a particular design
problem, and how an incremental approach can rationalize
features of a multi-agent design.

The design state 03 includes an agent class, Dispatcher,
which will ensure that trains do not violate the safety constraint
at start-up. However, design state 03 is not a leaf node-OPIE
generates a scenario 5’2 in which two trains enter the system
safely, but still end up at the same location. Instead of crashing
on start, they crash by moving (firing the move transition in
Fig. 5) into the same block.

The steps the designer takes to counter the S2 scenario
are similar to those taken to counter Sl: the same br inkman-
ship operator is appl ied (Fig. 9). As with start-c, the new
move-c transition can only occur when an agent (Engineer)
is controll ing the train. As before, the new system retains both
a move-u transition that can fire for uncontrol led trains, and
a transition for losing control.

The combinat ion of the br inkmanship applications to Dis-
patcher and Engineer gives us a sequential split of responsibil-
ity, a common cooperat ive problem solving approach: break
the problem into pieces (temporal in this case) and assign
separate agents to each piece. However, this division of labor
was constructed incrementally, by a sequence of deficiency-
driven steps. The design history thus rationalizes the sequential
division of labor in terms of a specific goal (ProtectTrains),
problematic scenarios (Sl, S2) encountered during design, and
the design steps taken to address them.

4.5. Validating Operator Application: Adjusting the Design

When the domain assumptions or failure modes of an oper-
ator cannot be certified away, the designer adjusts the design
to address them. The next development sequence shows how
this adjustment activity can naturally rationalize support ing
services such as inter-agent communicat ion protocols within
a design.

Given the second application of br inkmanship, the designer
is left with the task of verifying the domain assumptions as
they now apply to engineers controll ing the movement of
trains.

1) Can the Engineer directly control train movement
(move-c), i.e., does she have direct access to the
“throttle”? While the answer obviously seems to be
yes if one uses on-board humans as Engineer agents,
vehicles such as unmanned spacecraft are controlled
remotely by an engineer, and require sophist icated two-
way communicat ion devices to bring about control.

478 IEEE TRANSACTIONS ON . SOFTWARE ENGINEERING, VOL. 18, NO. 6, JUNE 1992

Fig. 9. System state 04 (excerpt): Application of br inkmanship to train
movement.

More down to earth, some recent transportation systems
rely on cooperat ion between an onboard computer agent
and a remote human agent to control vehicles.

2) Can the Engineer directly access whether an adjacent
block is occupied? (Is the not-arc between move-c and
Locat ion valid?) The sensing technology of the day was
human vision.

As before, the Brinkmanship operator also introduces two
potential failure modes.

1) Can uncontrol led movement (move-u) occur?
2) Can loss of control (lose - control - move) occur?
The history of train system design has shown that all of

these quest ions has eventually required attention. However,
the design we are reconstructing only addresses the second
quest ion (access to an adjacent block); hence, as with Dis-
patchers, we will mark the arc between Control - move and
move-c as valid, answering quest ion 1. W e will also certify
that loss of engineer control and uncontrol led train movement
can be ignored, certifying “yes” to quest ions 3 and 4.

This leaves us with quest ion 2-tan Engineers “see” into
adjacent blocks, i.e., is the not-arc between move-c and
Locat ion valid? This was not realistic in McGeans domain:
blocks were 5 to 15 mi long and Engineers could not directly
sense the entire length of blocks adjacent to them. Fortunately,
a standard composite system solution is available: specify
other agents to act as intermediaries, manipulat ing a flag
or “spin lock” that relays the vacancy information to the
Engineer. To select this joint problem-solving protocol, the
designer applies an operator from a class we call set/ reset. As
with brinkmanship, the designer must guide the operator to the
appropriate location in the current state, in this case, to the not-
arc that blocks movement in Fig. 9. Fig. 10 shows the effects of
this decision on the design state: the not-arc between move-c
and Locat ion is replaced with a more elaborate mechanism
for maintaining a flag on the block.

Besides pinpointing the location of application for the
operator, the designer must specify which agent classes will
control the actions of setting and resetting. Set/reset calls for
two sets of agents (Al to control “reset” and A2 to control
“set”) to cover blocks, but the designer decides that the same
agent that manages set - Block-c (sets the home signal) can
also manage reset - Block-c (clear the signal), and applies
a merge-agent operator to agent classes. While this is clearly
more economical (and follows the McGean design), it also

Fig. 10. System state D.5 (excerpt)-Result of set/reset

introduces a risk: in a particular implementation of the agent
class (now called Operator), an agent may not have sufficient
time to carry out both of its responsibilities (set and reset)
for all of the blocks it is tracking-overloading may lead
to overcommitment. In the McGean design, this is partially
addressed by assigning only one block to each Operator.

Applying the set/reset operator raises its own domain as-
sumptions and failure modes (not shown in the figure). Two
of the domain assumptions are of particular interest here.

1) Can the controll ing agent sense whether a block it
controls is occupied? (Is the arc between set - Block-c
and Locat ion valid?)

2) Can the controll ing agent sense when the block is clear?
(Is the not-arc between Locat ion and reset - Block-c
valid?)

The designer decides that the Operator can directly sense
that a train is in its block simply by seeing the train pass
by the station. The second access quest ion is similar to one
that surfaced with Engineers: an Operator would have to see
into the adjacent block (to see a train leaving the Operators
block) in order to determine whether the block it controls is,
in fact, empty. Again, this is not practical given the length
of blocks. The solution adopted here is to replace the not-arc
between reset - Block-c and Locat ion by the application of
an operator from the class we call “report/note.”

The result is shown in Fig. 10. W ith the guidance of
the designer, a report/note operator splices in an agent that
monitors a state, and reports when the enabl ing condit ion is
true, in this case that no train is in the preceding block. The
recipient consumes (“notes”) the report when it acts on it. In
Fig. 10, the recipient is the adjacent Operator, and she uses
the report to reset the signal for her block.

As with set/reset, the designer merges the functions of the
report ing agent A3 with those of the operator (merged from
Al and A2). In addit ion to monitoring their “own” blocks,
operators now will monitor the blocks from which trains
arrive. When a train enters a block, that block’s Operator
will notify the previous Operator that her block is now clear.
The previous Operator will receive the report and reset her
signal.

There are a number of remaining issues in state D6,
generated by the application of set/reset and report/note. Can
we certify that loss of control and uncontrol led actions (not
shown in Fig. 10) can be ignored? Can we handle the race
condit ions between movement and setting/reporting? Can we
control report - Block so that it does not produce redundant

FICKAS AND HELM: KNOWLEDGE REPRESENTATION AND REASONING 479

reports? Should we change the arc between report - Block
and Locat ion from a not-arc to a positive arc to better reflect
the McGean protocol?

More design effort is needed to address these problems if
we are to accurately reproduce the McGean design. However,
no new Critter components are highlighted, so we will omit the
remaining design steps necessary to complete development of
the safety constraint.

Before leaving our development of the safety constraint, we
note that we have highlighted OPIE as the tool to check for
violations of this constraint. However, the NPN simulator tool
is also available, and at times may be more effective. The NPN
simulator allows the designer to guide its analysis. Interactive
analysis can often quickly expose faults which would take
OPIE much longer to discover, albeit automatically. However,
the NPN simulator requires that we have a library of test cases
for the train domain. The designer must help adapt these test
cases to the current design and then guide the simulation.
These issues are discussed in more detail in [161.

4.6. L iveness

W e summarize the remainder of the McGean development,
which is guided by violations of the l iveness constraint. This
section briefly indicates how such violations can be discovered.
It also illustrates the precarious balance between safety and
l iveness in composite system design problems. In general,
modern transportation designs trade off these two classes of
constraints in complex ways that we do not address in the
McGean design [37].

In the McGean design, the analyst uses the reachability anal-
ysis leaf-checker (RG) to disprove the l iveness constraint. The
RG tool, unlike OPIE, can generate an infinite counterexample
in which C never becomes true, disproving a constraint that C
eventually is satisfied. However, the RG tool generates what
is effectively an exhaust ive reachability graph for the system,
whereas OPIE generates selected behaviors guided by goals.
The RG tool also operates on a smaller subset of the NPN
language than OPIE.

W e can see one way in which l iveness can fail by looking
back at Fig. 9, in which Engineers were assigned control of
trains after being started by Dispatchers. This hand-off error
may lead to a scenario in which a train starts, but no Engineer
is ever assigned to control it, thus prevent ing the train from
moving to its destination. In essence, designing to meet the
safety constraint has introduced a problem with l iveness.

The designer could address this problem in a number of
ways. She could patch the application of Brinkmanship so
that Engineers are assigned to trains before the trains start;
this would lead to a “harbor pilot” form of control in which
two agents (a Dispatcher and an Engineer) are responsible
for a vehicle to a certain point, at which point a single agent
takes over. Instead, the designer keeps the current division
of labor, which more closely resembles “valet parking”; one
agent passes the vehicle to another.

While there are interesting details of how the final McGean
design falls out of this, at a high level it is more of the
same: Engineer agents are made responsible for controll ing
their actions so that the train progresses. In particular, no new

Fig. 11 System state DG (excerpt)-Insertion of report/note

MOTLS
r----- _-____--------_________________________

MTS (

Fig. 12. MOTIS messaging system and Pl protocol.

inter-agent protocols are added to the system. This assumes
that we can realistically certify away loss of control as we
did in all design subsequent to this state. If any of these
assumptions change, e.g., if we remove c2 in Fig. 8, not
only might safety constraints be in jeopardy, but l iveness
constraints as well; only controlled trains can move in the
McGean design.

V. APPLYING THE CRI~ER MODEL: THE MOTIS DESIGN

To suggest the generality of our design model, we next
summarize a different rational reconstruction. The particular
example we will discuss is the design of the flow control of
the MOTIS Pl e-mail transfer system discussed in [44]. The
MOTIS model is shown in Fig. 12.

The Pl flow control protocol, depicted in Fig. 13, transfers
mail messages over a communicat ion link between “message
transfer” agents at different sites on a network. The protocol
transfers messages one at a time. As in the McGean example,
the flow control aspects of this protocol must satisfy a l iveness
constraint (get messages to their destination) and a safety
constraint (do not send a message until the previous one has
arrived).

W e can reproduce Pl flow control using composite system
operators. W e summarize the steps below, using (reusing) the
McGean design as a foundation.

1) The designer assigns the safety constraint to a “message
transfer” agent at each site. In contrast to the McGean
design, the agent responsible for safety in MOTIS/Pl
does not follow a message through the system, but is
instead associated with a fixed location in the network.
This is analogous to doing away with engineers, and
having station operators drive trains that are in their
blocks.

2) The designer applies the br inkmanship operator to un-
fold the safety constraint onto each nodes “send” oper-
ator. The result, as in the McGean design, is that the
message transfer agent that sends a message is required

480 IEEE TRANSACTIONS ON , SOFTWARE ENGINEERING. VOL. 18. NO. 6. JUNE 1992

I I

Fig. 13. MOTIS Pl flow control protocol.

to “know” whether the destination site has received that
message.

3) The designer introduces the set/reset operator to allow
each message transfer agent to track the receive state of
its destination agent. On sending a message, the source
agent sets a “wait” flag, just as the station operator sets
the signal for an occupied block. When the destination
agent has received the message, the source agent will
clear its wait flag. The designer applies a remote/note
operator, causing the destination agent to notify the
source agent when it should clear its wait flag.

4) The designer assigns the message transfer agent respon-
sibility for l iveness.

This completes our two rational reconstruction examples.

VI. CONCLUSIONS

W e have argued for the benefits of the Critter model in
the preceding sections. Returning to our original software
engineer ing goals, Critter supports deficiency-driven design,
formal design analysis, incremental design and rationalization,
and design reuse. Design knowledge is split between the
human designer and Critter: Critter supplies knowledge of
composite system design strategies and concepts; the designer
supplies domain specific knowledge to validate these strategies
and concepts in a particular application domain.

Our focus in Critter has been to build an effective interactive
design tool. This has led us to a representat ion of operators that
enforce minimal applicability conditions. The human designer
can quickly test an idea using Critter, and then if satisfied,
commit further design effort to verify and validate the new
design. W e have also argued for incremental design as an ef-
fective means to control a complex design problem. Using this
style, a problem is ch ipped at gradually until it is finally solved.

W e have evaluated the tractability of Critter’s reasoning
techniques on a handful of rational reconstruction problems.
While we have demonstrated the sufficiency of Critter on these
problems, they also exposed limitations of Critters reasoning
techniques that prevent its use on larger software engineer ing
problems. In particular, our deficiency-driven style of design
requires heavy use of the analysis tools to guide application
of operators. Further, our minimally restricted design operators
rely on analysis tools to point to places where c leanup design
is necessary. Consequent ly, efficient use of analysis becomes
critical. One way to use analysis more efficiently is to cache
or reuse analysis results as a design proceeds. For example,
rather than generat ing a scenario like 5’2 from scratch, an
analysis tool might create it by adding a move step and
changing objects in the previous scenario 5’1. In general,
having analyzed deficiencies in state S,, the system may
reuse the S, analysis in $+I, tempered by the (typically
small) changes between the two states. For planners such
as OPIE, “tempering” techniques have been developed from

work on plan reuse and transformation [21], [43]. However.
considerable research is required to apply these techniques to
analysis reuse.

W e have also evaluated the coverage of Critters design
knowledge base, and the expressiveness of its artifact represen-
tation. W e can produce the high-level architecture of simple
composite systems with a reusable set of design operators.
However, we have also tried to extend Critter to more chal-
lenging problems in the network application domain of the
MOTIS problem. In the process, we have identified several
c lasses of composite system design issues Critter does not yet
address. For example:

l Agent hierarchies. In our product ion of the McGean and
MOTIS designs, all agents of a particular class were
v iewed as having identical abilities. However, in some
network applications there is a notion of a “minimal”
agent for a class. This leads to differing abilities of agents
in a class, all built on top of the minimal functionality.
When two agents need to communicate, they may need
to negotiate to determine what capabilities they have in
common beyond a minimal set. Our agent representat ion
must be extended to provide agents with a crude internal
model of their capabilities so they can participate in such
negotiat ion protocols, as do peers in the TELNET [36]
and the OS1 Session Layer 1381 protocols.

l Agent security and privacy. Our reconstruct ions of
McGean and MOTIS did not force us to address the
security and privacy issues of these domains [20]. In
network applications, we frequently need to limit the
abilities of agents to read information and reconfigure the
system. Agent authorization and authentication become
issues. In general, communicat ion becomes a more
complicated business than that portrayed in the two
examples in this paper.

l Predefined agents. Our examples started with minimal
infrastructure and no agents to build on. In the domain
of networked applications, there are standard network
services (in our terms, standard agents) provided in both
the Internet and OS1 domains. These domain-specif ic
composite system building blocks need to be cataloged
just as the domain- independent composite system design
operators [27].

l Fault recovery. In the McGean design, as in safety-
critical systems in general, we may put extraordinary
effort into anticipating and designing out faults. However,
in many domains it is impossible to anticipate and design
out all faults. In these domains, one frequently designs
mechanisms that detect and recover from unanticipated
faults. Network application design is one of these do-
mains. Thus, to represent devices managed by network
management protocols such as SNMP [39], our agent
representat ion must include hooks for remote monitoring
and control.

To address these issues, we have to extend both our artifact
representation, and the synthesis and analysis knowledge we
apply to the design process. The research chal lenge is to
incorporate this knowledge while retaining the advantages of
Critter demonstrated in this paper.

FICKAS AND HELM: KNOWLEDGE REPRESENTATION AND REASONING

VII. RELATED WORK

Our work shares many of the goals of research in formal
development of distributed systems, such as work reported in
[3]. In general, we wish to support development of multiagent
systems which satisfy globally specif ied constraints. At the
same time, we note two contrasts between our approach and
others.

The first contrast is in design methodology. A designer using
our approach starts from a global statement of properties, and
attempts to decompose these constraints into specifications
of individual agents, gu ided by considerat ions of access to
information and control. In this respect, our approach is similar
to that advocated by [41]. Work in formal development of
distributed systems, such as that of Abadi and Lamport [l], the
“constructive” approach of Kramer, Magee, and Finkelstein
[27], and the earlier work on CCS [33], frequently emphasizes
a different style of design: the designer composes prespecif ied
components or agents into a system, and verifies the system
against global constraints. In addition, our composite system
approach does not preserve correctness: global constraints may
be dropped or changed during design, and design operators
may not always solve the problems for which they were
applied. The approaches of Abadi and Lamport, Kramer et
al., and CCS emphasize correct composit ion against a stable
set of constraints. W e see the two styles as complementary:
our approach focuses on an initial phase where the com-
ponents of a composite system are identified and functions
al located to them; work on correctness-preserving composit ion
provides techniques for verifying that the behavior of the final
composite system design is satisfactory.

The second contrast we see with formal distributed systems
work is in research methodology. Many researchers in this
area rely on problems with a pedigree within computer science
to demonstrate and validate their formalisms and techniques.
Thus, [4], [26], and [31] each use the “dining phi losophers”
problem in an example of their techniques. Wel l -known com-
puter science problems like this make it easier to understand
and compare compet ing design approaches and formalisms.
On the other hand, we want to design complex systems of
interacting human, hardware, and software agents; we cannot
easily predict how useful a design approach will be based on
an exercise with the dining phi losophers or distributed sorting.
W e believe we can better validate formal methods by rationally
reconstructing existing composite systems, and by applying the
methods to solve industrial-size problems (such as the collision
avoidance problem of [29]).

Our interest in designing multi-agent systems also over laps
that of distributed artificial intelligence. However, in our
example designs, agents were simple in that they could only
sense the current state of the system, and react according
to pre-enumerated rules that do not allow any inference.
If a signal failed to set, for instance, an operator in the
McGean design could not infer that another action is necessary,
formulate a new plan, and take corrective action. Agents in our
designs cannot make inferences about their abilities [34], nor
about their goals or commitments [6], nor about the goals or
laws of the system as a whole. Our agents are thus more similar

to the “situated automata” of [40], in that they are simple
machines des igned to meet more complex global properties.

Our work on composite systems extends that of Feather
[12], which in particular introduced the notion of responsibility
assignment. Dubois [ll] has provided a formal semantics for
responsibility assignment in terms of deontic logic constructs
in his ERAE requirements language. The specification lan-
guage we use to descr ibe “specification states” was strongly
inf luenced by both ERAE and Gist. Our language integrates
temporal logic and Petri nets, a combinat ion adopted indepen-
dently by Castro [5] to descr ibe multiagent specifications.

Our model of design starts with a specification of constraints
and infrastructure. A natural quest ion is where do these
come from? The most general answer is that a requirements
engineer ing process should produce them. W e have studied
(and been inf luenced by) a specific requirements tool called
KAOS [45]. KAOS starts with an informal description of the
constraints of a composite system, and calls on two powerful
techniques to aid a human specifier transform them into a
formal representation: 1) a meta-model of composite systems
is used to fill in the pieces of a partial description, and 2)
previous cases are used to do analogical reasoning [9]. Both of
these approaches combat the notion that any design problem,
composite or otherwise, starts from a blank slate. In (81,
we discuss the l inkage between KAOS and Critter on the
elevator problem. Our collaboration with the KAOS project
is continuing on our more recent design work on distributed
network applications.

ACKNOWLEDGMENT

The authors wish to thank the anonymous reviewers and
the editors for their comments and assistance. Jeff Kramer and
Martin Feather also made useful comments on earlier versions
of this paper.

REFERENCES

[l] M. Abadi and L. Lamport, “Composing specifications,” Digital Systems
Research Center, Rep. 66, Oct. 1990.

[2] J. S. Anderson and S. Fickas, “A proposed perspective shift: Viewing
specification design as a planning problem,” in Proc. 5th Inf. Workshop
s’ofhyare Specijcation ani Des& pp. 177-184, 1989.

131 J. W. de Bakker, W.-P. de Roever, and G. Rozenberg, Eds., Stepwise
_ 1

Refinement of Distributed Systems: Models, Formalis-ms, Correctness.
Berlin: Springer-Verlag, 1989.

[4] H. Barringer, M. Fisher, D. Gabbay, G. Gough, and R. Owens,
“METATEM: A framework for programming in temporal logic,” in J.
W. de Bakker, W.-P. de Roever, and G. Rozenberg, Eds., Stepwise
Refinement of Distributed Systems: Models, Formalisms, Correctness.
Berlin: Springer-Verlag, 1989, pp. 94-129.

1.51 J. Castro, “Distributed system specification using a temporal-causal
. 1

framework,” Ph. D. dissertation, -Department of Computing, Imperial
Col lege of Science and Technology and Medicine, Univ. London, 1990.

[6] P. R. Cohen and H. Levesque, “Intention is choice with commitment,”
Artificial Intelligence, vol. 42, pp. 213-261, 1990.

[7] J. Conklin and M. Begeman, “gIBIS: A hypertext tool for exploratory
policy discussion,” ACM Trans. Office Information Syst., vol. 6, pp.
303-331, Oct. 1988.

[8] A. Dardenne, S. Fickas, and A. van Lamsweerde, “Goal-directed concept
acquisition in requirements elicitation,” in Proc. 6th Int. Workshop
Software Specification and Design, pp. 14-21, 1991.

[9] F. Dubisy and A. van Lamsweerde, “Requirements acquisition by
analogv,” Int. Reo. 13, KAOS Proiect, Institut d’brformatique, Facultes
Universitaries de Namur, 1990. -

[lo] E. Dubois and J. Hagelstein, “A logic of action for goal-oriented elabora-
tion of requirements,” in Proc. 5th Int. Workshop Sofhvare Specification

482 IEEE TRANSACTIONS ON , SOFTWARE ENGINEERING, VOL. 18, NO. 6, JUNE 1992

[Ill

[I21

[I31

[I41

[I51

[I61

[I71

[I81

[I91

WI

PI

P21

[231

[241

WI

F'61

[271

F'81

~291

[301

[311

[321

and Design, published as ACM SIGSOFT Engineering Notes, vol. 14,
pp. 16&168, May 1989.
E. Dubois, “Supporting an incremental elaboration of requirements for
multi-agent systems,” in Proc. Int. Conj Cooperating Knowledge-Based
Systems, pp. 130-134, 1990.
M. S. Feather, “Language support for the specification and development
of composite systems,” ACM Trans. Programming Languages Syst., vol.
9, pp. 198-234, Nov. 1987.

“The evolution of composite system specifications,” in Proc. 4th
Girkshop Software Specification and Design, pp. 52-57, 1987.
MS. Feather, S. Fickas, and B. R. Helm, “Composite system design:
The good news and the bad news,” Tech. Report CL-TR-91-12, Dept.
Comp. Info. Sci., Univ. Oregon, 1991 (to appear in Proc. Fourth Annual
KBSE Co@, Syracuse, NY, Oct. 1991).
S. Fickas, “Automating the transformational development of software,”
IEEE Trans. Software Engineering, vol. SE-11, no. 11, pp. 1268-1277,
Nov. 1985.
S. Fickas and P. Nagarajan, “Critiquing software specifications: a
knowledge based approach,” IEEE Software, Nov. 1988.
S. Fickas, B. R. Helm, and M. S. Feather, “When things go wrong:
Predicting failure in multi-agent systems,” Tech. Rep. CZS-TR-91-15,
Dept. Camp. Info. Sci., Univ. Oregon, 1991 (presented at the Niagra
Workshop on Intelligent Information Systems, Niagra, NY, July 199-l).
Ci. Fischer, R. McCall, and A. March, “Janus: Integrating hypertext with
a knowledge-based design environment,” in Proc. Hypertext 89. New
York: ACM, 1989, pp. 105-117.
P. Friedland and Y. Iwasaki, “The concept and implementation of skele-
tal plans,” Rep. KSL 85-6, Stanford Knowledge Systems Laboratory,
1985.
M. Gasser, Building a Secure Computer System. New York: Van
Nostrand Reinhold, 1988.
K. J. Hammond, Case-Based Planning: Viewing Planning as a Memory
Task. Boston, MA: Academic, 1989.
G. Holzmann, Design and Validation of Computer Protocols. Engle-
wood Cliffs, NJ: Prentice-Hall, 1991.
P. Huber, A. Jensen, L. Jepsen, and K. Jensen, “Reachability trees
for high-level Petri nets,” Theoretical Computer Science, vol. 45, pp.
262-292, 1986.
Problem set in Proc. 4th Int. Workshop on Software Specification and
Design, 1987, pp. 52-57.
R. Kemmerer, “Testing formal specifications to detect design errors,”
IEEE Trans. Software Engineering, vol. SE-11, pp. 32-42, Jan. 1985.
B. Kramer, “Prototyping and formal analysis of concurrent and dis-
tributed systems, ” in Proc. 6th Int. Workshop on Software Specification
and Design, 1991, pp. 6&66.
J. Kramer, J. Magee, and A. Finkelstein, “A constructive approach to
the design of distributed systems, ” in Proc. 10th Int. Conf: Distributed
Computing Systems, May 1990.
L. Lamport, “Proving the correctness of multiprocessor programs,” IEEE
Trans. SofhYare Engineering, vol. SE-3, pp. 125-143, Mar. 1977.
N. G. Leveson, M. Heimdahl, H. Hildreth, and A. Ortega, in Proc. 6th
Int. Workshop SofhYare Specification and Design, pp. 31111, 1991.
P. E. London and M. S. Feather, “Implementing specification freedoms,”
in Readings in Artificial Intelligence and Software Engineering, C. Rich
and R. Waters, Eds. Los Gatos, CA: Morgan Kaufmann, 1986, pp.
285-205. (Originally appeared in Sci. Computer Programming, vol. 2,
pp. 91-131, 1982.)
J. Loyall, S. Kaplan, and S. Goering, “Abstraction and composition
in D-specifications of concurrent systems,” in Proc. 6th Int. Workshop
Software Specification and Design, pp. 52-59, 1991.
T. McGean, Urban Transportation Technology. Lexington, MA: D. C.
Heath, 1976.

[331

(341

(351

[361

[371

[381

[391

[401

(411

[421

[431

[441

[451

[461

R. Milner, A Calculus of Communicating Systems. Berlin: Springer-
Verlag, 1980.
L. Morgenstern, “A first-order theory of planning, knowledge, and
action,” in Theoretical Aspects of Reasoning about Knowledge: Proc.
1986 Conference, J. Halpern, Ed. Los Gatos, CA: Morgan Kaufmann,
1986, pp: 99-114. .
J. Mostow, “Whv are design derivations hard to replay?” in Machine
Learning: A Guiie to Cur&t Research, T. Mitchell, J: Carbonell, and
R. Michaelski, Eds. Hingham, MA: Kluwer, 1986, pp. 213-218.
J. B. Postel and J. K. Reynolds, “Telnet protocol specification,” Internet
Request For Comments 855, May 1983.
W. Robinson, “A multi-agent view of requirements,” in Proc. 12th Int.
Cant Software Engineering, pp. 268-276, 1990.
M.T. Rose, The Open Book: A Practical Perspective on OX Engle-
wood Cliffs, NJ: Prentice-Hall, 1989.
-3 The Simple Book: Management of TCPIIP-based Internets. En-
glewood Cliffs,- NJ: Prentice-Hall, Inc.,. 1991.
S. Rosenschein and L. P. Kaelbing, “The synthesis of digital machines
with provable epistemic properties,” in J. Halpern, Ed., Theoretical
Aspects of Reasoning about Knowledge: Proc. 1986 Conj, pp. 83-98,
1986.
A. V. Shankar and S. S. Lam, “Construction of network protocols by
stepwise refinement.” in J. W. de Bakker, W.-P. de Roever, and 0.
Ro’zenberg, Eds., Stepwise Refinement of Distributed Systems: Models,
Formalisms, Correctness. Berlin: Springer-Verlag, 1989, pp. 669-695.
Robert B. Shaw, Down Brakes: A History of Railroad Accidents, Safety
Precautions, and Operating Practices in the United States of America.
London: P. R. Macmillan, 1961.
R. Simmons, “A theory of debugging plans and interpretations,” in
AAAI-88: Proc. 7th Nat. Conf: Artificial Intelligence, pp. 94-99, 1988.
A. J. Tanenbaum, ComputerNetworks. Englewood Cliffs, NJ: Prentice-
Hall, 1988.
A. van Lamsweerde, A. Dardenne, and F. Dubisy, “KAOS knowledge
representations as initial support for formal specification processes,”
Facults Universitaries de Namur, Research Paper RP24191, May 1991.
M. C. Wilbur-Ham, “Numerical petri nets-A guide,” Telecom Australia
Research Laboratories, Report 7791, 1985.

Stephen F. Fickas received the B.S. degree in mathematics from Oregon
State University, the MS. degree in computer science from the University of
Massachusetts, and the Ph.D. degree in computer science from the University
of California, Irvine, CA.

He currently heads the Kate Project at the University of Oregon, and his
interests are in formal models of the requirements and specifications process.

B. Robert Helm received the B.S. degree in com-
puter science and mathematics from the University
of Puget Sound, WA, in 1986 and the M.S. degree
in computer science from the University of Oregon,
Eugene, OR, in 1991.

He is currently pursuing Ph.D. research on formal
analysis and transformation of software require-
ments at the University of Oregon.

