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Knowledge Representation and Reasoning 
in the Des ign o f Compos ite  Systems 

Stephen Fickas and  B. Robert  Helm 

Abstract- Our interest is in the design process that spans 
the gap between the requirements acquisition process and the 
implementation process, in which the basic architecture of a 
system is defined, and functions are allocated to software, hard- 
ware, and human agents. We  call this process composite system 
design. Our goal is an interactive model of composite system 
design incorporating deficiency-driven design, formal analysis, 
incremental design and rationalization, and design reuse. We  
discuss knowledge representations and reasoning techniques for 
the product (composite system) that we are designing, and for the 
design process, which support these goals. To evaluate our model, 
we report on its use to rationally reconstruct the design of two 
existing composite systems. 

Index Terms-Automated analysis, composite systems, knowl- 
edge-based design, rational reconstruction, software specification. 

I. INTRODUCTION 

0 UR group’s historical interest has  been  in knowledge- 
based  software development (AI and  SE). However,  in 

the course of our  research, we found that we could not formally 
explain or reproduce the features of s tandard software designs, 
such as  those of elevator controllers and  library databases [24] 
by  focusing solely on  the software and  its immediate interface 
to human and  hardware systems. Further ev idence of this 
di lemma was found in human systems analysts in the domains 
we studied [16]; they focused on  policies and  concerns that 
cut across human,  hardware and  software components.  This 
has  led us  to an  interest in the design of composite systems, 
ones  that encompass  multiple agents involved in ongoing, 
interactive activities [13]. In composite systems, software 
agents are treated the same as human and  physical agents, 
as  components  to be  integrated together to solve larger system 
constraints. 

W e  have  developed an  interactive design model, called Crit- 
ter, for producing composite systems. The  model  is founded 
on  an  earlier design tool called Glitter [15], which used  
automated problem-solving techniques to assist a  human in 
implementing a  formal specification. W e  have  tested Critter 
by  attempting to rationally reconstruct or reproduce existing 
wel l -documented composite system designs, some containing 
no  software components  (e.g., pre-computer transportation 
systems), some containing a  mixture of software, human,  and  
physical components  (e.g., the canonical elevator system [24]), 
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and  some containing software components  solely (e.g., email 
transport systems). Our  work on  Critter is tied to the special 
issue as  follows. 

Software engineer ing goal: W e  wish to address the stage 
between the requirements acquisit ion process and  the im- 
plementat ion process, in which the basic architecture of a  
system is defined, and  functions are al located to software and  
hardware components,  or to the users. For the design process, 
in particular, we are interested in representat ions that promote 
deficiency-driven design, formal design analysis, incremental 
design and  rationalization, and  design reuse. 

Knowledge content: There are two types of knowledge 
we must address in designing composite systems: 1) the 
knowledge of the artifact (composite system) that we are 
designing, and  2) the knowledge we use in designing the 
artifact. Our  knowledge of an  artifact is a  formal model  of 
its behavior and  the constraints it lives under.  For design 
knowledge, we have  focused on  the knowledge necessary 
1) to decompose a  global specification into specifications of 
its components,  and  2) to modify the global specification so 
that realistic implementations can be  found. W e  introduce the 
notion of a  minimally restricted design step as  a  means  to 
effectively play out a  complex design. W e  also discuss the 
form of analysis our  tools produce.  In particular, we want 
our  analysis tools to output not only “correct design” or 
“incorrect design,” but the plans/counterexamples/scenarios 
that led to such a  judgement.  Our  goal is to use  this 
information in formulating the next step in the design 
process. 

Knowledge representat ion and  reasoning: W e  are most con- 
cerned with represent ing the design process. In contrast, for 
represent ing the artifact (i.e., the design state) we have  chosen 
off-the-shelf formal languages (a form of temporal logic to rep- 
resent design constraints, and  a  form of Petri net to represent 
artifact behavior). Our  representat ion of the design process is 
based  on  a  traditional AI paradigm, that of state-based search. 
It has  two parts: 1) a  representat ion of the design operators, 
heuristics, and  analysis tools necessary for a  design (search) to 
incrementally progress, and  2) a  representat ion of the search 
manager,  the component  that keeps track of alternative search 
states and  paths, allows browsing, exploration, etc. Our  focus 
is on  the first component ,  which Section III d iscusses in more 
detail. 

W e  will a rgue for the strength of our  knowledge content 
and  knowledge representat ion choices through two examples 
in Sections IV and  V. W e  will discuss the weaknesses of our  
choices, in the context of these two examples and  other larger 
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Fig. 1. Critter and  its associated development processes. 

examples we have  begun,  in Section VI. Section VII d iscusses 
work related to the Critter model. 

II. OUR PLACE IN THE LIFECYCLE 

Fig. 1  places Critter in the more general  system lifecycle 
we envision. 

To  briefly summarize the figure, the requirements acquisi- 
tion process involves analysts acquir ing informal requirements 
from users and  other concerned parties, in the form of dia- 
grams, text documents,  interview transcripts, and  so on. The  
output of this process typically remains informal. 

W e  have  included a  condit ioning process in Fig. 1  to 
map  the requirements produced by requirements acquisit ion 
tools to a  form acceptable by  our  design tools. Clearly, this 
condit ioning process may be  a  major effort g iven the lack 
of consistency in the requirements engineer ing field, where 
formality, representations, and  even definitions may vary from 
organization to organization. 

The  composite system design process, the center of our  
research interest, decomposes  formally specif ied global con- 
straints and  infrastructure into a  specification of a  composite 
system, a  set of components  or agents which interact to satisfy 
the global constraints. For example, the input to composite 
system design might be  a  formal version of the following: 

Infrastructure = Internet 
Constraint 1  =  given an  email message of 

form M, deliver M to its recipient 
Constraint 2  =  given an  email message of 

form M, notify the sender  when  it is del ivered 
. . . . 

The  output of the composite system design process would be  
the specification of a  set of email agents running on  the Internet 
that took responsibility for satisfying the set of constraints. 
The  informal SMTP specification (the standard email system 
on  the Internet) is an  excellent real life example of what we are 
trying to produce formally. The  focus of this paper  is on  a  tool, 
Critter, that supports the interactive design of such systems. 

The  bottom three processes implement each  agent  class 
according to the composite system specification. A single 
composite system specification may require that each  imple- 
mentat ion process be  applied: producing software, acquir ing or 
manufactur ing hardware,  and  writing legal statutes or training 
manuals which prescribe the actions of human workers taking 
the role of an  agent.  The  first example we describe, that 
of a  train management  system, has  forced us  to look, at 

Fig. 2. Critter state-based search model  of composite system design. 

least superficially, at the hardware and  rule-writing processes. 
Our  second example, that of an  email transport system, is 
principally composed of software. 

The  next section introduces composite system design in 
more detail, and  the Critter tools that support  it. 

III. THE CRI-ITER MODEL 

The Critter design model  (Fig. 2) helps a  human designer 
develop a  composite system design using the paradigm of 
state-based search. Starting from an  initial problem state, 
Critter helps an  analyst apply design operators until he  arrives 
at a  composite system design state that solves the problem. 

The  Critter model  is the sum of the following components:  
l a  design state representation, 
l a  solution state or leaf-node checker,  
l a  set of move or design operators, 
l a  set of heuristics for selecting design operators, 
l a  search management  component  that manages  the design 

space,  allows browsing, etc. 
W e  discuss the knowledge content, representation, 

soning tools of each  of these components  in turn. 

3.1. Design States 

Each design state in our  search space represents a  single 
composite system design. A state in Critter has  two compo-  

and  rea- 

nents: 
1) The  generat ive or system portion of a  design state 

denotes a  set of possible behaviors. A behavior is a  
sequence of events that could occur in the composite 
system. In our  model, the system is represented by  a  
specification in a  language we have  adapted for com- 
posite system specification as  explained below. 

2) The  constraining port ion of a  design state consists of 
a  set of constraints, i.e., constraints on  behavior.  Con-  
straints are expressed declaratively in terms of system- 
wide properties. They are formal versions of statements 
such as  “Trains get to their destinations,” or “Trains 
don’t crash into each  other.” 

The  overall goal of the search is to bring the two into 
“consistency” in a  single state-the behaviors produced by 
the system should satisfy the constraints. As this implies, the 
system and  constraint components  may be  misaligned in any  
one  state, i.e., the system may generate behavior that breaks 
the constraints. Be aware that this is a  twist on  most state- 
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based problem solving where the “goals” of the system are 
the “goals” of the search. The  goals of our  system are the 
constraint port ion of the design state. The  goal of the search 
is to find a  match between the two state components.  

The  problems that we have  focused on  can be  character- 
ized as  l iveness-safety problems [28]. Typically, they involve 
constraints of two general  forms. 

Liveness: For each  behavior B, find some state JJ in B s.t. 
io satisfies Cachieurment. 

Safety: For each  behavior B, no  state p  in B should satisfy 
Gnsa,e.  

In toy worlds we may be  able to drop one  class of constraints 
almost entirely, or pretend that all constraints can be  met 
strictly. In the real world there is often an  intricate balance 
between the two classes. 

The  system portion of a  design state is further divided 
into two parts. First, there is what we call the infrastructure. 
Examples of an  infrastructure are the rail-lines of a  railroad 
system and  the communication-l ines of a  network system. 

The  system portion also includes a  set of agents. Agents 
use  the infrastructure of the system and  interactions with 
each  other to produce behaviors. In general,  an  agent  is a  
component  of a  composite system that can  sense a  port ion 
of the system’s state, make decisions, and  perform or prevent 
actions of the system that the agent  controls. An agent  class 
in our  representat ion thus has  the following attributes. 

1) A set (possibly empty) of the system state an  agent  can  
directly observe.  

2) A set (possibly empty) of actions an  agent  can  perform 
that affect the system state. 

3) A set (possibly empty) of local state information. 
4) A set (possibly empty) of responsibilities for achieving 

a  constraint or goal of the system. 
Assigning responsibility for a  constraint to a  class of agents 

requires that all agents in that class limit their actions so 
the constraint is achieved. Only those agents responsible 
for a  constraint are expected to limit their own behavior 
to ensure satisfaction of that constraint. For example, if a  
train engineer/agent is solely responsible for keeping her  train 
from colliding with another,  then she must limit her  actions 
accordingly, and  in particular, cannot  rely on  other agents to 
constrain their actions to avoid collision. An agent  may be  
over loaded in our  representation: It may have  more than one  
responsibility in any  single composite system, and  it may have  
separate responsibilities in two or more different composite 
systems. It may also share responsibility for a  constraint with 
another agent  in the same system or a  different system. 

Both the constraining and  system port ions are represented 
in notations we have  adapted from existing work in formal 
specification. No existing notations had  exactly what we need,  
so  we have  followed the approach of Feather [12], who  
shows how to extend the Gist language to support  composite 
system design. W e  have  adopted less powerful languages than 
Gist, however,  so  that we can use the automated reasoning 
techniques we introduce in later port ions of the paper.  

Our  constraint language is a  style of modal, temporal logic 
roughly similar to that of that of the ERAE language [lo], and  

is very similar to the “temporal-causal logic” independent ly 
developed by  Castro [5]. It allows expression of both safety 
and  strong l iveness requirements [28]. 

The  language for the system portion can be  viewed, alter- 
natively, as  a  subset  of Gist [30] or a  superset of Numerical 
Petri Nets (NPN) [46] that adds  the notion of agents. W e  
will use  the Petri net view in this paper  for presentat ion 
purposes.  

3.2. Leaf  Node  Checkers 

The  overall goal of the Critter search is to bring the 
system and  constraint port ions into “consistency” in a  single 
design state. A consistent state is called a  “leaf’ or “solution” 
state. Our  model  semi-automatically checks design states for 
consistency ( leafhood) using three tools. 

Analysis Tool 1: A planner or scenario generator  called 
OPIE [2]. In general,  OPIE attempts to show that a  state is 
not congruent  by  showing that safety or l iveness constraints 
are not met. OPIE does  this by  finding a  plan that violates 
the constraints, in effect producing a  counterexample for the 
constraint. For example, it might prove that the constraint “no  
two trains are ever in the same block of track” is violated 
by  generat ing a  plan for putting two trains in a  block. As 
we discuss below, we believe generat ing counterexamples to 
constraints, rather than verifying constraints are met, can  give 
the designer useful gu idance on  the operators to apply to a  
state if it is not a  leaf (solution). 

However,  in addit ion to testing leafhood, we also use  OPIE 
to show that a  set of constraints could be  met if agents 
cooperated in the right way. OPIE does  this by  producing 
a  plan that satisfies the set of constraints, effectively proving 
the existence of a  correct behavior.  As with counterexamples, 
an  existence plan may provide insight into what operators to 
apply to a  nonleaf state to transform it into a  solution. 

Analysis Tool 2: An NPN simulator. W e  have  implemented 
an  NPN simulator that “runs” an  NPN forward. At nonde-  
terministic choice points, alternatives can be  either presented 
to the human designer for selection, or controlled by  simple 
rules, e.g., always choose transition A over transition B. For 
example, we might run the NPN simulator on  a  test case that 
attempts to put two trains into the same block of track to show 
that a  safety constraint is not satisfied in the current state. The  
details of this tool, and  a  semi-automated means  of selecting 
appropriate test cases to feed it, is d iscussed in [16]. 

Analysis Tool 3: A reachabil i ty-graph (RG) tool. The  tool 
first produces a  reachability graph from a  static analysis of 
the NPN, and  then allows queries about  reachable states. For 
example, the tool can  reply to queries such as, “Is it possible 
for a  train to fail to reach its destination?” It uses omega  values 
[23] to represent infinite plans/behaviors. As with OPIE, these 
queries can be  used to provide existence proofs. 

3.3. Search Operators 
Search operators (henceforth, design operators) are what 

transform one  composite design state into another,  and  may 
apply to either the constraint or the system part of the 
state. They are appl ied to a  nonleaf node  N to remedy 
a  deficiency found in N. Hence,  we loop through the se- 
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quence  analysis+deficiency+remedy in Critter until the anal- tools [18], in this paper  we will focus on  the more general  
ysis tools report success. model  of composite system design. 

Because our  interest is in composite system problems, our  
design operators are tailored to multi-agent distributed-action IV. APPLYING THE CRIITER MODEL: THE MCGEAN DESIGN 

concerns.  Among the types of design operators we use are the W e  have  tested the Critter model  descr ibed above  by  a  
following. methodology of rational reconstruction. In general,  this means  

l Introduction of agent  classes. There are operators for using our  design model  on  a  study problem for which there are 
introducing new types of agents, or for splitting existing already wel l -documented designs, preferably designs that have  
types. For example, an  operator might split a  class of evolved over time and  that have  well-known strengths and  
“protocol entities” into “clients” and  “servers.” weaknesses.  W e  believe the rational reconstruction method- 

* Assignment and  merging of responsibility. As descr ibed ology provides a  useful check on  the sufficiency of our  
above,  agents can be  given responsibility for constraints. model, i.e. can  we generate interesting, existing designs? 
They can share their responsibilities with one  or more Moreover,  applying the methodology to wel l-understood en-  
other agents. They can also be  over loaded; each  agent  gineering problems helps identify the knowledge our tool 
can  have  multiple responsibilities. would need  to automate the now manual  heuristic evaluation 

l Communicat ion and  synchronizat ion among  agents. of designs. W e  have  used the Critter model  to rationally 
Critter includes operators which introduce simple reconstruct several designs, two of which we will summarize 
communicat ion and  synchronizat ion protocols (such as  
request-reply interactions) between agents. 

l Weaken ing of constraints. In many  real-world problems, 
we may find it necessary to achieve consistency not by  
changing the system, but by  changing the constraints. In 
particular, the initial constraints may be  idealized and  
open  for modification and  compromise. In these cases, 
a  constraint may be  weakened to make illegal behaviors 
legal ones.  

3.4. Heuristic Evaluation 

There is a  relatively small number  of design operators 
that are able to produce the composite systems we have  
studied. However,  they are capable of producing a  large set 
of alternative designs, enough  so that blind search becomes 
intractable. W e  currently rely on  the user to provide the 
necessary domain knowledge to guide the search. From our 
study of composite system design heuristics [14],[17], we 
suspect  that the human designer will cont inue to be  the main 
source of heuristic evaluation in Critter for the foreseeable 
future. 

3.5. Implementation 

Critter is partially automated. The  tools that make up  the 
leaf-node checker  are automated, a l though they require some 
set up  as  explained above.  The  design space is represented 
in an  extended form of IBIS [7] that provides for separate 
development states. Each development state represents the 
current design state and  the current set of design issues. 

Design operators are represented by  posit ions at tached to an  
issue, and  design heuristics as  arguments at tached to a  position. 
In the current implementation, the user manual ly “applies” 
design operators by  attaching the appropriate posit ions and  
updat ing the agents and  infrastructure using a  Petri net editor. 
The  user also must attach any  selection heuristics as  arguments 
to the positions. Critter then automatically generates a  new 

in the remainder of the paper.  The  success criterion for our  
rational reconstruct ions is the ability to model  the original in- 
frastructure and  reproduce the final responsibility assignments 
through the use  of our  design operators. 

A word of motivation on  our  choice of the two study 
problems is in order. The  first example we present in this paper  
is a  train management  system descr ibed in McGean  [32]. The  
system, known as “manual  absolute block clearing,” originated 
in the 19th century; we will refer to it as  the “McGean  design” 
for brevity. 

W e  arrived at this problem after work on  the canonical 
elevator problem [12],[24], which in turn derives from [25]. 
Our  switch from the elevator problem was motivated by  the 
following. 

l W e  found it difficult to evaluate the elevator designs that 
we produced.  While there are elevator guidelines, books,  
and  journals publ ished, we failed to find enough  detailed 
design rationale to evaluate our  results. W e  did, however,  
find intricate and  detailed evaluation criteria for train 
systems [32], including a  history of major train accidents 
and  their causes [42]. 

l A train system is a  more interesting composite system 
problem. There are more agents involved and  more ways 
to split responsibility among  them. 

l This same domain has  been  studied for its connect ion to 
network protocols by  [22]. This leads cleanly into our  
second example. 

The  second problem we have  chosen is a  simple network- 
ing problem, that of flow control dur ing email transport. In 
particular, our  target is the reconstruction of the OS1 MOTIS 
(aka MHS) Pl protocol design. This example has  two useful 
properties. 

l Its design can be  validated at a  product ion level. That is, 
we can implement a  MOTIS email transport design leaf 
node  produced by our  model  as  a  network application 

development state (a new IBIS state) after the operator has  and  run it under  product ion condit ions (albeit, OS1 pro- 
been  applied. In this way, the entire design space is main- duct ion conditions). This is a  feature of only one  of the 
tained, allowing a  designer to move to any  node  and  explore four canonical IWSSD problems, namely the text editing 
alternatives. While there are interesting issues on  the use  of problem. It is certainly not a  feature of the elevator or 
an  IBIS style f ramework for implementing incremental design train problems, at least for our  group. 
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Fig. 3. Simplified McGean design. 

Fig. 4. Excerpt of the McGean example design space. 

l MOTIS, and  network applications of its ilk, have  well- 
studied and  formal evaluation criteria [44]. Many  network 
applications also have  a  written chronology of their design 
(see, for instance, the RFC’s maintained by  the Internet 
NIC). 

Taking up  the McGean  design first, Fig. 3  shows the target of 
our  design process. This design attempts to prevent collisions 
of trains by  allocating regions of track of 5- to 15-mi lengths 
(called blocks) to a  single train at a  time. Looking at the final 
solution from a  composite system view, the design designates 
Engineer agents as  responsible for entering a  block between 
stations only if the signal for that block reads clear (vertical). 
Station Operator agents are given the responsibility of 1) 
setting the distant and  home signals for a  block to “occupied” 
(horizontal) when  a  train enters a  block, 2) resetting the signal 
to clear when  notified that a  train has  left a  block, and  3) 
notifying other station operators when  a  block becomes clear. 
Finally, Dispatcher agents (not shown in Fig. 3) are responsible 
for making sure trains enter a  system in a  safe fashion. 

Fig. 4  summarizes the first part of the path Critter takes to 
arrive at the target design in Fig. 3; it roughly represents the 
IBIS form of search tree we maintain as  part of Critter. As 
in Fig. 2, arcs coming out of a  design state (node) represent 
alternative design moves out of that node.  In the initial state 
Dl, the system has  one  l iveness and  one  safety constraint: 
Trains should get to their destinations, and  trains should not 
collide. In the example, we show how these constraints are 
decomposed into a  set of agents and  inter-agent protocols that 
interact to satisfy the constraints. 

4.1. The  Initial State 

Critter’s search process requires an  initial design state. W e  
rely on  the analyst to produce this initial state for the McGean  
design, guided by  some considerat ions we descr ibe in this 
section. This section also introduces the notation we use for 
design states throughout the paper.  

The  initial state of the train example is shown in Fig. 5. 

Fig. 5. Initial state Dl of the McGean example 

W e  use an  enhanced  version of an  NPN [46] to represent both 
infrastructure and  agents of a  system. The  initial constraint 
port ion appears  at left, the system portion at right. There are 
two constraints in state Dl: two trains should never  be  at the 
same location (safety); trains should eventually get to their 
destination (liveness). W e  can paraphrase the specification of 
the system portion in this figure as  follows. 

l Trains can be  created. The  transition (drawn as a  box) 
enter in the upper  left corner can fire nondeterministi- 
tally, since it has  no  input arcs; when  it fires, it introduces 
a  train token t (drawn as a  train icon) on  the place (drawn 
as a  circle) labeled Ready(t)  at the end  of the arrow. The  
Readyplace denotes the relation “Train t is ready to start.” 

l A train t for which Ready(t)  holds can be  assigned a  
destination block by  the assign - destination transition. 
The  arc between the transit ionassign - destination and  
Ready(t)  is doubled-headed.  This means  that the transi- 
tion needs  a  token (i.e., a  train t) from Ready(t)  to fire, 
but the token is simply replaced in Ready(t), unmodif ied, 
on  firing. In contrast, the move transition changes  a  train’s 
location; hence,  we have  drawn two separate arcs between 
move and  Location(t, b). 

l If a  train t is Ready,  has  a  Destination, and  has  an  
available Block to start in (shown as blocks 1,2,3 in 
the Block place), it can  start (transition start can  fire). 
Starting puts t at a  location block b, denoted by  the place 
Location(t, b). 

l Trains for which Location(t. b) holds can move to 
Adjacent blocks (shown as block numbers  connected by  
lines) by  firing the transition move,  which places them at 
a  new location adjacent-to their original location. 

l Trains at their Destination location can leave the system 
by firing the leave transition. 

The  initial state Dl represents the train management  system 
that immediately preceded that of McGean-a  schedule-based 
system that relied on  clever timing of trains to avoid collisions. 
As noted in [42], the schedule-based design had  its problems, 
causing an  unacceptable number  of accidents. This, a long with 
the invention of telegraph, sparked an  interest in finding a  new 
design. 

More generally, we view the initial state as  the infrastructure 
that is already in place when  design commences (or what 
we later refer to as  brownfield constraints). Typically, the 
infrastructure represents the piece of the system that has  the 
greatest modification cost, and  hence,  is the piece one  tries to 
design around,  or in a  more positive light, on  top of. 
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As for the actual construction of the initial state, we assume 
that it is the output of a  requirements acquisit ion process, 
possibly a ided by  a  system such as  the KAOS [45] assistant 
d iscussed in Section VII. 

4.2. Deficiency-Driven Composi te Design 
Our  general  style of design is deficiency-driven. W e  use the 

automated analysis tools of Critter to identify deficiencies, i.e., 
behaviors of the system that violate the constraints. W e  then 
apply design operators to overcome those deficiencies. This 
section illustrates this process and  our  representat ions in more 
detail. 

The  designer uses the p lanner-based leaf-checker OPIE 
(descr ibed in Section 3.1) in state Dl to see whether the safety 
constraint is met. OPIE cannot  verify systems written in the 
full NPN language, but only a  subset  that is roughly equivalent 
to the language of STRIPS [2]. W e  rely on  the designer to 
restrict the system to this subset. 

OPIE returns a  plan in which two trains collide at start-up. 

The  constraint ProtectTrains is violated by  
scenario Sl in state Dl: 
1. given Block(h1); 
2. enter(tllTrain) produces Ready(t1); 
3. enter(t2ITrain) produces Ready(t2); 
4. assign - destination(t1, bl) produces 

Destination(t1, bl) 
5. assign - destination(t2, hl) produces 

Destination(t2, bl) 
6. start(t1, bl) produces Location(t1, bl); 
7. start(t2. bl) produces Location(t2, bl); 
Violation: ProtectTrains in Dl 

To  eliminate a  negat ive scenario such as  Sl, the designer 
can choose among  three complementary strategies. 

1) Modify the infrastructure. The  designer could decide to 
provide separate arrival points for each  train, making it 
impossible to generate the “crash on  arrival” scenario 
of Sl. 

2) Weaken  the safety constraint. Some train systems take 
this approach by  allowing more than one  train in a  block 
[Ql. 

3) Assign responsibility for the safety constraint to a  class 
of agents. This requires agents in the class to control 
their actions so that the constraint is met. 

The  designer chooses the third option. Critter has  several 
operators that could accomplish this. 

1) Never allow a  specific condit ion in the constraint to be  
true (e.g., never  allow trains in the system). 

2) Ensure that two condit ions in the constraint are mutually 
exclusive (never allowing more than one  train in the 
system). 

3) Manipulate transitions so that some but not all the 
constraint conjuncts are al lowed to become true at the 
same time. 

The  designer chooses 3), whose general  class we call 
br inkmanship. The  set of br inkmanship operators modify the 
system so that an  agent  assigned to the constraint prevents 
transitions that are the last step in breaking the constraint. The  

outcome of this in our  example is that a  designated agent  will 
never  allow a  train to start at the same location as  another train. 

Before we descr ibe the br inkmanship operator in detail, we  
descr ibe Critter design operators in general.  Design operators 
take a  cooperat ive form. 

l The operator contains the framework of a  composite 
system design strategy, for instance, the means  of dividing 
responsibility among  agents in a  particular setting. This 
is represented by  a  matching pattern that establ ishes the 
right setting and  a  replacement pattern that introduces 
the concept  into the design. A design operator may also 
introduce domain assumptions and  failure modes.  These 
are discussed in more detail in the next section. 

l The human designer 1) supplies important pieces that 
fill out the matching and  replacement patterns, 2) ei- 
ther confirms each  assumption the operator makes,  or 
decides that an  assumption is uncertain enough  to call 
for further remedial design, and  3) attempts to mitigate 
any  troublesome behavior introduced by the operator. All 
of these actions typically require the designer to supply 
domain-specif ic knowledge to the design process. 

In summary,  the designer uses her  knowledge of the domain 
to select operators and  guide their application to the current 
state. The  operators add  the necessary components  to the sys- 
tem description and  track open  assumptions for the designer. In 
this way, our  design operators are much like the skeleton plans 
of the MOLGEN system that addressed the strategic aspects 
of a  design, relying on  the user to supply the domain-specif ic 
details and  fix the plan when  problems were discovered [19]. 

The  particular br inkmanship operator we will employ 
matches on  constraints of the form 

where P is a  relation (or place in NPN form), 2, y, z are 
vectors, and  there is an  implicit “for all behaviors” qualifier 
on  the front. This pattern, a long with the agent  A assigned to 
the constraint, is shown as part of the br inkmanship operator 
in Fig. 6. The  result of applying the operator is a  new system 
where a  “brink transition” (T in the figure) is controlled by  
the agent  A. 

The  application of the br inkmanship operator is interactive. 
1) The  designer factors the constraint into a  “controlled” 

condit ion and  a  “brink” condition. In our  example, P 
is the Locat ion relation, and  the controlled and  brink 
condit ions are both partial instantiations of P. 

2) The  designer chooses an  agent  class A to be  responsible 
for the factored constraint. In this case, the designer 
chooses a  train Dispatcher agent  to be  the responsible, 
hence  controlling, agent.  

3) The  designer identifies a  transition T that can  produce 
the controlled condit ion when  the brink condit ion is true, 
violating the constraint. The  agent  responsible for the 
constraint will control T  so that it cannot  fire when  the 
brink condit ion is true, prevent ing T from pushing the 
system over the “brink” by  producing P(x, 2) A P(y, 2). 
In our  example T is the start transition. 
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Fig. 6. Brinkmanship operator 

4) The  designer def ines how control begins and  ends.  The  
designer must identify some place that triggers an  agent  
in A to take control. The  designer also identifies a  
condit ion under  which that agent  can  release control. 
In our  example, a  Dispatcher agent  takes control of a  
train tl when  Ready(t1) is true. The  dispatcher releases 
control of tl when  start fires. 

As can be  seen in Fig. 6, the result of applying the operator 
is that the T in the top pattern is split into two parts, one  that 
is controlled (T - c) and  one  that is uncontrol led (T - u). 
The  controlled transition T - c has  a  new piece of subnet  
associated with it that al locates (and potentially loses) control. 
T  - c also has  a  not-arc (represented as  a  line ending in a  
circle) at tached to it from the place P. This represents the 
brink check: if the brink condit ion exists already (e.g., there 
is another train at the same starting location), then block any  
firing of T-c that would cause the control condit ion to become 
true (e.g., a  second train would end  up  at the same starting 
location). 

Fig. 7  shows the parts of the McGean  design state affected 
by  the br inkmanship operator. Places and  transitions drawn 
with short, nondirected arcs designate elision; we have  left off 
either incoming or outgoing arcs that have  no  bear ing on  the 
current figure. W e  can paraphrase Fig. 7  as  follows. 

Trains ready to start are assigned a  dispatcher. More 
than one  dispatcher can be  assigned to control the 
same train, either simultaneously or after loss of 
control. However,  a  single train cannot  be  under  
the control of the same dispatcher more than once  
simultaneously. 

Trains under  the control of at least one  dispatcher 
do  not start until their starting block is clear. If no  
dispatcher is in control of a  train then it is possible 
for the train to start unrestricted via the transition 
start-u (including cases where a  train starts before 
control can  be  assigned). 

Fig. 7. System state 02  (excerpt): Application of br inkmanship 
operator to start transition. 

The br inkmanship operator has  also introduced a  set of domain 
assumptions (not shown in the figures), and  has  added  two 
failure mode  transitions (start-u. and  lose - control - start). 
Dealing with these is the next step in the McGean  develop- 
ment. 

4.3. Validating Operator Application: 
Dismissal and  Certification 

Critter design operators do  not guarantee a  provably correct 
design by  themselves. This is a  major and  conscious departure 
from the work in formal transformation systems. Instead 
of concentrat ing on  tightly restricted correctness-preserving 
operators, we have  focused on  general  operators that in- 
corporate knowledge to validate their use  in a  particular 
problem setting. The  next two sections illustrate and  defend 
this strategy. 

Critter attempts to validate the changes  an  operator makes to 
the specification by  two means.  First, design operators include 
domain assumptions, condit ions that must hold in the design 
domain for the operator to be  effective. When  an  operator 
is applied, Critter records its domain assumptions as  open  
issues. For instance, in Fig. 7, the domain assumptions of 
br inkmanship are that dispatchers can be  found, that they can 
gain control of a  train, that they have  direct access to the start 
transition, and  that they can see or sense that a  starting location 
is clear or occupied. Each of these assumptions will remain 
open  until actually validated by  the designer. 

Second,  design operators include failure modes,  represent- 
ing behaviors that have  been  found to cause trouble for the 
systems where the operator was applied. For example, the 
lose - control - start and  start-u transitions of Fig. 7  
represent undesirable behavior which may occur if the control 
regime for starting trains fails. 

The  designer can address open  domain assumptions by  dis- 
missing them, or by  adjusting the composite system to satisfy 
the assumptions. The  McGean  design we are reproducing 
assumes that all of the new control components  (transitions, 
arcs, and  places) added  by the br inkmanship operator are valid. 
W e  assume the designer certifies them as such (not shown in 
Fig. 7). 

Similarly, the designer can address failure modes  in a  design 
by  certifying they will not occur, or by  redesigning the system 
to tolerate them. The  McGean  design we are reproducing does  
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Fig. 8. Design state 03: Application of certification operator 

not address either the lose - control - start or the start-u 
transition, i.e., there are no  new agents in the target design that 
are introduced to overcome either problem. Hence,  we will 
allow the designer to certify that uncontrol led entry (start-u) 
and  loss of control (lose-control-start) can  be  ignored from a  
composite system design viewpoint. 

The  result, design state 03, is shown in Fig. 8. The  certifica- 
tion token, cl, can  be  paraphrased as  “all scenarios involving 
uncontrol led train arrival have  been  considered and  dismissed 
as  either preventable at the implementation level or unlikely 
to occur in the real world.” The  certification token c2 works in 
a  similar fashion for loss of control. The  certification tokens 
provide a  hook  where the designer can insert data backing 
their claims, such as  standards, or court cases setting limits 
on  what negat ive impact must be  considered in designing 
artifacts. If these standardsf later become false, or if we  want 
to experiment in a  hypothetical world where they are false, 
the certification tokens can be  removed and  the corresponding 
transitions will become unblocked. 

In general,  dismissal and  certification act as  an  escape when  
our tools lack the knowledge to reason formally about  the 
subsequent  implementation process or the domain in which 
the system will reside. They provide two crucial p ieces of 
information: 1) they record that a  negat ive outcome has  been  
considered, and  2) they often point to a  body  of relevant 
domain knowledge for which we currently lack a  formal 
representation. 

The  previous step also illustrates the phi losophy underlying 
Critters design operators. Applying an  operator got us  a  little 
bit further toward a  “safe” design, but was not provably 
correct, even  with respect to the local goal for which it was 
applied. W e  have  de-emphasized provably correct design in 
Critter for several reasons. First, provably correct operators 
would have  a  lengthy set of operator precondit ions that a) 
might require a  large up-front theorem proving effort, and  
b) would narrow operator application to a  small class of 
settings, and  hence,  require a  large subgoal ing or jittering effort 
before the operator is ever attempted. In our  exper ience with 
Glitter, both of these problems led to much wasted design 
effort-it wasn’t until an  operator/transformation had  actually 
put a  concept  in place that it could adequately be  judged. 
Second,  validation of an  operator frequently relies on  domain- 
specific knowledge unavai lable to Critter. Again, we prefer to 
postpone this validation process until after the operator has  put 
the concept  in place within the system. 
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In summary,  our  approach is to use  a  minimal set of 
precondit ions to get a  general  design strategy (as represented 
by  an  operator) into play, including stereotypical issues and  
bugs  associated with the strategy. W e  then use analysis tools 
and  the human designer to point to places where further design 
is necessary.  In essence,  we promote a  style of design that 
allows a  designer to “test drive” a  strategy before committing 
enormous energy into making it work at a  detailed level. 

4.4. Reuse of Operators: Splitting Control 

Critters operators are intended to provide reusable strategies 
for composite design. The  next step of the McGean  rational- 
ization suggests how reuse occurs within a  particular design 
problem, and  how an  incremental approach can rationalize 
features of a  multi-agent design. 

The  design state 03  includes an  agent  class, Dispatcher, 
which will ensure that trains do  not violate the safety constraint 
at start-up. However,  design state 03  is not a  leaf node-OPIE 
generates a  scenario 5’2  in which two trains enter the system 
safely, but still end  up  at the same location. Instead of crashing 
on  start, they crash by  moving (firing the move transition in 
Fig. 5) into the same block. 

The  steps the designer takes to counter the S2 scenario 
are similar to those taken to counter Sl: the same br inkman- 
ship operator is appl ied (Fig. 9). As with start-c, the new 
move-c transition can only occur when  an  agent  (Engineer) 
is controll ing the train. As before, the new system retains both 
a  move-u transition that can  fire for uncontrol led trains, and  
a  transition for losing control. 

The  combinat ion of the br inkmanship applications to Dis- 
patcher and  Engineer gives us  a  sequential split of responsibil- 
ity, a  common cooperat ive problem solving approach:  break 
the problem into pieces (temporal in this case) and  assign 
separate agents to each  piece. However,  this division of labor 
was constructed incrementally, by  a  sequence of deficiency- 
driven steps. The  design history thus rationalizes the sequential 
division of labor in terms of a  specific goal (ProtectTrains), 
problematic scenarios (Sl, S2) encountered during design, and  
the design steps taken to address them. 

4.5. Validating Operator Application: Adjusting the Design 

When  the domain assumptions or failure modes  of an  oper-  
ator cannot  be  certified away, the designer adjusts the design 
to address them. The  next development sequence shows how 
this adjustment activity can  naturally rationalize support ing 
services such as  inter-agent communicat ion protocols within 
a  design. 

Given the second application of br inkmanship, the designer 
is left with the task of verifying the domain assumptions as  
they now apply to engineers controll ing the movement  of 
trains. 

1) Can  the Engineer directly control train movement  
(move-c), i.e., does  she have  direct access to the 
“throttle”?  While the answer obviously seems to be  
yes if one  uses on-board humans  as Engineer agents, 
vehicles such as  unmanned  spacecraft  are controlled 
remotely by  an  engineer,  and  require sophist icated two- 
way communicat ion devices to bring about  control. 
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Fig. 9. System state 04  (excerpt): Application of br inkmanship to train 
movement.  

More down to earth, some recent transportation systems 
rely on  cooperat ion between an  onboard  computer  agent  
and  a  remote human agent  to control vehicles. 

2) Can  the Engineer directly access whether an  adjacent 
block is occupied? (Is the not-arc between move-c and  
Locat ion valid?) The  sensing technology of the day  was 
human vision. 

As before, the Brinkmanship operator also introduces two 
potential failure modes.  

1) Can  uncontrol led movement  (move-u) occur? 
2) Can  loss of control ( lose - control - move)  occur? 
The  history of train system design has  shown that all of 

these quest ions has  eventually required attention. However,  
the design we are reconstructing only addresses the second 
quest ion (access to an  adjacent block); hence,  as  with Dis- 
patchers, we will mark the arc between Control - move and  
move-c as  valid, answering quest ion 1. W e  will also certify 
that loss of engineer control and  uncontrol led train movement  
can be  ignored, certifying “yes” to quest ions 3  and  4. 

This leaves us  with quest ion 2-tan Engineers “see” into 
adjacent blocks, i.e., is the not-arc between move-c and  
Locat ion valid? This was not realistic in McGeans  domain: 
blocks were 5  to 15  mi long and  Engineers could not directly 
sense the entire length of blocks adjacent to them. Fortunately, 
a  standard composite system solution is available: specify 
other agents to act as  intermediaries, manipulat ing a  flag 
or “spin lock” that relays the vacancy information to the 
Engineer. To  select this joint problem-solving protocol, the 
designer applies an  operator from a  class we call set/ reset. As 
with brinkmanship, the designer must guide the operator to the 
appropriate location in the current state, in this case, to the not- 
arc that blocks movement  in Fig. 9. Fig. 10  shows the effects of 
this decision on  the design state: the not-arc between move-c 
and  Locat ion is replaced with a  more elaborate mechanism 
for maintaining a  flag on  the block. 

Besides pinpointing the location of application for the 
operator, the designer must specify which agent  classes will 
control the actions of setting and  resetting. Set/reset calls for 
two sets of agents (Al to control “reset” and  A2 to control 
“set”) to cover blocks, but the designer decides that the same 
agent  that manages  set - Block-c (sets the home signal) can  
also manage  reset - Block-c (clear the signal), and  applies 
a  merge-agent  operator to agent  classes. While this is clearly 
more economical  (and follows the McGean  design), it also 

Fig. 10. System state D.5 (excerpt)-Result of set/reset 

introduces a  risk: in a  particular implementation of the agent  
class (now called Operator), an  agent  may not have  sufficient 
time to carry out both of its responsibilities (set and  reset) 
for all of the blocks it is tracking-overloading may lead 
to overcommitment. In the McGean  design, this is partially 
addressed by  assigning only one  block to each  Operator.  

Applying the set/reset operator raises its own domain as- 
sumptions and  failure modes  (not shown in the figure). Two 
of the domain assumptions are of particular interest here. 

1) Can  the controll ing agent  sense whether a  block it 
controls is occupied? (Is the arc between set - Block-c 
and  Locat ion valid?) 

2) Can  the controll ing agent  sense when  the block is clear? 
(Is the not-arc between Locat ion and  reset - Block-c 
valid?) 

The  designer decides that the Operator can  directly sense 
that a  train is in its block simply by  seeing the train pass 
by  the station. The  second access quest ion is similar to one  
that surfaced with Engineers: an  Operator would have  to see 
into the adjacent block (to see a  train leaving the Operators 
block) in order to determine whether the block it controls is, 
in fact, empty. Again, this is not practical given the length 
of blocks. The  solution adopted here is to replace the not-arc 
between reset - Block-c and  Locat ion by  the application of 
an  operator from the class we call “report/note.” 

The  result is shown in Fig. 10. W ith the guidance of 
the designer, a  report/note operator splices in an  agent  that 
monitors a  state, and  reports when  the enabl ing condit ion is 
true, in this case that no  train is in the preceding block. The  
recipient consumes (“notes”) the report when  it acts on  it. In 
Fig. 10, the recipient is the adjacent Operator,  and  she uses 
the report to reset the signal for her  block. 

As with set/reset, the designer merges the functions of the 
report ing agent  A3 with those of the operator (merged from 
Al and  A2). In addit ion to monitoring their “own” blocks, 
operators now will monitor the blocks from which trains 
arrive. When  a  train enters a  block, that block’s Operator 
will notify the previous Operator that her  block is now clear. 
The  previous Operator will receive the report and  reset her  
signal. 

There are a  number  of remaining issues in state D6, 
generated by  the application of set/reset and  report/note. Can  
we certify that loss of control and  uncontrol led actions (not 
shown in Fig. 10)  can  be  ignored? Can we handle the race 
condit ions between movement  and  setting/reporting? Can we 
control report - Block so that it does  not produce redundant  
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reports? Should we change  the arc between report - Block 
and  Locat ion from a  not-arc to a  positive arc to better reflect 
the McGean  protocol? 

More design effort is needed  to address these problems if 
we are to accurately reproduce the McGean  design. However,  
no  new Critter components  are highlighted, so  we will omit the 
remaining design steps necessary to complete development of 
the safety constraint. 

Before leaving our  development of the safety constraint, we 
note that we have  highlighted OPIE as the tool to check for 
violations of this constraint. However,  the NPN simulator tool 
is also available, and  at times may be  more effective. The  NPN 
simulator allows the designer to guide its analysis. Interactive 
analysis can often quickly expose faults which would take 
OPIE much longer to discover, albeit automatically. However,  
the NPN simulator requires that we have  a  library of test cases 
for the train domain. The  designer must help adapt  these test 
cases to the current design and  then guide the simulation. 
These issues are discussed in more detail in [ 161.  

4.6. L iveness 

W e  summarize the remainder of the McGean  development,  
which is guided by  violations of the l iveness constraint. This 
section briefly indicates how such violations can be  discovered. 
It also illustrates the precarious balance between safety and  
l iveness in composite system design problems. In general,  
modern  transportation designs trade off these two classes of 
constraints in complex ways that we do  not address in the 
McGean  design [37]. 

In the McGean  design, the analyst uses the reachability anal- 
ysis leaf-checker (RG) to disprove the l iveness constraint. The  
RG tool, unlike OPIE, can generate an  infinite counterexample 
in which C never  becomes true, disproving a  constraint that C 
eventually is satisfied. However,  the RG tool generates what 
is effectively an  exhaust ive reachability graph for the system, 
whereas OPIE generates selected behaviors guided by  goals. 
The  RG tool also operates on  a  smaller subset  of the NPN 
language than OPIE. 

W e  can see one  way in which l iveness can fail by  looking 
back at Fig. 9, in which Engineers were assigned control of 
trains after being started by  Dispatchers. This hand-off  error 
may lead to a  scenario in which a  train starts, but no  Engineer 
is ever assigned to control it, thus prevent ing the train from 
moving to its destination. In essence,  designing to meet the 
safety constraint has  introduced a  problem with l iveness. 

The  designer could address this problem in a  number  of 
ways. She could patch the application of Brinkmanship so 
that Engineers are assigned to trains before the trains start; 
this would lead to a  “harbor pilot” form of control in which 
two agents (a Dispatcher and  an  Engineer) are responsible 
for a  vehicle to a  certain point, at which point a  single agent  
takes over. Instead, the designer keeps the current division 
of labor, which more closely resembles “valet parking”; one  
agent  passes the vehicle to another.  

While there are interesting details of how the final McGean  
design falls out of this, at a  high level it is more of the 
same: Engineer agents are made  responsible for controll ing 
their actions so that the train progresses. In particular, no  new 

Fig. 11  System state DG (excerpt)-Insertion of report/note 

MOTLS 
r----- _-____--------_________________________ 

MTS ( 

Fig. 12. MOTIS messaging system and Pl protocol. 

inter-agent protocols are added  to the system. This assumes 
that we can realistically certify away loss of control as  we 
did in all design subsequent  to this state. If any  of these 
assumptions change,  e.g., if we  remove c2 in Fig. 8, not 
only might safety constraints be  in jeopardy, but l iveness 
constraints as  well; only controlled trains can move in the 
McGean  design. 

V. APPLYING THE CRI~ER MODEL: THE MOTIS DESIGN 

To suggest  the generality of our  design model, we next 
summarize a  different rational reconstruction. The  particular 
example we will discuss is the design of the flow control of 
the MOTIS Pl e-mail transfer system discussed in [44]. The  
MOTIS model  is shown in Fig. 12. 

The  Pl flow control protocol, depicted in Fig. 13, transfers 
mail messages over a  communicat ion link between “message 
transfer” agents at different sites on  a  network. The  protocol 
transfers messages one  at a  time. As in the McGean  example, 
the flow control aspects of this protocol must satisfy a  l iveness 
constraint (get messages to their destination) and  a  safety 
constraint (do not send a  message until the previous one  has  
arrived). 

W e  can reproduce Pl flow control using composite system 
operators. W e  summarize the steps below, using (reusing) the 
McGean  design as  a  foundation. 

1) The  designer assigns the safety constraint to a  “message 
transfer” agent  at each  site. In contrast to the McGean  
design, the agent  responsible for safety in MOTIS/Pl 
does  not follow a  message through the system, but is 
instead associated with a  fixed location in the network. 
This is analogous to doing away with engineers, and  
having station operators drive trains that are in their 
blocks. 

2) The  designer applies the br inkmanship operator to un-  
fold the safety constraint onto each  nodes  “send” oper-  
ator. The  result, as  in the McGean  design, is that the 
message transfer agent  that sends a  message is required 



480 IEEE TRANSACTIONS ON , SOFTWARE ENGINEERING. VOL. 18. NO. 6. JUNE 1992 

I I 

Fig. 13. MOTIS Pl flow control protocol. 

to “know” whether the destination site has  received that 
message.  

3) The  designer introduces the set/reset operator to allow 
each  message transfer agent  to track the receive state of 
its destination agent.  On  sending a  message,  the source 
agent  sets a  “wait” flag, just as  the station operator sets 
the signal for an  occupied block. When  the destination 
agent  has  received the message,  the source agent  will 
clear its wait flag. The  designer applies a  remote/note 
operator, causing the destination agent  to notify the 
source agent  when  it should clear its wait flag. 

4) The  designer assigns the message transfer agent  respon- 
sibility for l iveness. 

This completes our  two rational reconstruction examples. 

VI. CONCLUSIONS 

W e  have argued for the benefits of the Critter model  in 
the preceding sections. Returning to our  original software 
engineer ing goals, Critter supports deficiency-driven design, 
formal design analysis, incremental design and  rationalization, 
and  design reuse. Design knowledge is split between the 
human designer and  Critter: Critter supplies knowledge of 
composite system design strategies and  concepts;  the designer 
supplies domain specific knowledge to validate these strategies 
and  concepts in a  particular application domain. 

Our  focus in Critter has  been  to build an  effective interactive 
design tool. This has  led us  to a  representat ion of operators that 
enforce minimal applicability conditions. The  human designer 
can quickly test an  idea using Critter, and  then if satisfied, 
commit further design effort to verify and  validate the new 
design. W e  have  also argued for incremental design as  an  ef- 
fective means  to control a  complex design problem. Using this 
style, a  problem is ch ipped at gradually until it is finally solved. 

W e  have  evaluated the tractability of Critter’s reasoning 
techniques on  a  handful  of rational reconstruction problems. 
While we have  demonstrated the sufficiency of Critter on  these 
problems, they also exposed limitations of Critters reasoning 
techniques that prevent its use  on  larger software engineer ing 
problems. In particular, our  deficiency-driven style of design 
requires heavy  use  of the analysis tools to guide application 
of operators. Further, our  minimally restricted design operators 
rely on  analysis tools to point to places where c leanup design 
is necessary.  Consequent ly,  efficient use  of analysis becomes 
critical. One  way to use  analysis more efficiently is to cache 
or reuse analysis results as  a  design proceeds.  For example, 
rather than generat ing a  scenario like 5’2  from scratch, an  
analysis tool might create it by  adding a  move step and  
changing objects in the previous scenario 5’1. In general,  
having analyzed deficiencies in state S,, the system may 
reuse the S, analysis in $+I, tempered by  the (typically 
small) changes  between the two states. For planners such 
as  OPIE, “tempering” techniques have  been  developed from 

work on  plan reuse and  transformation [21], [43]. However.  
considerable research is required to apply these techniques to 
analysis reuse. 

W e  have  also evaluated the coverage of Critters design 
knowledge base,  and  the expressiveness of its artifact represen- 
tation. W e  can produce the high-level architecture of simple 
composite systems with a  reusable set of design operators. 
However,  we have  also tried to extend Critter to more chal- 
lenging problems in the network application domain of the 
MOTIS problem. In the process, we have  identified several 
c lasses of composite system design issues Critter does  not yet 
address.  For example: 

l Agent hierarchies. In our  product ion of the McGean  and  
MOTIS designs, all agents of a  particular class were 
v iewed as having identical abilities. However,  in some 
network applications there is a  notion of a  “minimal” 
agent  for a  class. This leads to differing abilities of agents 
in a  class, all built on  top of the minimal functionality. 
When  two agents need  to communicate, they may need  
to negotiate to determine what capabilities they have  in 
common beyond  a  minimal set. Our  agent  representat ion 
must be  extended to provide agents with a  crude internal 
model  of their capabilities so they can participate in such 
negotiat ion protocols, as  do  peers in the TELNET [36] 
and  the OS1 Session Layer  1381  protocols. 

l Agent security and  privacy. Our  reconstruct ions of 
McGean  and  MOTIS did not force us  to address the 
security and  privacy issues of these domains [20]. In 
network applications, we frequently need  to limit the 
abilities of agents to read information and  reconfigure the 
system. Agent authorization and  authentication become 
issues. In general,  communicat ion becomes a  more 
complicated business than that portrayed in the two 
examples in this paper.  

l Predefined agents. Our  examples started with minimal 
infrastructure and  no  agents to build on. In the domain 
of networked applications, there are standard network 
services (in our  terms, standard agents) provided in both 
the Internet and  OS1 domains. These domain-specif ic 
composite system building blocks need  to be  cataloged 
just as  the domain- independent  composite system design 
operators [27]. 

l Fault recovery. In the McGean  design, as  in safety- 
critical systems in general,  we may put extraordinary 
effort into anticipating and  designing out faults. However,  
in many  domains it is impossible to anticipate and  design 
out all faults. In these domains, one  frequently designs 
mechanisms that detect and  recover from unanticipated 
faults. Network application design is one  of these do-  
mains. Thus, to represent devices managed  by network 
management  protocols such as  SNMP [39], our  agent  
representat ion must include hooks  for remote monitoring 
and  control. 

To  address these issues, we have  to extend both our  artifact 
representation, and  the synthesis and  analysis knowledge we 
apply to the design process. The  research chal lenge is to 
incorporate this knowledge while retaining the advantages of 
Critter demonstrated in this paper.  
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VII. RELATED WORK 

Our work shares many  of the goals of research in formal 
development of distributed systems, such as  work reported in 
[3]. In general,  we wish to support  development of multiagent 
systems which satisfy globally specif ied constraints. At the 
same time, we note two contrasts between our approach and  
others. 

The  first contrast is in design methodology. A designer using 
our  approach starts from a  global statement of properties, and  
attempts to decompose these constraints into specifications 
of individual agents, gu ided by  considerat ions of access to 
information and  control. In this respect, our  approach is similar 
to that advocated by  [41]. Work  in formal development of 
distributed systems, such as  that of Abadi and  Lamport  [l], the 
“constructive” approach of Kramer, Magee,  and  Finkelstein 
[27], and  the earlier work on  CCS [33], frequently emphasizes 
a  different style of design: the designer composes prespecif ied 
components  or agents into a  system, and  verifies the system 
against global constraints. In addition, our  composite system 
approach does  not preserve correctness: global constraints may 
be  dropped or changed  during design, and  design operators 
may not always solve the problems for which they were 
applied. The  approaches of Abadi and  Lamport,  Kramer et 
al., and  CCS emphasize correct composit ion against a  stable 
set of constraints. W e  see the two styles as  complementary:  
our  approach focuses on  an  initial phase  where the com- 
ponents  of a  composite system are identified and  functions 
al located to them; work on  correctness-preserving composit ion 
provides techniques for verifying that the behavior of the final 
composite system design is satisfactory. 

The  second contrast we see with formal distributed systems 
work is in research methodology. Many  researchers in this 
area rely on  problems with a  pedigree within computer  science 
to demonstrate and  validate their formalisms and  techniques. 
Thus, [4], [26], and  [31] each  use  the “dining phi losophers” 
problem in an  example of their techniques. Wel l -known com- 
puter science problems like this make it easier to understand 
and  compare compet ing design approaches and  formalisms. 
On  the other hand,  we want to design complex systems of 
interacting human,  hardware,  and  software agents; we cannot  
easily predict how useful a  design approach will be  based  on  
an  exercise with the dining phi losophers or distributed sorting. 
W e  believe we can better validate formal methods by  rationally 
reconstructing existing composite systems, and  by  applying the 
methods to solve industrial-size problems (such as  the collision 
avoidance problem of [29]). 

Our  interest in designing multi-agent systems also over laps 
that of distributed artificial intelligence. However,  in our  
example designs, agents were simple in that they could only 
sense the current state of the system, and  react according 
to pre-enumerated rules that do  not allow any  inference. 
If a  signal failed to set, for instance, an  operator in the 
McGean  design could not infer that another action is necessary,  
formulate a  new plan, and  take corrective action. Agents in our  
designs cannot  make inferences about  their abilities [34], nor  
about  their goals or commitments [6], nor  about  the goals or 
laws of the system as a  whole. Our  agents are thus more similar 

to the “situated automata” of [40], in that they are simple 
machines des igned to meet more complex global properties. 

Our  work on  composite systems extends that of Feather 
[12], which in particular introduced the notion of responsibility 
assignment. Dubois [ll] has  provided a  formal semantics for 
responsibility assignment in terms of deontic logic constructs 
in his ERAE requirements language. The  specification lan- 
guage  we use to descr ibe “specification states” was strongly 
inf luenced by  both ERAE and  Gist. Our  language integrates 
temporal logic and  Petri nets, a  combinat ion adopted indepen- 
dently by  Castro [5] to descr ibe multiagent specifications. 

Our  model  of design starts with a  specification of constraints 
and  infrastructure. A natural quest ion is where do  these 
come from? The  most general  answer is that a  requirements 
engineer ing process should produce them. W e  have  studied 
(and been  inf luenced by) a  specific requirements tool called 
KAOS [45]. KAOS starts with an  informal description of the 
constraints of a  composite system, and  calls on  two powerful 
techniques to aid a  human specifier transform them into a  
formal representation: 1) a  meta-model of composite systems 
is used  to fill in the pieces of a  partial description, and  2) 
previous cases are used  to do  analogical reasoning [9]. Both of 
these approaches combat  the notion that any  design problem, 
composite or otherwise, starts from a  blank slate. In (81, 
we discuss the l inkage between KAOS and  Critter on  the 
elevator problem. Our  collaboration with the KAOS project 
is continuing on  our  more recent design work on  distributed 
network applications. 
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