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CNRS-Luminy Case 907 F-13288 Marseille Cedex 09

FRANCE

Dedicated to Alex GROSSMANN, who taught us the importance of the phase

Abstract:
We investigate the behaviour of the continuous wavelet and Gabor coefficients in the

asymptotic limit, using stationary phase approximations. In particular, we show how,
under some additional assumptions, these coefficients allow the extraction of some charac-
teristics of the analysed signal, like for example frequency and amplitude modulation laws.
We also briefly discuss applications to spectral lines estimations and matched filtering.

I: INTRODUCTION:

Time-frequency representations, as for instance spectrograms, scalograms, or bilinear
representations like Wigner or smoothed Wigner distributions are now commonly used in
signal analysis to investigate the time-frequency content of an analysed signal. Most of
the algorithms that have been developed in that context are essentially based on the study
of the ”time-frequency energy localisation”, the representation or its squared-modulus in
the linear case being interpreted as an energy density in the time-frequency plane. Among
the linear representations, the Gabor representation [Ga] (or sliding window Fourier trans-
form), based on time and frequency translations, has been the most popular for a long
time. More recently, Grossmann and Morlet [Gr-Mo] proposed an alternative representa-
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tion, called the wavelet transform, which basically has the same structure [Gr-Mo-Pa1],
the frequency translations being replaced by dilations (the dilation parameter being inter-
preted as the quotient of a reference frequency by a frequency shift). Both methods have
been applied to signal analysis, with comparable performance levels, in different contexts.

The mathematical theory of continuous wavelet analysis and Gabor analysis, and
their discretizations (frames), has been mainly developed in [Da1]. In particular, it has
been shown that there exists an important difference between these two representations, at
the level of discretization. Indeed, while it is convenient to sample uniformly the time and
frequency parameters in the Gabor case, the time and scale parameters have to be sampled
on a dyadic lattice in the wavelet case. This is actually the consequence of a strategic
difference: Gabor functions perform an analysis with constant absolute bandwidth ∆ν,
while wavelets perform an analysis with constant relative bandwidth ∆ν

ν
.

We consider here their application to specific problems of signal analysis, namely the
problems of extraction and characterisation of signals modulated in amplitude and fre-
quency, in the asymptotic (i.e. high frequency) limit. More specificaly, we are interested
not only in the asymptotic signals themselves, for which standard techniques based on
Hilbert transform in general give good results, but rather on composite signals of asymp-
totic type, which can be defined as sums of asymptotic signals. Note that a composite
signal of asymptotic type has a priori no reason to be itself asymptotic; moreover, the
Hilbert transform is in general unable to give precise informations about the characteris-
tics of the components separately, like for instance frequency and amplitude modulation
laws. Nevertheless, the first tests of the algorithms presented here will be performed on
asymptotic signals.

The plan of the paper is as follows: After briefly recalling in section II the basic
definitions and properties of wavelet and Gabor analysis, and standard results on frequency
and amplitude modulated and asymptotic signals in section III, we describe in section
IV the behaviour of wavelet and Gabor analysis in the asymptotic limit, for asymptotic
analysing functions. We show in section V how, for Gaussian analysing functions, the
asymptotic assumption on the analysing function can be relaxed. Algorithms are proposed,
which allow the extraction of instantaneous frequencies and spectral lines, and in some
cases the separation of frequency-modulated components is a signal. Numerical results
are presented in section VI, showing in particular that the study of the phases of wavelet
and Gabor coefficients allow the construction of algorithms much more precise than those
based on the energy localisation criteria. Applications to matched filtering are discussed
in section VII, and section VIII is devoted to conclusions.
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II: CONTINUOUS WAVELET AND GABOR ANALYSIS:

We describe in this section the basic properties of continuous wavelet and Gabor
analysis, in the form we will use in this paper. For more details on such techniques, we
refer to [Da1], [Gr-Mo], [Gr-Mo-Pa1], [Gr-Mo-Pa2] and [Gr-KM-Mo].

II-1: Wavelet analysis:

We will restrict here to the wavelet analysis of the real Hardy space:

H2(R) =
{

f ∈ L2(R); f̂(ω) = 0 for ω ≤ 0
}

which is sufficient for our purpose. The analysis of L2(R) follows from simple modifications.
Start from two functions g, h ∈ H2(R), such that the following admissibility condition

holds:

0 < |cg,h| =

∣∣∣∣∣

∫ +∞

0

ĝ(ω)ĥ(ω)

ω
dω

∣∣∣∣∣ < ∞ (II − 1)

where our convention for Fourier transform is the following:

f̂(ω) =< f, εω >L2=

∫ +∞

−∞

f(t)e−iωtdt

with ελ(t) = eiλt. g (resp. h) is the analysing wavelet (resp. the reconstructing wavelet).
To these functions are associated the wavelets, i.e. the functions g(b,a) and h(b,a), defined
by:

g(b,a)(t) =
1

a
g

(
t − b

a

)
(II − 2)

(with the same definition for h(b,a)), where the translation and dilation parameters run
over the Poincaré half plane: H = {(b, a) ∈ R

2; a > 0} (notice that we have chosen here a
different normalisation for the wavelets than that of [Gr-Mo]). The admissibility condition
then implies the following resolution of the identity: to each s ∈ H2(R) one can associate
the following family of coefficients (wavelet coefficients):

Ts(b, a) =< s, g(b,a) >L2 (II − 3)

which are simply the L2 products of s(t) by the dilated and translated wavelets (when
there is no possible confusion, the subscript s of Ts will be omitted). One then has a
reconstruction formula:

s =
1

cg,h

∫ +∞

0

∫ +∞

−∞

Ts(b, a) h(b,a)
da db

a
(II − 4)

3



which expresses s(t) as a sum of dilated and translated wavelets h(b,a), the coefficients of
the decomposition being the corresponding wavelet coefficients (the equality being under-
stood in the L2 sense). In other words, the wavelets are used exactly as if they formed a
biorthogonal basis, although this is far from being the case, the information provided by
Ts being highly redundant.

It may also be convenient in practice to use a slightly modified version of wavelet
analysis, which is simply to analyse and reconstruct a λ-frequency-shifted version of s(t)
instead of s itself, for some real number λ. One then has a the following decomposition of
s(t):

s =
1

cg,h

∫ +∞

0

∫ +∞

−∞

Tλ
s (b, a) h(b,a) ελ

da db

a
(II − 5)

which expresses ε−λs(t) as a sum of dilated and translated wavelets h(b,a), the coefficients
of the decomposition being the corresponding modified wavelet coefficients.

Tλ
s (b, a) =< s, ελ g(b,a) >L2 (II − 6)

For simplicity, we will write Ts = T 0
s .

It is often convenient to work with wavelets having good localisation properties in
both the direct space and the Fourier space; in general g can be chosen so that both g and
ĝ have exponential decay at infinity (and/or the same for h and ĥ). This moreover allows
to interpret the dilation parameter a as the inverse of a frequency shift parameter (up to
a multiplicative constant, characteristic of the analysing wavelet), and then to make the
connexion with Gabor coefficients.

Note that it is very useful for numerical applications to use a simplified version of the
reconstruction formula:

s(t) =
1

kg

∫ +∞

0

Tλ
s (t, a) ελ(t)

da

a
(II − 7)

which expresses s(t) as a sum over frequencies, with logarithmic measure. This is equivalent
to take formally h = δ in eq. (II − 5), the admissibility condition reading:

0 < |kg| =

∣∣∣∣∣

∫ +∞

0

ĝ(ω)

ω
dω

∣∣∣∣∣ < ∞ (II − 8)

Assuming that 0 < cg := cg,g < ∞, one then has that Tλ
s ∈ L2(H, da db

a
). However,

the wavelet coefficients do not span the whole L2(H, da db
a

), but rather a subspace of it,
called a reproducing kernel space:

Hg =

{
F ∈ L2(H,

da db

a
);Kg,h.F = F

}
(II − 9)

with reproducing kernel given by:

Kg,h(b, a; b′, a′) =
1

cg,h

< h(b′,a′), g(b,a) > (II − 10)
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with respect to the measure da db
a

on the Poincaré half plane. It is worth noticing that
Kg,h is a projection operator, which is an orthogonal projector if and only if h = g. Notice
that while the kernel depends on both g and h, the reproducing kernel space only depends
on the analysing wavelet g. The reproducing kernel property can in particular be used
to recover wavelet coefficients by interpolation from a discretised version of the wavelet
transform.

To understand the information provided by the wavelet coefficients, a standard tech-
nique [Gr-KM-Mo] is to code them into two images, representing respectively

∣∣Tλ
s (b, a)

∣∣
and Ψλ(b, a) = Arg

[
Tλ

s (b, a)
]
. Still assuming that 0 < cg := cg,g < ∞, thanks to the

Plancherel equality:

||s||2 =
1

cg,g

∫ ∣∣Tλ
s (b, a)

∣∣2 da db

a
(II − 11)

∣∣Tλ
s (b, a)

∣∣2 is interpreted as an energy density in the Poincaré half plane, and is often refered
to as scalogram. We refer to [Gr-KM-Mo] for a description of the usual conventions and
interpretations of the images. We will mainly focus here on the study of the phase Ψλ(b, a)
of the wavelet transform Tλ.
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II-2: Gabor analysis:

Let us describe now the Gabor analysis of L2(R) (and not H2(R) as in the wavelet
case, since H2(R) is not stable by frequency translations), in a similar way than wavelet
analysis (note that Gabor [Ga] was only concerned with Gaussian analysing and recon-
structing functions; we use the term Gabor analysis for simplicity). Let g, h ∈ L2(R), and
consider the time and frequency shifted copies of them, denoted by:

g(b,ω)(t) = eiω(t−b)g(t − b) (II − 12)

and the same notation for h(b,ω). One then has the following resolution of the identity: To
each s ∈ L2(R), one associates the corresponding Gabor coefficients:

Gs(b, ω) =< s, g(b,ω) >L2 (II − 13)

from which one has the reconstruction formula, the integral converging strongly:

s =
1

2π < h, g >

∫ +∞

−∞

∫ +∞

−∞

G(b, ω) h(b,ω) dω db (II − 14)

which expresses s(t) as a decomposition over time and frequency shifted copies of a basic
function. g(t) (resp. h(t)) is called the analysing (resp. reconstructing) Gabor function,
and the g(b,ω) and h(b,ω) the Gabor functions. Note that contrary to the case of the dilation
parameter of wavelets, the frequency shift parameter of Gabor functions run over the whole
real axis.

As in the previous section, the Gabor coefficients do not span the whole L2(R2, db dω),
but rather some reproducing kernel subspace of it, also denoted by Hg and defined by eq.
(II − 9), the reproducing kernel being now given by:

Kg,h(b, ω; b′, ω′) =
1

2π < h, g >
< h(b′,ω′), g(b,ω) > (II − 15)

and still defining a projection operator, orthonormal if and only if h = g.
One usually represents the Gabor coefficients by two images, namely the modulus

and the argument of the coefficients. As in the wavelet case, a Plancherel equality allows
the interpretation of |G(b, ω)|2 as an energy density, usually called spectrogram, in the
time-frequency plane. The argument of G(b, ω) represents a complementary information
that we will study here.
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III: ASYMPTOTIC SIGNAL AND EXPONENTIAL MODEL:

Throughout sections III, IV and V, we will describe estimations techniques for wavelet
and Gabor coefficients in the asymptotic limit. More specifically, we will derive asymptotic
developments for such coefficients. As a convention, we will use the symbol x ≈ y to
specify that the expression x is approximated by the first order term y in its asymptotic
development.

Let us first briefly describe here the basic definitions and properties of asymptotic
signals.

III-1: The Canonical Representation of a Real Signal:

An arbitrary real signal s(t) can always be represented in terms of instantaneous
modulus and argument, in the form:

s(t) = A(t) cos (φ(t)) (III − 1)

Obviously, such a representation is far from being unique, in the sense that to a given
real signal s(t) one can associate an infinity of pairs (A,φ) such that eq. (III − 1) holds.
Several authors (see e.g. [Pi-Ma]) have noticed that among these pairs, it is convenient to
specify a particular one, called the canonical pair, defined as follows: consider the Hilbert
transform H, defined by:

H = −i F−1.ε.F (III − 2)

where F is the Fourier transform, and ε is defined by its action on functions, according to:

(ε.f) (ω) = Sgn(ω)f(ω) (III − 3)

For instance, if α ∈ R, one obviously has that:

[H. cos] (αt) = sin(αt) (III − 4)

By definition, the analytic signal Zs(t) associated with s(t) is obtained by a linear filtering
of s(t) cancelling its negative frequencies, which can be expressed as:

Zs(t) = [1 + iH] (t) (III − 5)

Zs is completely characterised by the pair (As, φs) by setting:

Zs(t) = As(t) exp(iφs(t)) (III − 6)

if one assumes that As is non-negative, and that φs takes its values in the interval [0, 2π[.
(As, φs) is called the canonical pair associated to s(t). Obviously,

Re(Zs) = s (III − 7)
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can be written as:
s(t) = As(t) cos(φs(t)) (III − 8)

which defines its canonical representation.
The canonical representation of s(t) allows the introduction of the instantaneous fre-

quency νs(t) of s(t), defined by:

νs(t) =
1

2π

dφs

dt
(III − 9)

Note that while the definition of the instantaneous frequency always makes sense math-
ematically, its physical significance can be doubtful in some particular situations, for in-
stance when s(t) is not oscillating enough, i.e. if φs varies slowly compared to As, or when
s(t) is the sum of two sine functions.

Several authors have studied the problem of characterizing the possible canonical pairs
(As, φs), in general by using spectral methods. Some sufficient conditions are derived in
[Pi-Ma].

III-2: Asymptotic Analytic Signal, and Exponential Model:

Let s ∈ L2(R) be a real finite energy signal, of the form (III−1), where A(t) ≥ 0 and
φ(t) ∈ [0, 2π[ for all t ∈ R. Assume moreover that s(t) is asymptotic, which essentially
means that (see [Co], [Di]): ∣∣∣∣

dφ

dt

∣∣∣∣ ≫
∣∣∣∣
1

A

dA

dt

∣∣∣∣ (III − 10)

and that the signal s(t) is locally monochromatic. An explicit form for the associated
analytic signal can be obtained by using the stationary phase method (see appendix). Set:

s±(t) =
1

2
A(t)e±iφ(t) (III − 11)

and evaluate the corresponding Fourier transforms ŝ±(ω). Denoting by t±(ω) the corre-
sponding stationary points of φ, defined by:

φ′(t±) = ± ω (III − 12)

then:

ŝ±(ω) ≈
√

π

2

A(t±)e±iφ(t±)

√
|φ′′(t±)|

e−iωt± eiδ± (III − 13)

where :
δ± =

π

4
Sgn [φ′′(t±)] (III − 14)

Consider the analytic signals:

Ẑ±(ω) = 2H(ω) ŝ±(ω) (III − 15)
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H being the Heaviside step function. Let Z(t) = Z+(t) + Z−(t), and:

Z+(t) =
1

2π

∫
Ẑ+(ω)eiωt dω

=
1√
2π

∫ ∞

0

A(t+) ei[φ(t+)+ω(t−t+)+δ+]

√
|φ′′(t+)|

dω (III − 16)

Using again the stationary phase method to evaluate the integral, the essential contribution
to Z+(t) is given by the stationary points ω+ of the argument of the integrand, such that:

∂t+
∂ω

[φ′(t+) − ω+] + t − t+ = 0 (III − 17)

i.e. the points ω ∈ R+ such that:
t+(ω) = t (III − 18)

The set of such points is non-empty only if φ′(t) > 0. Since moreover:

[
∂t+
∂ω

]
φ′′(t+) = 1 (III − 19)

eq. (III − 16) yields:
Z+(t) = H [φ′(t)] A(t)eiφ(t) (III − 20)

The same argument gives:

Z−(t) = H [−φ′(t)] A(t)eiφ(t) (III − 21)

which shows that:
Z(t) ≈ A(t)eiφ(t) (III − 22)

In the asymptotic limit, the analytic signal of A(t) cos(φ(t)) is then close to the ex-
ponential model A(t) exp(iφ(t)). This property will be used in the following, in particular
for numerical applications, where computations will be performed on real signals.
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IV: THE CASE OF ASYMPTOTIC ANALYSING FUNCTION:

We now turn to the description of the wavelet (resp. Gabor) coefficients in the asymp-
totic limit. Assuming that the signal and the wavelets (resp. Gabor functions) are all
asymptotic allows to get an approximate expression for the corresponding coefficients, by
means of the evaluation of the scalar products by the stationary phase method. As we will
see, this allows the specification of some particular sets of curves in the time-scale half-
plane (resp. the time-frequency plane), namely the ridge and the wavelet curves (resp.
the Gabor curves). The ridge has an interesting property: it describes the frequency
modulation law of the signal.

One is then led to a simple geometrical description of the transform (the so-called
factorisation property): essentially, the restriction of the transform to the ridge (the so-
called skeleton) reproduces the analytic signal of the analyzed signal, while the restriction
to a given wavelet curve (resp. Gabor curve) reproduces the corresponding wavelets (resp.
Gabor functions).

We first describe here the computation of the wavelet (resp. Gabor) coefficients in the
asymptotic limit, and introduce the notions of ridge and wavelet (resp. Gabor) curves; we
then derive simple formulas, allowing to build algorithms for the extraction of the ridge.

IV-1: Wavelet Analysis:

Let s ∈ L2(R) be an asymptotic locally monochromatic signal, and let Zs(t) be its
analytic signal. Set:

Zs(t) = As(t) exp (iφs(t)) (IV − 1)

Let now g ∈ H2(R) be an analytic analysing wavelet, one then has:

Tλ(b, a) =< s, ελ g(b,a) >=
1

2
< Zs, ελ g(b,a) > (IV − 2)

Notice that the analysing wavelet being assumed to be progressive, it automatically re-
moves in a smooth way the negative frequencies of s(t), and directly works with the analytic
signal Zs(t), as expressed by eq. (IV −2). The smoothness of such a filtering (consequence
of the smothness of ĝ) will imply a greater numerical precision than the one obtained by
direct techniques involving Hilbert transform. Assume now that the analysing wavelet g(t)
is itself asymptotic, and set:

g(t) = Ag(t) exp (iφg(t)) (IV − 3)

then all the dilated and translated wavelets g(b,a)(t) are asymptotic too (since they are of

constant shape), and Tλ(b, a) takes the form of a rapidly oscillating integral:

Tλ(b, a) =
1

2a

∫ +∞

−∞

As(t) Ag

(
t − b

a

)
ei[φs(t)−λt−φg( t−b

a )] dt (IV − 4)
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the essential contribution to which is provided by the stationary points (see appendix) of
the argument of the integrand, i.e. the points ts such that:

φ′

s(ts) = λ +
1

a
φ′

g

(
t − b

a

)
(IV − 5)

Note that any stationary point ts is a function ts(b, a) on the half plane H. Consider

(b, a) ∈ H, and let t
(1)
s , t

(2)
s ,... t

(N)
s be the associated stationary points, assumed to be in

a finite number. Then the first order approximation to Tλ(b, a) decomposes into the finite

sum of the contributions Tλ(t
(n)
s ) of these stationary points:

Tλ(b, a) ≈
n=N∑

n=1

Tλ(t(n)
s ) (IV − 6)

Set for simplicity:

Φ(b,a)(t) = φs(t) − λt − φg

(
t − b

a

)
(IV − 7)

If there exists an integral number k ≥ 1 such that

[
dkΦ(b,a)

dtk

]
(t(n)

s ) = 0 (IV − 8)

and [
dk+1Φ(b,a)

dtk+1

]
(t(n)

s ) 6= 0 (IV − 9)

then the stationary phase argument provides an explicit formula for the contribution of

the stationary point t
(n)
s :

Tλ(t(n)
s ) = Ck

Zs(t
(n)
s ) g

(
t
(n)
s −b

a

)
e−iλt(n)

s

Corrk(b, a)
(IV − 10)

where:

Corrk(b, a) = a

∣∣∣∣∣

[
dk+1Φ(b,a)

dtk+1

]
(t(n)

s )

∣∣∣∣∣

1
k+1

e
−i π

2(k+1)
Sgn

[
dk+1Φ(b,a)

dtk+1

]
(t(n)

s )
(IV − 11)

for some constant Ck. In particular, C1 =
√

π
2 and C2 = 1

2Γ
(

4
3

)
6

1
3 .

It is interesting to notice that such an expression involves the evaluation of the analytic
signal only at the stationary points. This property will be crucial in the following.

Using the same techniques, one can also get an explicit expression for the first correc-
tive term in the asymptotic development of Tλ(b, a), involving the first derivatives of the
amplitudes of the signal and the translated and dilated wavelets. This term is easily seen
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to vanish in the case k=1, which shows the strongness of the approximation. The next
corrective term (involving second derivatives of the amplitudes) is in general nonzero.

From now on, let us assume that to each point in the domain of study Ω ⊂ H is
associated a unique stationary point ts(b, a), such that moreover Φ′′

(b,a)(ts) 6= 0 (i.e.k = 1).
This assumption essentially means that the components of the considered composite signal
of asymptotic type do not interact, and that one can always restrict to an Ω domain in
which the wavelet coefficients of all but one component are negligible. Tλ(b, a) thus takes
the simple form:

Tλ(b, a) ≈
√

π

2

ei π
4 Sgn[Φ′′

(b,a)(ts)]
√∣∣∣Φ′′

(b,a)(ts)
∣∣∣

Zs(ts) e−iλts
1

a
g

(
ts − b

a

)
(IV − 12)

On such an expression, it clearly appears that some particular sets of points will play
an important role in the understanding of the wavelet transform. These sets of points
are basically the points (b, a) ∈ Ω for which ts(b, a) = b (ridge of the transform) or
ts(b, a) = Cst (wavelet curves).

The Ridge of the Transform:

The ridge is defined to be the set of points (b, a) ∈ Ω such that ts(b, a) = b. It
immediatly follows from the definition of stationary points that on the ridge:

a = ar(b) =
φ′

g(0)

φ′
s(b) − λ

(IV − 13)

so that the ridge is a curve R = {(b, a) ∈ Ω; a = ar(b)} ⊂ Ω in the domain Ω, from which
one easily recovers the frequency modulation law. Moreover, eq. (IV − 12) simplifies on
the ridge to:

Tλ(b, ar(b)) ≈
√

π

2

ei π
4 Sgn[Φ′′

(b,ar(b))(b)]
√

ar(b)2
∣∣∣Φ′′

(b,ar(b))(b)
∣∣∣
e−iλb g(0) Zs(b) (IV − 14)

The restriction of the wavelet transform of s(t) to the associated ridge gives, up to a
corrective function of b, the analytic signal Zs(t) of s(t). To evaluate this corrective
function, note that owing to eq. (IV − 13), for any (b, a) ∈ Ω:

Φ′′

(b,a)(t) = −
a′

r(t)φ
′
g(0)

ar(t)2
− 1

a2
φ′′

g

(
t − b

a

)
(IV − 15)

and then:

Φ(b,ar(b))(b) = − 1

ar(b)2
[
a′

r(b)φ
′

g(0) + φ′′

g (0)
]

(IV − 16)
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The correction function then depends on the analysing wavelet, and on the analysed signal
only through the associated ridge. Once the ridge is known, one is then able to recover
directly As(b) from the wavelet coefficients Tλ(b, a).

The restriction of the wavelet transform to its ridge is called the skeleton of the
transform. The knowledge of the ridge and the skeleton on Ω is sufficient to characterize
the transform on Ω. It is then natural to introduce the corresponding skeleton operator
FR

0 : L2(R) → L2(R), defined by:

[
FR

0 .s
]
(t) =

√
2

π

√
a2

∣∣∣Φ′′

(b,ar(b))(b)
∣∣∣

g(0)
eiλbe−i π

4 Sgn[Φ′′

(b,ar(b)(b)| Tλ(b, ar(b)) (IV − 17)

and whose action is to select the content of the signal localised around the ridge.
Remark: The phase shift ±π

4 is constant here, since we have assumed that for any
(b, a) ∈ Ω, Φ′′

(b,a)(ts) 6= 0, so that the sign of Φ′′

(b,a)(ts) does not change on Ω.

The wavelet curves:

Consider (b0, ar(b0)) ∈ Ω. The wavelet curve through (b0, ar(b0)) is defined to be the
connected component of (b0, ar(b0)) of the set of points (b, a) ∈ Ω such that ts(b, a) = b0.
Let (b, a) ∈ Ω be such a point; this implies that:

φ′

g

(
b0 − b

a

)
=

a

ar(b0)
φ′

g(0) (IV − 18)

The wavelet curves are then uniquely determined by the analysing wavelet. For instance, in
the case of fixed-frequency wavelets, φ′

g(0) = ω0, and the wavelet curve through (b0, ar(b0))
is the line a = ar(b0); this property is a characteristic property of the fixed-frequency
analysing wavelets.

Restricting the wavelet transform to a given wavelet curve yields:

Tλ(b, a) ≈
√

π

2

ei π
4 Sgn[Φ′′

(b,a)(b0)]
√

a2
∣∣∣Φ′′

(b,a)(b0)
∣∣∣
Zs(b0)e

−iλb0 g

(
b0 − b

a

)
(IV − 19)

so that the behaviour of the wavelet transform restricted to a given wavelet curve is gov-
erned by that of the corresponding dilated and translated wavelets (the dilation parameter
a being a function of the translation parameter b). Once more,

∣∣Tλ(b, a)
∣∣ is obtained from

g
(

b0−b
a

)
via a perturbation by the correction function

√
a2

∣∣∣Φ′′

(b,a)(b0)
∣∣∣.

It is worth noticing that one now has a nice geometrical picture of the wavelet trans-
form in the time-scale half plane: when restricted to the ridge, it is essentially deter-
mined by the analytic signal of the analysed signal, and when restricted to a given wavelet
curve, it is essentially determined by the wavelets, in both cases up to a corrective func-
tion, completely determined by the ridge and the analysing wavelet. This is the so-called
factorisation property of the transform, that will be frequently used in the sequel.
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Ridge extraction:

The next question is that of the extraction of the ridge from the Tλ(b, a) coefficients.
The most usual and natural information comes from the squared modulus of the coef-
ficients, interpreted as an energy density in the time-scale half-plane H. The analysing
wavelet being assumed to be maximum at t = 0, eq. (IV − 12) shows that

∣∣Tλ(b, a)
∣∣ is

locally maximum at b = ts, if one neglects the influence of the corrective function in the
denominator of eq. (IV − 14). Taking this corrective function into account shows that the
maximality of Tλ(b, a) at b = ts only holds in an approximate sense, which is exact if and
only if the ridge ar(b) is a linear function of b, i.e. for hyperbolically frequency modulated
signals, and φ′′

g (0) = 0.
The ridge of the transform can be extracted in a much more precise way from the

phase of the wavelet coefficients. Let:

Ψλ(b, a) = arg
[
Tλ(b, a)

]
(IV − 20)

Then by definition of ts(b, a):

∂Ψλ(b, a)

∂a
= − ts − b

a2
Φ(b,a)

′

(
ts − b

a

)
(IV − 21)

and then vanishes on the intersection of the lines b = Cst and the ridge. This gives an
easy way to extract numerically the ridge of the wavelet transform.

Moreover, the argument of Tλ(b, a), restricted to a given wavelet curve, has the fol-
lowing other property:

[
∂Ψλ(b, a)

∂b

]

ts(b,a)=b0

=
1

a
φ′

g

(
ts − b

a

)
+

[
∂a

∂b

]
ts − b

a2
φ′

g

(
ts − b

a

)
(IV − 22)

=
φ′

g(0)

a
on the intersection with the ridge (IV − 23)

Hence the instantaneous frequency of the restriction of the wavelet transform to a fixed
wavelet curve equals the central frequency of the dilated wavelet at the intersection with
the ridge. This provides another algorithm for the ridge extraction, which will be discussed
in section VI.

Remark: Note that in the case of a fixed-frequency analysing wavelet, such a property
does not allow the extraction of the ridge. Indeed, in that case, ts(b, a) = b0 is equivalent

to a = ar(b0), and one has that ∂Ψλ

∂b
(b, a) =

φ′
g(0)

a
everywhere. This in particular illustrates

the fact that the extraction algorithms described here are based on necessary conditions
rather than necessary and sufficient conditions, and that the ridge is a subset of the set of
points in Ω such that (V I − 23) holds, and not the whole set of such points.

IV-2: Gabor Analysis:
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We keep the same notations than in the section IV-1, and we will consider only the
points (b, ω) ∈ Ω ⊂ H such that g(b,ω) ∈ H2(R), or at least that the Fourier transform of
g(b,ω) is numerically negligible at negative frequencies. Under such an assumption, one has
that:

G(b, ω) =< s, g(b,ω) >=
1

2
< Zs, g(b,ω) > (IV − 25)

Assuming that all the g(b,ω) functions under consideration are asymptotic, the oscillating
integral defining G(b, ω):

G(b, ω) =

∫ +∞

−∞

As(t) Ag(t − b) ei[φs(t)−φg(t−b)−ω(t−b)] dt (IV − 26)

can be approximated by the stationary phase method: the essential contribution to eq.
(IV − 26) is provided by the stationary points of the phase of the integrand, i.e. by the
points ts(b, ω) such that:

φ′

s(ts) = φg(ts − b) + ω (IV − 27)

As in the previous case, we restrict to a region Ω ⊂ H such that to each (b, ω) ∈ Ω is
associated a unique stationary point ts(b, ω), which is a first order stationary point. One
then has the following approximation for the Gabor transform:

G(b, ω) ≈
√

π

2

ei π
4 Sgn[Φ′′

(b,ω)(ts)]
√∣∣∣Φ′′

(b,ω)(ts)
∣∣∣

Zs(ts)e
−iω(ts−b) g(ts − b) (IV − 28)

where one has set:

Φ(b,ω)(t) = φs(t) − φg(t − b) − ω(t − b) (IV − 29)

As in the case of the wavelet transform, one can introduce the notions of ridge and skeleton
of the transform, and that of Gabor curves.

The ridge of the transform:

The ridge is defined to be the set of points (b, ω) ∈ Ω such that ts(b, ω) = b. By
definition of the stationary points, one has that, on the ridge:

ω = ωr(b) = φ′

s(b) − φ′

g(0) (IV − 30)

so that the ridge gives a direct information on the instantaneous frequency modulation law
of the signal. Moreover, eq. (IV − 28) reduces to:

G(b, ωr(b)) ≈
√

π

2

ei π
4 Sgn[Φ′′

(b,ωr(b))(b)]
√∣∣∣Φ′′

(b,ωr(b))(b)
∣∣∣

g(0) Zs(b) (IV − 31)
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Note that:
Φ′′

(b,ωr(b))(b) = ω′

r(b) − φ′′

g (0) (IV − 32)

The correction function appearing in the denominator of eq. (IV − 31) is then completely
determined by the analysing function and the ridge of the transform, and the Gabor
analogue of the skeleton operator (see eq. (IV − 20)) can still be introduced.

The restriction of the transform to its ridge is called the skeleton of the Gabor trans-
form.

The Gabor curves:

Let (b0, ωr(b0)) ∈ Ω be a point on the ridge of the Gabor transform of s(t). The Gabor
curve through (b0, ωr(b0)) ∈ Ω is the connected component of (b0, ωr(b0)) ∈ Ω of the set of
points (b, ω) ∈ Ω such that ts(b, ω) = b0. Let (b, ω) ∈ Ω be such a point: this implies that:

φ′

g(b0 − b) = φ′

g(0) + ω(b0 − b) (IV − 33)

which means that such curves are completely determined by the analysing function. The
restriction of G(b, ω) to the Gabor curve associated with b0 reads:

G(b, ω) ≈
√

π

2

ei π
4 Sgn[Φ′′

(b,ω)(b0)]
√∣∣∣Φ′′

(b,ω)(b0)
∣∣∣

Zs(b0)e
−iω(b−b0)g(b0 − b) (IV − 34)

which shows that the behaviour of the Gabor coefficients restricted to a Gabor curve is
essentially governed by that of the Gabor function e−iω(b−b0)g(b0 − b).

Ridge extraction:

The ridge can be extracted from the G(b, ω) coefficients in an approximate way by
the study of the energy localisation in the time-frequency plane, i.e. by the determination
of the local maxima of the modulus |G(b, ω)|. But as in the case of wavelet analysis, the
study of:

Ψ(b, ω) = arg (G(b, ω)) (IV − 35)

allows a much more precise determination of the ridge. Indeed, a straightforward calcula-
tion yields: [

∂Ψ(b, ω)

∂ω

]

b=Cst

= −(ts − b) (IV − 36)

= 0 on the ridge (IV − 37)

which is the Gabor analogue of eq. (IV − 18). The ridge of the Gabor transform is then
easy to determine numerically. |G(b, ω)| is obtained from |g(b0 − b)| by a perturbation by√∣∣∣Φ′′

(b,ω)(b0)
∣∣∣, and arg G(b, ω) has the following property, when restricted to a fixed Gabor

curve: [
∂Ψ(b, ω)

∂b

]

ts(b,ω)=b0

= ω + φ′

g(b0 − b) −
[
∂ω

∂b

]
(b0 − b) (IV − 38)
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= ω + φ′

g(0) on the intersection with the ridge (IV − 39)

The right hand side is nothing but the proper frequency of the Gabor function g(b,ω)(t).
This gives another way of extracting the instantaneous frequency, which will be discussed
in the next chapter.
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V: NON-ASYMPTOTIC ANALYSING FUNCTION:

It must be noticed that the asymptotic assumption made on the analysing functions
in the last section is not very natural either in the wavelet or in the Gabor philosophy,
in the sense that the frequency localisation of these functions is enforced, while the time
localisation is destroyed. This has moreover a bad consequence on the numerical point of
view, in the sense that the computational time gets increased.

In the case where the analysing functions have a Gaussian amplitude, it is however
possible to slightly generalize the stationary phase calculus to non asymptotic wavelets (or
Gabor curves), and still asymptotic signals. The notions of ridge and wavelet and Gabor
curves can still be introduced, and have the same intuitive meaning. The only changes
concern the explicit expressions of the coefficients, and the ridge extraction algorithms.

V-1: Wavelet Analysis:

Consider an analytic analysing wavelet g ∈ H2(R), such that its amplitude Ag(t) is a
Gaussian function, which can be supposed without loss of generality to be normal. By a
slight modification of the stationary phase principle (see appendix), eq. (IV − 4) can now
be approximated by:

Tλ(b, a) ≈ As(ts)e
iΦ(b,a)(ts)

2a

∫ +∞

−∞

Ag

(
t − b

a

)
ei

(t−ts)2

2 Φ′′

(b,a)(ts) dt (V − 1)

which, up to a rotation in the complex plane, reduces to the computation of a Gaussian
integral. Here, ts = ts(b, a) is still defined by eq. (IV −5). A straightforward computation
then yields:

Tλ(b, a) =
∣∣Tλ(b, a)

∣∣ eiΨλ(b,a) (V − 2 − a)

∣∣Tλ(b, a)
∣∣ ≈

√
π

2

As(ts)e
−

1
2

(ts−b)2Φ′′

(b,a)
(ts)2

Φ′′

(b,a)
(ts)2+ 1

a4

[
1 + a4Φ′′

(b,a)(ts)
2
] 1

4

(V − 2 − b)

Ψλ(b, a) ≈ φs(ts) − λts − φg

(
ts − b

a

)
+

1

2

(ts − b)2Φ′′

(b,a)(ts)

1 + a4Φ′′

(b,a)(ts)
2

+
1

2
arctan

[
a2Φ′′

(b,a)(ts)
]

(V − 2 − c)
Contrary to the case studied in section IV, the first corrective term in the asymptotic
development, proportional to A′

s(ts) is not identically zero in Ω. This term reads:

Tλ
(1)(b, a) =

A′
s(ts)

2a
eiΦ(b,a)(ts)

∫ +∞

−∞

(t − ts)Ag

(
t − b

a

)
ei

(t−ts)2

2 Φ′′

(b,a)(ts) dt (V − 3)

and can be shown to equal:

Tλ
(1)(b, a) =

∣∣∣Tλ
(1)(b, a)

∣∣∣ eiΨλ
(1)(b,a) (V − 4 − a)
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∣∣∣Tλ
(1)(b, a)

∣∣∣ =

√
π

2

A′
s(ts)e

−
1
2

(ts−b)2Φ′′

(b,a)
(ts)2

Φ′′

(b,a)
(ts)2+ 1

a4

[
1 + a4Φ′′

(b,a)(ts)
2
] 3

4

|ts − b| (V − 4 − b)

Ψλ
(1)(b, a) = φs(ts) − λts − φg

(
ts − b

a

)
+

1

2

(ts − b)2Φ′′

(b,a)(ts)

1 + a4Φ′′

(b,a)(ts)
2

+
3

2
arctan

[
a2Φ′′

(b,a)(ts)
]

(V − 4 − c)
Note that Tλ

(1)(b, a) is proportional to |ts − b|, which is not the case of the second corrective

term Tλ
(2)(b, a) of the asymptotic development.

Ridge and skeleton:

Define the ridge of the transform to be the set of points (b, a) ∈ Ω such that ts(b, a) = b.
It immediately follows from the definition of stationary points that eq. (IV − 14) is still
valid, so that the knowledge of the ridge of the wavelet transform is enough to give a direct
access to the frequency modulation law.

The skeleton of the transform, i.e. the restriction of the wavelet transform to the
associated ridge has a slightly different form than that given by eq. (IV − 15):

Tλ(b, ar(b)) ≈
√

π

2

e
i
2 arctan[ar(b)2Φ′′

(b,ar(b))(b)]

[
1 + a4Φ′′

(b,a)(ts)
2
] 1

4

e−iλb−iφg(0)Zs(b) |ts − b| (V − 5)

while from eq. (V − 4 − b):

Tλ
(1)(b, ar(b)) = 0 (V − 6)

Finally, eq. (IV −16) still holds. Thus, the skeleton of the wavelet transform of the asymp-
totic signal s ∈ L2(R) gives, up to a corrective function which is completely determined
by the analysing wavelet and the ridge itself,the analytic signal Zs(t) of s(t). Eq. (V − 6)
also indicates that the first corrective term to this approximation vanishes identically.

Wavelet curves and ridge extraction:

The extraction of the ridge of the transform from the zeroes of
[

∂Ψλ

∂a

]

b=b0
is no longer

valid. Indeed, it is not difficult to check that
[

∂Ψλ

∂a

]

b=b0
involves a (in general nonzero)

term proportional to
[

∂ts

∂a

]
b=b0

.

Consider now the wavelet curves, as defined in section IV-1, i.e. essentially as the sets
of points (b, a) ∈ Ω with constant stationary point. The restriction of the wavelet transform
to such a curve is essentially governed by the corresponding translated and dilated wavelets
(its expression is obtained by setting ts = b0 in eq. (V − 4), for some fixed b0. Note that
the phase of Tλ(b, a) is now perturbed by the contribution of the modulus of the wavelet.
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Nevertheless, it can be a useful quantity for the extraction of the ridge, since on a fixed
wavelet curve:

[
dΨλ

db

]

ts(b,a)=b0

=
1

a

[
φ′

g(0) +
1

2

φ′′′
g (0)

1 +
[
φg(0)a′

r(b) + φ′′
g (0)

]2

]
(V − 7)

on the intersection with the ridge, so that for any analysing wavelet such that its central
frequency is an inflection point (i.e. φ′′′

g (0) = 0), eq. (IV − 21) is still valid, providing an
algorithm for the extraction of the ridge.

V-2: Gabor Analysis:

Assume that the window is a function of Gaussian type, once more assumed to be
normal. The approximation:

G(b, ω) ≈ 1

2
As(ts)e

iΦ(b,ω)(ts)

∫ +∞

−∞

e−
1
2 (t−b)2ei(t−ts)2Φ′′

(b,ω)(ts) dt (V − 8)

leads to:
G(b, ω) = |G(b, ω)| eiΨ(b,ω) (V − 9 − a)

|G(b, ω)| ≈
√

π

2

As(ts)e
−

1
2

(ts−b)2Φ(b,ω)′′(ts)2

1+Φ′′

(b,ω)
(ts)2

[
1 + Φ′′

(b,ω)(ts)
2
] 1

4

(V − 9 − b)

Ψ(b, ω) ≈ Φ(b,ω)(ts) +
1

2

(ts − b)2Φ′′

(b,ω)(ts)

1 + Φ′′

(b,ω)(ts)
2

+
1

2
arctan

[
Φ′′

(b,ω)(ts)
2
]

(V − 9 − c)

Moreover, one easily checks that, as in the wavelet case, the first corrective term in the
asymptotic development is proportional to |ts − b|.

Ridge and skeleton:

Still defining the ridge of the Gabor transform by ts(b, ω) = b, eq. (IV − 30) remains
valid. The skeleton of the transform is now given by:

G(b, ωr(b)) ≈
√

π

2

e
i
2 arctan Φ′′

(b,ωr(b))(b)

[
1 + Φ′′

(b,ωr(b))(b)
2
] 1

4

g(0) Zs(b) (V − 10)

and reproduces the analytic signal Zs(t), up to the corrective function:

√
π

2

e
i
2 arctan Φ′′

(b,ωr(b))(b)

[
1 + Φ′′

(b,ωr(b))(b)
2
] 1

4

g(0) (V − 11)
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which is completely determined by the ridge.

Gabor curves and ridge extraction:

Defining the Gabor curves by eq. (IV − 36), it is not difficult to see that on a given
Gabor curve, eq. (IV − 39) becomes:

[
dΨ

db

]

ts(b,ω)=b0

= ω + φ′

g(0) +
1

2

φ′′′
g (0)

1 +
[
ω′

r(b) + φ′′
g (0)

]2 (V − 12)

on the intersection with the ridge, leading to a simple algorithm for the extraction of the
ridge in cases where φ′′′

g (0) = 0.
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VI: RIDGE AND SKELETON EXTRACTIONS:

We now turn to numerical applications of the asymptotic formulas described in the pre-
vious sections. As stressed in the introduction, we are interested in the study of asymptotic
signals, but also of composite signals of asymptotic type, defined as linear combinations
of asymptotic signals. Clearly, such signals need not be asymptotic themselves, because of
interference phenomena. We will consider in the same footing wavelet and Gabor analysis,
which have been shown to have the same behaviour. In the wavelet case, we will only de-
scribe the λ = 0 case for simplicity, keeping the possibility of introducing the λ parameter
to enforce the asymptotic character of the signal.

Throughout this section, we will only use for numerical computations the so-called
Morlet wavelet:

g(t) = e−
t2

2 ei ω0t (V I − 1)

Although the Morlet wavelet is not rigorously admissible, ω0 can be chosen sufficiently large
so that ĝ(0) is numerically negligible. Under such an assumption, g(t) can be considered
as a numerically progressive wavelet, so that eqs. (IV − 2) and (IV − 25) hold. Notice
that in that case, the wavelet curves are nothing but the a = Cst curves, and the Gabor
curves are the ω = Cst curves, which makes the numerical implementation simpler.

VI-1: An algorithm for ridge extraction: non-interacting ridges:

Let us first consider the case of non-interacting components, that is the case where
the asymptotic components of the signal live in different regions of the time-frequency
half-plane. Because of the good localisation properties of both g and ĝ, we are then led to
the case of asymptotic signals. We will say that in such a case, the individual ridges are
non-interacting. Our aim is to extract numerically an individual ridge from the (wavelet
or Gabor) transform, but also to avoid computing the whole transform by restraining the
computation to a neighborhood of the ridge. Let us first give a simple example:

An intuitive view of the problem:

Let us look at the simplest case of a monochromatic signal: let

s(t) = exp(iωst) (V I − 2)

Its wavelet transform with respect to the progressive analysing wavelet g reads:

T (b, a) = |T (b, a)| eiΨ(b,a) = ¯̂g(aωs) exp(iωsb) (V I − 3)

Clearly, the ridge of the wavelet transform of such a signal is given by:

ar =
ω0

ωs

(V I − 4)
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Moreover, ar can obviously be reached iteratively as follows: let a0 be a primary value of
the dilation parameter. Compute:

ω1 =
∂Ψ(b, a0)

∂b
(V I − 5)

and set:
a1 =

ω0

ω1
(V I − 6)

Clearly a1 = ar, and:
ω0

∂Ψ(b,ar)
∂b

= ar (V I − 7)

The ridge is then obtained as a fixed point of an iterative scheme in such a particular case.

The algorithm:

Let us now generalise the approach described above, focusing on the algorithmic as-
pect. Consider the case of discrete sequences: let Te = 1

νe
be the sampling period, consider

the wavelet transform Ta(k) = T (kTe, a) of sk = s(kTe) for a fixed value of the dilation pa-
rameter, and Ψa(k) its argument. Denote by Db an estimator of a discrete differentiation
with respect to b. Then, the following algorithm allows the construction of a trajectory
ar(kTe) in the Ω domain such that:

Db.Ψa(k) =
ω0

a
(V I − 8)

The algorithm can be described in a similar way than above: let a0(t0) be an initial
estimate of ar(t0). Then the estimates for ar(t0 + kTe) are given by:

ai+1(t0 + kTe) =
ω0

Db.Ψai
(t0 + kTe)

(V I − 9)

a0(t0 + (k + 1)Te) = ac(t0 + kTe) (V I − 10)

where ac is the ”converged solution”, i.e. the value ac = aj of the dilation parameter for
which one has, for some fixed positive value of the required precision ǫ (arbitrarily small
fixed positive number): ∣∣∣∣

aj+1 − aj

aj

∣∣∣∣ < ǫ (V I − 11)

In practice, such an algorithm converges very rapidly, two or three iterations being neces-
sary for each signal sample. This in particular means that one does not have to compute
the whole wavelet transform to get an estimate of its ridge.

Numerical results:

Since the signals studied here are assumed to have non-interacting ridges, we first
give the example of an academic signal s(t) = exp(iωst + iαs ln(1 + βt)), hyperbolically
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modulated in frequency (it is clearly asymptotic since its amplitude does not vary). Fig.
VI-1-a represents the phase and the modulus of Ts, and the ridge a = ar(b) is represented
on the phase plot. Fig. VI-1-b the frequency and amplitude modulation laws of such a
signal, computed via wavelet transform. The results are in excellent agreement with the
input data.

Numerical tests can also be performed on real signals, like for instance a sonar signal
emitted by a bat. In Fig. VI-2-a and VI-2-b, its frequency modulation law is seen to be
close to an hyperbolic one. Notice the existence in Fig. VI-2-a of an auxiliary ridge at
higher frequencies, which very presumably results from an echo phenomenon during the
experiment. It is quite interesting to compare the results obtained with wavelets to those
obtained with standard Hilbert transform-based techniques, in the case where the previous
signal is embedded in noise (here a uniform computer noise, with amplitude comparable to
that of the signal itself). In that case, the standard method (Fig. VI-3-a) fails to extract
correctly the frequency and amplitude modulation laws, because they use the whole time-
frequency content of the input signal, while the good localisation properties of both g and ĝ
allow to take into account only the subset of the time-frequency plane where the asymptotic
signal is important, and thus yield much more precise results (Fig. VI-3-b), in particular for
the instantaneous frequency. Moreover, wavelet and Gabor transform techniques also allow
the separation of the auxiliary component of the signal, which is completely impossible with
the standard techniques. Notice also that the Hilbert transform method is able to yield a
precise result in that case only because the second component of the signal is much smaller
in amplitude than the first one.

VI-2: Interacting ridges:

Consider now the cases where the input signal s(t) is the sum of say two asymptotic
signals, and that the corresponding wavelet (or Gabor) transforms are non-negligible in
intersecting domains Ω1 and Ω2. This is what happens for instance in Fig. VI-4, which
represents the wavelet transform of two linearly modulated cosine functions, with the same
modulation rate α. Interference phenomena cause here a strong perturbation of the phase
of the wavelet transform, so that the ridge extraction algorithm provided by eq. (IV −21)
is no longer exact. Indeed, in Fig. VI-4, small ”bubbles” regularly appear on the ridge
plot (we will understand the origin of such bubbles a little later). In some particular cases,
the interferences can be made negligible by a suitable choice of the analysing wavelet.
For instance, with the same signal than the one studied in fig. VI-4, taking a Morlet
wavelet with a much greater value of ω0 will yield a family of wavelets with a much better
localisation in the Fourier space, so that they will be able to separate the two components.
This is the case in Fig. VI-5, where the proper frequency of the Morlet wavelet has been
chosen large enough to avoid interferences between the two components, and allows their
separation and their extraction. Unfortunately, such a simple trick does not always work,
in particular in the case of complex signals. For instance, Fig. VI-6-a and VI-6-b represent
the phase of the Gabor transform of a trumpet sound and a female voice respectively, and
the associated ridges. The ridge structure is in such cases so complex that it cannot be
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analysed by the methods described here, even with a particular choice of the analysing
functions. This is a strong limitation of the asymptotic approximations-based algorithms
described in this paper.

In some very simple and particular example, the existence of the bubbles can be iden-
tified as coming from interactions between two or more modulated component. Consider
then a signal made of two spectral lines with equal amplitudes (set to 1) and pulsations ω1

and ω2: s(t) = exp(iω1t) + exp(iω2t), to be analysed with Gabor analysis, with analysing

function g(t) = exp(− t2

2σ
) exp(iωt) (fixed frequency analysing function). A straightforward

computation shows that b-derivative of the phase of G(b, ω) is given by:

∂Ψ(b, ω)

∂b
= ω∗ + δ tanh(s)

1 + tan2(bδ)

1 + tan2(bδ) tanh2(s)
(V I − 12)

where:

ω∗ =
ω2 + ω1

2
(V I − 13)

δ =
ω2 − ω1

2
(V I − 14)

and
s = σ2(ω − ω∗)δ (V I − 15)

The ridge equation is then a fixed point equation on s:

s = σ2δ2 tanh(s)
1 + tan2(bδ)

1 + tan2(bδ) tanh2(s)
(V I − 16)

Depending on the values of b and of the parameters, the number of solutions of such a
fixed point equation determines the existence of bubbles. For large values of σδ, i.e. for
non-interacting ridges, the fixed points are close to ω1 and ω2. Otherwise, consider the
case of small values of σδ; then whenever tan2(bδ) is large enough, the fixed point equation
has three solutions (s = 0 and two symmetric ones), while for small values of tan2(bδ),
only s = 0 is possible, so that a bubble may be formed. This is illustrated in Fig. VI-7.
For real signals, the bubble structure is in general more complex, as illustrated in Fig.
VI-8-a and VI-8-b, showing the ridges of the Gabor transform of a clarinet sound (at
different times), containing three frequency modulated components. In that example, the
interaction between the different ridges increases with time, and bubbles appear.

VI-3: Spectral lines estimation:

We now restrict our interest to special kinds of signals, that is to asymptotic signals
that are sums of spectral lines:

s(t) =
∑

sli(t) (V I − 17)

where a spectral line is of the form:

sli(t) = Ai(t) exp [iωit + iδi] (V I − 18)
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Such signals are quite interesting for instance from the acoustical point of view, since they
allow to describe many vibrating systems. We will discuss here a method of estimation of
the frequencies ωi and the amplitudes Ai(t), under the assumptions that all the Ai(t) are
analytic and vary slowly in the domain of study.

The case of one spectral line:

Consider first the case of a monochromatic signal of constant amplitude A and pul-
sation ωs. Then clearly T (b, a) = A exp(iωsb)ĝ(aωs). Assuming that ĝ is real, which is

indeed the case for the Morlet wavelet, clearly ∂Ψ(b,a)
∂b

= ωs.
Assuming now that As(t) is an analytic function of t:

sl(t) = As(t) exp(iωst) (V I − 19)

and since the analysing wavelet is assumed to be maximal at t = 0, consider the following
asymptotic development of Tsl(b, a):

Tsl(b, a) = As(b)e
iωsb

[
¯̂g(aωs) +

∞∑

k=1

(−ia)k

k!

dk¯̂g

dωk
(aωs)

dkAs(b)

dbk

]
(V I − 20)

Then, since ĝ′(ω0) = 0, setting:

as =
ω0

ωs

(V I − 21)

one has that:
Tsl(b, as) ≈ As(b)e

iωsb (V I − 22)

up to a second order error.
Remark: Notice that such a simple calculus is not the consequence of the stationary

phase estimations described in sections IV and V, which in such a particular case fail to
yield approximate expressions for the wavelet transform (since we use the Morlet wavelet,
the stationary points of the argument of the integrand are infinite order stationary points).
Nevertheless, the philosophy of the technique is the same.

One can then use the same technique than the one used for ridge extraction to deter-
mine the value of ωs: compute the wavelet transform of sl(t) for a fixed value a0 of the
dilation parameter, and the derivative of its phase with respect to the translation param-
eter b: the resulting frequency ω1 will yield a corresponding value a1 = ω0

ω1
; then compute

T (b, a1) and iterate the algorithm. The fixed point of the iteration will yield an estimate
for ωs, the error being of second order in the derivatives of As.

The case of two spectral lines:

Assume now that s(t) is the sum of two spectral lines, and that the corresponding
amplitudes are regular and slowly varying enough so that the preceding approximations
are still valid. Clearly, if the two frequencies are sufficiently far away from each other,
the fast decay of ĝ will allow to treat them independently, and to separate them. If not,
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one still can choose a sufficiently large ω0 to enforce the resolution of the wavelets in the
Fourier space; but as stressed in section VI-2, such a trick is not so convenient for numerical
computations, since it involves convolutions of the signal by wavelets with a large support.
Moreover, increasing the central frequency of the analysing wavelet increase in the same
time the values of the derivatives of ĝ appearing in eq. (V I − 20), so that the asymptotic
assumptions are no longer valid. It is actually possible to refine the method, by cancelling
the interferences between the wavelet transforms of the two components. Consider for
simplicity the case where the amplitudes of the two components are constant:

s(t) = A1 cos(ω1t) + A2 cos(ω2t + δ2) (V I − 23)

Then:
T (b, a) = A1

¯̂g(aω1)e
iω1b

[
1 + C(a)ei(ω2−ω1)b+iδ2

]
(V I − 24)

where

C(a) =
A2

¯̂g(aω2)

A1
¯̂g(aω1)

(V I − 25)

Let ε <
∣∣∣ 2π
ω2−ω1

∣∣∣ be a non-negative real number, and let:

T = n

∣∣∣∣
2π

ω2 − ω1

∣∣∣∣ + ε (V I − 26)

for some positive integral number n. Introduce:

Ωa =
1

T

∫ b0+T

b0

∂Ψ(b, a)

∂b
db (V I − 27)

A straightforward computation shows that if C(a) < 1, Ωa = ω1 + O( ε
n
), and if C(a) > 1,

then Ωa = ω2 + O( ε
n
). Obviously, the value of C(a) depends only on the value of the

dilation parameter one started with. Starting from a0, and setting a1 = ω0

Ωa
, a simple

analysis (see e.g. [Se1]) shows that Ωa1 is a fixed point of Ω. One then has an iterative
method to estimate the frequencies of the spectral lines. Notice that in that case, the
error is proportional to ε

n
, and that the signal being assumed asymptotic, n can be made

large enough to allow to neglect the error. A more detailed analysis of the convergence
properties of the algorithm in the case of two spectral lines can be found in [Gu].

The general algorithm:

The spectral lines detection algorithm is the straightforward generalisation of the
above discussion. Let s(t) be the input signal, containing a certain number of spectral
lines ω1,...ωN . Let a0 be a starting dilation parameter, and T a (large) real number. Set:

ai+1 =
ω0

Ωai

(V I − 28)
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Then the {ai} sequence converges numerically very rapidly to a fixed point a∞, such that:

a∞ ≈ ω0

ωk

(V I − 29)

for some k = 1, ...N . Moreover, different starting values of the dilation parameter a0 will
yield different spectral lines.

It must also be remarked that once a spectral line has been detected, it can be ex-
tracted by means of the factorisation property: indeed, consider for simplicity the case of
two spectral lines. Then:

1
¯̂g(ω0)

T (b,
ω0

ω1
) ≈ A1(b)e

iω1b + K(b)eiω2b (V I − 30)

where:

K(b) = A2(b)
¯̂g(ω0ω2

ω1
)

¯̂g(ω0)
< A2(b) (V I − 31)

so that the relative amplitude of the second component has decreased. One can iterate
such a procedure by considering the left hand side of eq. (V I − 30) as a new input signal,
and then neglect the second component after a certain number of iterations. In such a
case, the first component is completely characterised, and can eventually be removed from
the s(t) signal. Examples of such spectral lines substractions will be shown in the next
section.

Separation of the contribution of each spectral line:

In the case of the two frequencies signal, we saw that it is possible to exactly de-
termine the values of the frequencies. Unfortunately, the modulus of the restriction of
the wavelet transform to the values of the dilation parameter corresponding to those fre-
quencies are oscillating functions. Nevertheless, for a fixed number of spectral lines of
frequencies ωn, n = 1, ..N , it is possible to ’disentangle’ the components and then deter-
mine the amplitude modulation law of each component independently, without changing
the time and frequency supports of the wavelets. For this purpose, one may assume that
N and the ωn have previously been determined (this is possible to do thanks to the spec-
tral lines estimation algorithm and the factorisation property described before). Linear
transformations on the restrictions of the wavelet transform to these values of the dilation
parameter lead to a linear system, whose solution yields the amplitude modulation law of
all spectral lines (or more precisely the first order term in their asymptotic development).

Numerical results:

The first application of wavelet based spectral lines estimations was an application to
NMR spectroscopy, where a spectral line corresponds to an excitation degree of freedom of a
molecule. One then has to determine exactly the value of the frequency each spectral lines,
and to separate the spectral lines of the studied molecules from those of the surrounding
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medium. This is what is exhibited in figs. VI-9. Fig. VI-9-a represents the Fourier
spectrum of the original NMR signal, where the most important spectral line corresponds
to the sorrounding medium, and where one is interested in the extraction and separation
of the other ones, which are negligible in amplitude. Fig. VI-9-b represents the Fourier
spectrum of the same signal, after the removal of the most important spectral line. Spectral
lines estimations are also useful for noise filtering. Fig. VI-10-a represents the Fourier
spectrum of a sum of spectral lines imbedded in noise, and fig. VI-10-b shows the sum of
the extracted spectral lines. Let us finally show an example where the algorithms are used
for modelisation in the aim of resynthesis. Figs. VI-11 show the extraction of 3 harmonics
of the 16 main harmonics of the syllabe ′la′. The resynthesis is obtained by summing up
all the harmonics [Gu].

29



VII: APPLICATIONS TO MATCHED FILTERING:

As stressed in section II, the computation of the wavelet (resp. Gabor) coefficients
T (b, a) (resp. G(b, ω)) of s(t) can be thought of as band-pass filtering of the signal, which
localize it into cells (in the time-frequency plane) of constant relative bandwidth ∆ν

ν
(resp.

constant absolute bandwidth ∆ν). It is then natural to combine such filters to build by
hand other filters, adapted to special kinds of signals. This is the purpose of matched
filtering, the matched filter being defined as the linear filter which optimizes the signal to
noise ratio of the output (see e.g. [Pap], [Bl]). Notice that in such an approach, it is also
natural to use the simplified reconstruction formula (II − 7) to recover the signal as the
sum over all the filtered components.

We consider here the case of asymptotic locally monochromatic signals (for which
approximate expressions for the wavelet and Gabor transforms are available), and we
restrict to the special case of wavelet analysis; analogous algorithms can be derived in the
framework of Gabor analysis.

We will describe two algorithms, called the ridge coincidence algorithm and the ridge
rectification algorithm respectively, whose purpose is detection and time-location of a-priori
well known asymptotic locally monochromatic components s(t) in a signal, imbedded in
an input signal s̃(t). These two algorithms model filters close to the matched filter, in
the sense that the output signal exhibits a sharp peak at the estimated date, like the
autocorrelation function of s(t).

Both algorithms basically follow the same philosophy. They first use the wavelets
to localise the signal into time-frequency cells of constant relative bandwidth, and the
contributions of such cells are summed in different ways. Finally, the same operations are
performed with time-shifted copies of the cells. The output signal is in both cases different
than the autocorrelation function of s(t), but basically has the same characteristics.

Let us stress that one can build in the same way many slightly different versions of
such algorithms; our goal in this section is not to present algorithms in a final form, but
rather to illustrate how wavelet analysis can be used to get approximations of the matched
filter. Let us also point out the simple geometrical interpretation of these algorithms in
the time-frequency half-plane.

VII-1: The Ridge Coincidence Algorithm:

Let s ∈ L2(R) be an asymptotic locally monochromatic signal of the form given by
eq. (III − 8), and let g ∈ H2(R) be an analytic analysing wavelet, written in the form
given by eq. (IV − 3). Denote by:

R = {(b, a) ∈ Ω; a = ar(b)} (V II − 1)

the ridge of the wavelet transform T (b, a) of s(t). It is convenient to introduce here the
τ -shifted skeleton operator FR

τ : L2(R) → L2(R): if s̃ ∈ L2(R), and Ts̃ is its wavelet
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transform:

[
FR

τ .s̃
]
(t) =

√
2

π

√
ar(t)2

∣∣∣Φ′′

(t,ar(t))(t)
∣∣∣

g(0)
e−i π

4 Sgn[Φ′′

(t,ar(t))(t)]Ts̃(t + τ, ar(t)) (V II − 2)

which is the τ -shifted analogue of the skeleton operator introduced in eq. (IV − 17).
At τ = 0, FR

τ associates with s̃ its wavelet transform restricted to the R ridge, and
corrected by a (local) normalisation function and phase shift, needed to compensate the
terms introduced by the stationary phase evaluation of the integrals. For τ 6= 0, the wavelet
transform is now restricted to a τ -shifted copy of the R ridge:

Rτ = {(b, a) ∈ Ω; a = ar(b − τ)} (V II − 3)

Clearly, when s̃(t) = s(t − τ0), Rτ coincides with the ridge of s̃, so that both functions:

SC(τ) =< FR

τ .s̃, Zs > (V II − 4)

SE(τ) = ||FR

τ .s̃||2 (V II − 5)

are maximal at τ = τ0 (to see this, just take for FR
τ .s̃ its expression provided by the

stationary phase argument in section IV, and evaluate the scalar products). SC is called
the skeleton correlation function, and SE is the skeleton energy function. They are to be
compared with the autocorrelation function C, output of the matched receiver:

C(τ) =

∫
Zs(t)Zs(t − τ)dt (V II − 6)

Consider now s̃(t) of the form:

s̃(t) =
N∑

i=1

Ais(t − τi) + r(t) (V II − 7)

for some real numbers Ai and τi, and some deterministic or random r(t). s̃(t) contains
N shifted copies of s(t), and the corresponding ridge is a multicomponent ridge, which
contains in particular N copies of the ridge of s(t). Assume moreover that the τi parameters
are large enough to ensure that these components of the ridge are non-interacting, in
the sense defined in section VI. Then SC(τ) is still locally maximal (more precisely it
exhibits sharp peaks) at τ = τi, i = 1, ..N , at least as soon as the wavelet coefficients
Tr(b + τ, ar(b)) are small compared with all the AiTs(b, ar(b)). This in a first step allows
the determination of the time delay parameters τi, and in a second step the determination
of the Ai parameters, by using the factorisation property described in section VI. In the
opposite case, additional local maxima appear; one says that the false alarm probability
becomes more important.

Note that the local maxima of SC(τ) correspond to the cases where the ridges of s̃(t)
coincide with the theoretical ridge of s(t). This explains the name given to the algorithm.
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Numerical results:

As an example, consider an hyperbolically frequency modulated signal, starting at
τ0 = 0. Figs. VII-1-a to VII-1-c represent respectively the C(τ), SE(τ) and SC(τ) func-
tions for such a signal. Notice that SC(τ) is sharply peaked at τ = 0. In the case of
a noisy signal, up to some critical value of the signal to noise ratio, time estimation via
the skeleton correlation is still possible, as exhibited in Figs. VII-2-a to VII-2-c (here the
asymptotic signal is the same than previously, and the noise is a uniform random signal,
whose amplitude equals 10 times the maximal amplitude s(t)). The performances are then
comparable to those of the matched filter.

VII-2: The Ridge Rectification Algorithm:

We now describe another algorithm dedicated to matched filtering. The main idea of
this algorithm is to transform a signal with a given ridge into another signal, with a ridge
as close as possible to a vertical ridge:

Rb0 = {(b, a) ∈ Ω; b = b0} (V II − 8)

for some fixed b0. Then, use the simplified reconstruction formula to construct the output
of the algorithm from the modified wavelet coefficients. We describe here the generic
structure of the algorithm in the particular case of hyperbolic frequency modulation laws,
for which it is known that representations associated with the affine group are optimal in
terms of energy localisation in the time-scale plane (see e.g. [Be-Be]).

The ridge rectification algorithm goes as follows:
In a first step, pick a fixed number of dilation parameters ai, i = 1, ..N , chosen in such

a way that the corresponding relative bandwidth

∆a

a
= 2

ai − ai−1

ai + ai−1
(V II − 9)

is constant. To these dilation parameters are then associated the proper frequencies of the
corresponding dilated wavelets:

νi =
φ′

g(0)

2πai

(V II − 10)

and then the time delays ti such that:

νi =
1

2π
φ′

s(ti) (V II − 11)

(see fig. VII-3-a). Fix a reference time T , and set:

θi = T − ti (V II − 12)

In a second step, compute the wavelet transform of the input signal for these fixed
values of the dilation parameter, and time-translate the i-voice by a time-delay equal to
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θi. One then gets modified wavelet coefficients, which no longer satisfy the reproducing
kernel equation. This in particular means that one does not have any control a priori on
the signal reconstructed from these modified coefficients. Nevertheless, a ridge extraction
gives a vertical ridge like in eq. (V II − 9). Another modification is then necessary.

In a third step, to achieve coherence between all the voices, the output of each voice
is multiplied by a corrective function:

Corrk(t) =

√
2

π

√
a2

kΦ′′

(t−θk,ak)(ts)

g(0)
(V II − 13)

and a phase shift:
δφk = −2πφs(ts(t − θk, ak)) + Cst (V II − 14)

which are completely determined by the a-priori known ridge.
Finally, the modified outputs of all voices are summed up in a coherent way:

W (t) =

N∑

i=1

Corrk(t)e−δφkTs(t − θk, ak) (V II − 15)

or in a partially coherent way:

E(t) =
N∑

i=1

|Corrk(t)Ts(t − θk, ak)|2 (V II − 16)

The generic structure of the algorithm is summarized in figs. VII-3-a and VII-3-b..
It is then not difficult to show that if the receiver is matched to the frequency mod-

ulation law of the incoming signal, i.e. if the incoming signal is hyperbolically frequency
modulated, both W (t) and E(t) are maximal at t = T . If the input signal is now of the
form given by eq. (V II−7), the output signal will exhibit sharp peaks at all the t = T +τi,
yielding precise estimates for the τi’s.

Implementation and numerical results:

The main point in the practical implementation of the algorithm is the choice of the
analysing wavelet, and the determination of the number of different dilation parameters to
be taken into account. For a fixed analysing wavelet, the number of voices is determined
by the constant relative bandwidth constraint, and by the specification of the constant
overlap of the corresponding dilated wavelets in the Fourier space: the Fourier transforms
of the dilated wavelets intersect when they take a fixed value, set to ǫ times the maximal
value ĝ(ω0), for some fixed ǫ < 1.

Let us consider the simple example of the hyperbolically frequency modulated signal,
with instantaneous frequency:

ν(t) =
νs

1 + αt
t ∈ [0, T ] (V II − 17)
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and set νe = ν(T ). The values of the considered dilation parameters ak are then completely
determined (see [E-To] for more details):

ak =
ν0

νs

(
1 + 1

2Qǫ

)k+1

(
1 − 1

2Qǫ

)k−1
(V II − 18)

Here Qǫ = ω0

√
−2 ln(ǫ) is a surtension factor.

Figs. VII-4-a and VII-4-b represent respectively E(t) and |W (t)|2 in the case N = 12
and ω0 = 15, exhibiting sharp maxima at t = T . In the presence of a Gaussian noise (Figs.
VII-5-a and VII-5-b), the signal to noise ratio at the output W (t) enables an accurate
time estimation, and may be considered as an unbiased time estimator. Various attempts
[E-To] indicate that the improvement of signal to noise ratio due to the coherent receiver
is near BT , B being the bandwidth of the received signal.

Remark: ridge rectification and bat’s sonar receiver:

Such results may appear as common ones for signal processing. Nevertheless, the
model described here is in a strong connexion with biological data about bats. Bats use an
ultrasonic sonar system to detect obstacles during cruise, to locate and pursuit their preys
[Si]. Among various species of bats, Vespertillionids emit wideband signals, the amplitude
and the frequency of which are modulated in such a way that they can be considered as
asymptotic (see fig. VI-2-a). The acoustic receiver of bats is built up with nervous cells,
the response of which is similar to that of tuned circuits. The relative bandwidth of these
cells is constant, like that of wavelets. These cells may then be represented as a ”wavelet
receiver”, and wavelet representation is then well suited to model such a receiver. Recent
results by J. Simmons [Si] have moreover pointed out two main facts, which enforce the
connexion with wavelet representation:

-Auditory representations of echoes is displayed by nervous cells as a spectrogram (or
scalogram) due to the Corti’s cells acting as constant relative bandwidth filters.

-The outputs of such tuned cells are the processed parts of the incoming echoe rela-
tive to the relative bandwidth of the filters. These outputs (nervous response) are called
neurograms, and appear to be deeply related to scalograms.
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VIII: CONCLUSIONS:

We have reviewed here the main properties of wavelet and Gabor representations when
applied to asymptotic signals or composite signals of asymptotic type. The main ingredient
of the applications we described is that time-frequency representations allow to separate
components of signals located in different regions of the time-frequency plane, and then to
synthetise them independently.

It is then natural to see that the techniques described above give remarkable results
in the case of asymptotic signals, and in the case of composite signals of asymptotic type
when the components do not interact in the time-frequency plane; nevertheless, it is still
difficult to isolate components that strongly interact in the time-frequency plane, as for
instance in the case of the bubbles described in section VI. In such cases, new techniques
are needed, and there is some hope that wavelet packets [Co-Me-Qu-Wi],[To3] or even
more general decompositions and adaptive analysis schemes could yield better results.

Another point that has to be stressed is that in the analysis described here, which is
essentially concerned with a careful study of the phase of the time-frequency representa-
tion, there is absolutely no difference between wavelet and Gabor analysis (of course the
explicit expressions and the algorithms are slightly different, but the general procedure is
completely identical). The only difference that appears between the two approaches lies in
the behaviour of the squared modulus of the representation, i.e. the time-frequency energy
density. This is the consequence of a well known property of time-frequency representa-
tions, that is that a given representation is optimal (in the sense of energy localisation) for
only one type of frequency modulation law.

Finally, notice that the computations of sections IV and V can trivially be generalised
to the two-dimensional wavelet transform with rotations, described un [Mu]. The only
difference is that the notion of wavelet curve has to be replaced by that of wavelet surface.
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APPENDIX: THE STATIONARY PHASE ARGUMENT:

Let us describe briefly here the approximation techniques we use in this paper. We
derive in a simple way the first terms of the asymptotic developments of T (b, a) we start
from in sections IV and V (the approximations for G(b, ω) and Tλ(b, a) go exactly in the
same way).

From eq. (IV − 4), one has the following expression for the wavelet transform of
s ∈ L2(R):

T (b, a) =
1

2a

∫ ∞

−∞

M(b,a)(t)e
i Φ(b,a)(t)dt (A − 1)

where:

M(b,a)(t) = As(t)Ag

(
t − b

a

)
(A − 2)

and

Φ(b,a)(t) = φs(t) − φg

(
t − b

a

)
(A − 3)

From now on, we will assume that both g(t) and s(t) are analytic functions, so that
their series development make sense.

A-1: g(t) and s(t) asymptotic:

Assume that both s(t) and g(t) are asymptotic signals in the sense defined in section
III. Then T (b, a) is defined by a rapidly oscillating integral, so that asymptotic techniques
can be used (see e.g. [Co]). Moreover, because of the regularity and the fast decay of g(t),
the integration bounds do not contribute to the asymptotic development of T (b, a). Let
ts = ts(b, a) be such that:

Φ′

(b,a)(ts) = 0 (A − 4)

Then, by general arguments, the essential contribution to (A − 1) is provided by the
neighborhood of such points. Moreover, assuming for simplicity that ts is the unique
point such that (A − 4) holds and that M(b,a) is non negligible, then the first term in the
asymptotic development of T (b, a) reads:

T(0)(b, a) =
M(b,a)(ts)e

i Φ(b,a)(ts)

2a

∫ ∞

−∞

ei 1
2 (t−ts)2Φ′′

(b,a)(ts)dt (A − 6)

A straightforward Gaussian integration thus yields:

T(0)(b, a) =

√
π

2

Zs(ts)
1
a

g
(

ts−b
a

)
√∣∣∣Φ′′

(b,a)(ts)
∣∣∣

ei π
4 Sgn[Φ′′

(b,a)(ts)] (A − 7)

where we have assumed that:
Φ′′

(b,a)(ts) 6= 0 (A − 8)
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The second term of the asymptotic development, i.e. the term proportional to the
first derivative of M(b,a) is easy to estimate too:

T(1)(b, a) =
M ′

(b,a)(ts)e
i Φ(b,a)(ts)

2a

∫ ∞

−∞

(t − ts)e
i 1
2 (t−ts)2Φ′′

(b,a)(ts)dt = 0 (A − 9)

which proves the strongness of the approximation.

A-2: s(t) asymptotic and |g(t)| Gaussian :

In the particular case of an analysing wavelet with a Gaussian amplitude:

g(t) = e−
t2

2 eiφg(t) (A − 10)

the asymptotic assumption on g(t) can be dropped as follows: instead of considering
the Taylor series development of M(b,a), consider the development of As(t) only. This
also means that one assumes the variations of As to be slow compared with those of the
Gaussian amplitude of the wavelets. The first term in the asymptotic development of
T (b, a) then reads:

T(0)(b, a) =
1

2a
As(ts)e

iΦ(b,a)(ts)

∫ ∞

−∞

e−
1
2 (

t−b
a )

2

ei 1
2 (t−ts)2Φ′′

(b,a)(ts) dt (A − 11)

which then once more reduces to a Gaussian integration, and yields:

T(0)(b, a) =
∣∣T(0)(b, a)

∣∣ eiΨ(0)(b,a) (A − 12 − a)

∣∣T(0)(b, a)
∣∣ =

√
π

2

As(ts)e
−

1
2

(ts−b)2Φ′′

(b,a)
(ts)2

Φ′′

(b,a)
(ts)2+ 1

a4

[
1 + a4Φ′′

(b,a)(ts)
2
] 1

4

(A − 12 − b)

Ψ(0)(b, a) = φs(ts) − φg

(
ts − b

a

)
+

1

2

(ts − b)2Φ′′

(b,a)(ts)

1 + a4Φ′′

(b,a)(ts)
2

+
1

2
arctan

[
a2Φ′′

(b,a)(ts)
]

(A − 12 − c)
It must be noticed here that the next term in the asymptotic development, proportional
to the derivative of As(t) is not identically zero in that case. Its computation still reduces
to a Gaussian integration, and yields:

T(1)(b, a) =
∣∣T(1)(b, a)

∣∣ eiΨ(1)(b,a) (A − 13 − a)

∣∣T(1)(b, a)
∣∣ =

√
π

2

A′
s(ts)e

−
1
2

(ts−b)2Φ′′

(b,a)
(ts)2

Φ′′

(b,a)
(ts)2+ 1

a4

[
1 + a4Φ′′

(b,a)(ts)
2
] 3

4

|ts − b| (A − 13 − b)

Ψ(1)(b, a) = φs(ts) − φg

(
ts − b

a

)
+

1

2

(ts − b)2Φ′′

(b,a)(ts)

1 + a4Φ′′

(b,a)(ts)
2

+
3

2
arctan

[
a2Φ′′

(b,a)(ts)
]

(A − 13 − c)
Throughout this paper, the symbol ≈ will mean that one has replaced an expression

by the first order term of its asymptotic development.
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FIGURE CAPTIONS:

Fig. VI-1-a: Constant amplitude hyperbolically modulated signal: Phase and modulus
of the wavelet transform. The ridge of the transform is drawed on the phase plot.

Fig. VI-1-b: Constant amplitude hyperbolically modulated signal: Modulus and
frequency modulation laws, extracted from the wavelet transform.

Fig. VI-2-a: Detection or cruise sonar signal emitted by a Vespertillionid bat (Myotis
mystacinus): Ridges and modulus of the wavelet transform.

Fig. VI-2-b: Sonar signal emitted by a Vespertillionid bat, with additional uniform
noise: Modulus and frequency modulation laws, extracted from the wavelet transform.

Fig. VI-3: Sonar signal emitted by a Vespertillionid bat, with additional uniform
noise: Modulus and frequency modulation laws, extracted from the phase of the associated
analytic signal.

Fig. VI-4: Sum of two linearly frequency modulated signals, with close instantaneous
frequencies: Phase and modulus of the wavelet transform with respect to a Morlet wavelet,
with a standard value of the central frequency of the wavelet. The ridge is represented on
the phase plot.

Fig. VI-5: Sum of two linearly frequency modulated signals, with close instantaneous
frequencies: Phase and modulus of the wavelet transform with respect to a Morlet wavelet,
with a larger value of the central frequency of the wavelet. The ridge is represented on the
phase plot.

Fig. VI-6-a: Phase and ridges of the Gabor transform of a trumpet sound signal.

Fig. VI-6-b: Phase and ridges of the Gabor transform of a female voice signal.

Fig. VI-7: Ridges of the Gabor transform of the sum of two close spectral lines.

Fig. VI-8-a: Ridges of the Gabor transform of a clarinet sound signal: first example.

Fig. VI-8-b: Ridges of the Gabor transform of a clarinet sound signal: second example.

Fig. VI-9-a: Fourier spectrum of a NMR spectroscopy signal

Fig. VI-9-b: Same than fig. VI-9-a, after the removal of the main spectral line.

Fig. VI-10-a: Sum of spectral lines imbedded in noise.

Fig. VI-10-b: Same than fig. VI-10-a, after the removal of the noise.

Fig. VI-11-a: Wavelet decomposition of the syllabe ′la′; sampling frequency: 22510
Hz. Harmonic number 1, ν = 274.5 Hz.

Fig. VI-11-b: Wavelet decomposition of the syllabe ′la′; sampling frequency: 22510
Hz. Harmonic number 5, ν = 1374 Hz.

Fig. VI-11-c: Wavelet decomposition of the syllabe ′la′; sampling frequency: 22510
Hz. Harmonic number 10, ν = 2749.2 Hz.

Fig. VII-1-a: Autocorrelation of a triangularly amplitude modulated and hyperboli-
cally frequency modulated signal.

Fig. VII-1-b: Skeleton energy of a triangularly amplitude modulated and hyperboli-
cally frequency modulated signal.

Fig. VII-1-c: Skeleton correlation of a triangularly amplitude modulated and hyper-
bolically frequency modulated signal.
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Fig. VII-2-a: Same than Fig. VII-1-a, with an additional uniform noise with ampli-
tude ten times larger than the maximal amplitude of the asymptotic signal.

Fig. VII-2-b: Same than Fig. VII-1-b, with an additional uniform noise with ampli-
tude ten times larger than the maximal amplitude of the asymptotic signal.

Fig. VII-2-c: Same than Fig. VII-1-c, with an additional uniform noise with amplitude
ten times larger than the maximal amplitude of the asymptotic signal.

Fig. VII-3-a: Definition of the time delays θk.
Fig. VII-3-b: Generic structure of the ridge rectification algorithm.
Fig. VII-4-a: E(t) function in the case of an hyperbolically frequency modulated

signal, and a receiver with N = 12.
Fig. VII-4-b: |W (t)|2 function in the case of an hyperbolically frequency modulated

signal, and a receiver with N = 12.
Fig. VII-5-a: Same than Fig VII-4-a, with an additional centered Gaussian noise,

with input signal to noise ratio equal to 1/5.
Fig. VII-5-b: Same than Fig VII-4-b, with an additional centered Gaussian noise,

with input signal to noise ratio equal to 1/5.
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[Me1]: Y. Meyer, Ondelettes et opérateurs: I Ondelettes, (1989), Hermann.
[Me2]: Y. Meyer, Ondelettes et opérateurs II Opérateurs de Calderon-Zygmund, (1990),
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