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Model Reduction Based on Regional Pole Itis well known that the transient properties of linear time-invariant
and Covariance Equivalent Realizations systems are influenced directly by the location region of the dominant
poles, and hence the regional pole assignment problem has received
great attention in recent years [8]-[10]. Therefore, instead ofjthe
Markov parameters used in [6], [7], [14], and [15], we utilize the
dominant pole region to represent the transient performance index. It
Abstract—in this paper a novel model reduction problem is studied S clear that the region in which the dominant poles are situated
for linear continuous-time time-invariant stochastic systems. The purpose and the steady-state output covariance value are closely related,
of this problem is to design the reduced-order model so that it has the respectively, to the transient and steady-state performance of linear
same dominant pole region and steady-state output covariance as thosetime_invariant stochastic systems. Therefore, in addition to the well-

of the original full-order model. The resulting reduced-order model can tudied . tchi iteri th del reducti
approximate the corresponding original full-order model in two impor- studied covariance matching criierion, another new model requction

tant aspects, i.e., transient and steady-state performances. Necessary andcfiterion is simultaneously proposed in this paper, i.e., the reduced-
sufficient and conditions for the existence of desired reduced-order models order models should preserve not only the same steady-state output
are established, and an explicit expression for these reduced-order models coyariance value but also the same dominant pole region as those of
is also presented. An illustrative example is used to demonstrate the the original full-order models. This motivates the investigation of a
effectiveness of the proposed design method. i . .
new model reduction approach called regional pole and covariance
Index Terms—Approximation theory, covariance equivalent realiza-  equivalent realizations (RPCOVER's).
%’;dséldrzmﬁzgg pole region, linear continuous-time stochastic systems, In the present paper we develop a novel model reduction approach
' for continuous-time time-invariant stochastic systems. The main con-
tribution is twofold: 1) the conception of RPCOVER’s is introduced
I. INTRODUCTION for the reduced-order models matching both the dominant pole region
A great many approaches are available in the literature on tARd Steady-state output covariance of the full-order model and 2)
general topic of model reduction, including aggregation methods [{}Ec€SSary find suf_flc:lent conditions for _the existence of the_ ex_pected
balancing techniques [2], Hankel norm approximation methods [3f°COVER’s are given, and a constructive approach to designing the
PCOVER'’s is also presented. Specifically, the main idea proposed

H.. norm approximations [4], and-Markov covariance equivalent ’ . .
realizations [6], [7], [14], [15], to name just a few. A major drawbac” this paper is to create a reduced-order model by matching the output
covariance of the original model and keeping the dominant poles in

of each of these methods (with the exception of th&arkov . T :
covariance equivalent realizations) is that the reduced-order mod&)g Same region as those of the original model, hence, in some sense,

are not guaranteed to match any of the second-order informatfRSuring respectively good steady-state and transient approximation

(i.e., covariance values) of the original model outputs, which is aftween the full- and reduced-order models. The problem of regional

important criterion when output performance is an item of interestPole and covariance equivalent realizations was investigated in [11]
Many engineering systems have performance requirements stdRifiscrete-time stochastic systems where the state covariance of the

in terms of steady-state output covariance values (antenna pointjguced-order model is required to equal the output covariance of the

[5], vibration control in flexible structures [6], etc.). In [6], [7]‘fu -order model; hence thls_ paper will focus on the continuous-time

[14], and [15] a projection method has been used to obtain reduc&8Se and the output covariances of both the full- and reduced-order

order models that match the firgt+ 1 output covariances and MOdels are expected to be the same.

the firstg-Markov parameters of the original model. These reduced

models are called-Markov covariance equivalent realizations, or Il. PROBLEM FORMULATION AND PRELIMINARIES

“¢-Markov covariance equivalent realizations (COVER'’s).” Due t0 Consider a linear time-invariant continuous-time stochastic system

the preservation of > 0 output covariances, theMarkov COVER  described by

provides a reduced-order model for continuous- and discrete-time o o

systems that has the same steady-state covariance values of each i(t) = Ax(t) + Du(#), y(t) = C(t) (@)

of the multiple outputs as the original model, and due to thgherex(t) € R”, v(t) € R", y(t) € R, and A, D, C are constant

preservation ofg-Markov parameters thg-Markov COVER also matrices with appropriate dimensionst) is a zero mean white noise

has the capacity to provide good transient approximation. Howevgfocess with covarianc&(t)I [6(t) is the Dirac impulse function],

complex transformations to specific coordinates were required in thedv(t) and=(0) are uncorrelated. We assume that the matriis

literature associated witp-Markov COVER's (see, for example, [14] Hurwitz and (4, D) is controllable.

and [15]). The steady-state covariance of system (1) defined by

X = lim Ela(t)a” ()]
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Throughout this paper, we suppose that the dominant poles ofConsider the equatiohl = C.,, X,..C,", whereY € R?*? is given
system (1) are located within a circular regi@¢, ») in the left- but is not necessarily symmetric, add, € R?*™, X,, € R™*™
half complex plane with the center att j0(¢ < 0) and the radius are unknown matrices with given dimensions. We first establish the
r(r < —¢). Also, we assume that the steady-state output covariare@vability of Y = C,, X,,C/, for C,, € R**™ and0 < X,, €
Y of (1), which can be calculated directly from (3), is knownR™*™. Write the singular value decomposition 6f,, as
Now, we are in a position to formulate the problem under study as o
follows: construct anth-order < m < n) linear, continuous-time, C =1U. Usll=c el 8

) m [ cl (72] T ( )

stochastic system U

Er (t) = A () + Dyw(t), Ym(t) = Cnzm(t) (4 wherex, € R™*"<(r, = rank(C,,)) is the diagonal matrix
consisting of all the nonzero singular values6f, U. = [Uar  Ues]

where z,,(t) € R™, ym(t) € R”, w(t) is a zero mean Gauss- dv. =V V. h | . ith di .
ian white noise process with unit intensity and its order is to B9« = [V Vo] are orthogonal matrices with proper dimensions.
Lemma 4 [12]: There exists a solutiok,,, to the equatiort” =

determined, or equivalently, find the matricés,, D,,, C,, [de- o x. O (v pxp . ic h it and
noted as a tripl€A,,,, D.,, C,)] such that the following reduction orTIly I';’ m (V€ R Is not necessarily symmetric here) if an

requirements are simultaneously met.
1) The poles of (4) are located inside the desired circular region C.Cry(Cchte! =v. 9
D(q. r). . . .
2) The steady-state output covariance of the reduced-order modeForollary 1: Equation (9) is equivalent to

(ff) is equal to that of the original full-order model (1), i.e., ULy = o, YU.. = 0. (10)
Y, =Y, where
Y, = lim E[ym(t)yf,;('t)] =CpXnCh The proof of Corollary 1 is contained in that of the following
t—oo theorem.
X = lim Ela(t)a, (t)] Theorem 1: Assume that (9) or (10) holds. Then we have the

following results.

andy is deflngd m (3)' o ) 1) All solutions toY = C,,,X,,CL are given by
If the above reduction indices 1) and 2) are satisfied, then (4) is said

to be a regional pole covariance equivalent realization (RPCOVER) X =V { > X } v 11)

of system (1) and the reduction task is accomplished. X1 Xo»

where® = 7' UL YU, 27" € R™X"™ v, = rank(C,,) and

X 2. Xo1, Xy are arbitrary matrices with proper dimensions.
In this section we will give the existence conditions and construc-2) A positive definite solutionX,,, to Y = Cr XmCL exists if

tive design approach of the desired reduced-order model. To start and only if & > 0.

with, we first present three important lemmas. Proof: See the Appendix.

Lemma 1[5], [10]: Let M € R and N € R (s < Corollary 2: It is clear that for givert” > 0 andS. > 0, ® > 0
z). There exists a matri¥” which simultaneously satisfie§ = it and only if U/.; is of full row rank.

MV, VV" = I ifand only if MM" = NN, Remark 1: It follows from Theorem 1 and Corollaries 1 and

I1l. MAIN RESULTS AND PROOFS

The following lemma is easily proved. . 2 that to obtain the appropriat€,, and X,, > 0 which meet
Lemma 2: Atriple (4., D, Cr) is a desired RPCOVERifand y — ¢ ¥, .0 one can first construct an orthogonal matrix
only if: 1) the eigenvalues afl,, are situated withiD(q, r) and 2) U. = [Us Us] where U, is full row rank andU., satisfies
the following algebraic equations are satisfied: (10). Then a diagonal positive definite mati. € R"<*" and
AmXm + XmAL + DmDL =0 (5) an orthogonal matri¥’. have to be chosen in order to obtain the
parameterC,,, from (8). Subsequently, the positive definite matrix
Y = Con X CT. ®) X, > 0 can be easily obtained from (11). It should be pointed out

that the set o, and X, > 0 which meetsY = C,,, X,,C% is
Lemma 3 [8]: Consider the following algebraic matrix equation: never empty. In fact, for a given positive definite maftixe B**?,

. ) observing thapp < m, we can always set
— AP — gPAT 4 AnPAL + (¢ =) P=-Q  (7) g thap < m y

) ) ) ) . Y 0
where@ > 0 is arhitrary. Then the poles of,, are situated in the Con =1l Opxm-pl,  Xm =1, I._
given circular regionD(q, r) if and only if there exists a positive v
definite solutionP to (7). andY = ., X,,C% holds naturally.

In view of the above lemmas, the main steps for designing theNow, our task is to study the existence conditions as well as the
desired RPCOVER's can now be stated as follows. First, for design approach of the desired RPCOVER's. It can be assumed
given steady-state output covariaritec RP*”, the necessary and from Theorem 1 that the expected state covariadge for the
sufficient conditions are studied for the existence of a mattix€ reduced-order model is known.

RP*™ and a positive definite matrix(,, € R™>*™ which satisfy Theorem 2: Given the full-order model (1), the dominant pole

Y = C,.X..C),, and then the matrice§.,., X,, are determined. regionD(q¢, r), and the expected state covariadég of the reduced-

The obtainedX,, > () is denoted as the expected state covariance ofder system, there exists a reduced-order model (4) whose poles are
the reduced-order model. Second, for the specified state covariakested withinD(q, r) and state covariance equdss,,, if and only

X,. > 0 and circular pole regioD(q, ), we seek the parametersif there exist positive definite matrice® > 0 and(@ > 0 satisfying

A, Dy, which simultaneously meet (5) and (7) for softe> 0 )

and@Q > 0, and hence the resulting triple,., D.., C.,) is just a P =Q 20 (12)
desired RPCOVER. (TVS ™' +¢D) X, + X (TVS ™ + 4" <0 (13)
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whereV is arbitrary orthogonal, an andT are the square roots of IV. AN ILLUSTRATIVE EXAMPLE
p H ro_ L 2 mxXm . . . . .
P andTZP—Q’ ie,55" =P IT" =r"P-Q,S5 Te€R™™. Consider the linear continuous stochastic system (1) with the
Furthermore, if (12) and (13) are met, the two parameters of tB%rameters
reduced-order model (4) can be obtained as follows:
A, =TVS ' 4l r—2.4983 —-0.2631 —0.8286 0.8107 0.4423
Am =1V q —0.3464 —4.1546 —1.6877 0.1128 0.5459

Do =[=(TVS™ 4 qD) X — Xn(TVS™" + qI)"]'/. A=[-0.0922 -0.2321 -4.1253  0.1934  0.2425
. ' . ' . —0.0666 —0.1867 —0.0328 —4.1349 0.7956
Proof—Necessity:If there exists a lower-order model (4) which L_0.2554 —0.1523 —0.0585 0.1226 —3.2082

satisfies the prescribed regional pole and state covariance constraints,

then from Lemmas 2 and 3, there must exidt> 0 and@Q > 0 0.2200 0 0 0 0

such that D= 0 0 0.1300 0 O
- - ) R . O 0 0 0 0.06
—qumP - qpflnl + ‘47le‘47n + (q - 71_)P = - Q (14) '1 0o 0 0 0
and c=10 01 0 0f. (18a)
447nX777, + )(177,14:@ + D1n Dz); =0. (15) _0 0 0 01
Note that (14) can be rewritten as It is easy to calculate the pole set of system mattixas
g / — g / — T — 1»2 p—
(Am = gD)P(Am = gI)" =1"P =@ (16) {—2.7887 + 0.0870i, —2.7887 — 0.0870, —4.6642,
and then (12) follows directly. Defin® = SS”, »?P - Q =TT", — 4.3287,—3.5510}.
then (16) can be rearranged as
[(An — ¢I)S][(Are — qI)S]T — 7717 (17) The domjnant pole region can be chosen BS—Z_&.S, 1.5), i.e.,
) o o g = —3.5,r = 1.5, and the steady-state covariance and output
From Lemma 1, there exists an orthogonal matfixvhich satisfies covariance of system (1) can be, respectively, calculated as the
(Ap — ¢)S = TV or following:
A — ;g1
A =TVS ™ +4l. (18) - 0.0097 —0.0004 —0.0004 —0.0001 —0.0004
Substituting (18) into (15) yields (13) immediately. —0.0004  0.0002 —0.0004  0.0000  0.0001
Sufficiency: Suppose that there exist positive definite matrices X = |—0.0004 —0.0004  0.0021  0.0000  0.0000
P, Q and an orthogonal matri¥ such that (12) and (13) hold. We —0.0001  0.0000  0.0000  0.0000  0.0001
can directly chooset,, = TVS ' +¢I andD,, = (—(TVS ' + L—0.0004  0.0001  0.0000  0.0001  0.0006
aD) X — X (TV S~ +¢I)T)Y? whereP = SST andr?*P-Q = v =cxc"’
TT" and then have [ 0.0097 —0.0004 —0.0004
A X+ X AT 4 DL DT =0, = [-0.0004  0.0021  0.0000 |. (18b)
| —0.0004 0.0000 0.0006

Furthermore, from the proof of necessity, we know thht, =
TVS~' + ¢I is equivalent to It is desired to construct a third-order RPCOVER. From Theorem 1,

Aoy — gD P(Ay — I)'T _2p_(Q we can obtain the output matrix and the _state covariance, r_espectively,
(Am = D) P(Am —q 4 ; asC,, = Is and thusX,, = CXC7T. Subject to the constraints (12)
Then, it follows from Lemma 3 thati,, satisfies the prespecifiedand (13), we can choose
circular pole constraints. Finally, by the definition of RPCOVER,
we know that the obtained tripled..., D..., Cy,) is just a desired
RPCOVER of the full-order model (1), wheré,, is determined by

1.8942 0.1295 0.3386
P ={0.1295 1.7321 0.1196
0.3386 0.1196 1.0168

Theorem 1.

Remark 2: The positive definite matrice® and () which meet 42614 02914 0.7618
(12) and (13) always exist. In fact, note thak 0, and therefore we Q= 0.2914 3.8932 0.2691
can choosé® > 0 and@ > 0 such thafl’ andS~' are small enough 0.7618 0.2691 2.2799

(in theznorm setting) to meet (13). In the Ilmltln_g case, by choosing Then, from Theorem 2, by setting’ = I;, the parameters
@ = r*P and hencél’ = 0, (13) holds automatically. ) .
Afkm. D,, can be determined as

Remark 3: Note that the desired RPCOVER’s are usually no

unique. This freedom can be utilized to achieve new reduction re- —3.4826  —0.0007 —0.0020
quirements, such as thé..-norm approximation constraint, i.e., the An =1-0.0016 -3.4516 —0.0021
reduced-order models should retain the same (or similar) disturbance —0.0090 —0.0031 -—3.4094
rejection behavior (in af..-norm sense) as the full-order model. 0.2603 —0.0069 —0.0077
This will be one of the main topics of further research. D,, = |—0.0060 0.1197  0.0008

Finally, the RPCOVER’s based model reduction procedure can be Z0.0077  0.0008  0.0629

formulated as follows.
1) Determine the output covarian€eX ! and the dominantpole The  pole set of the reduced-order systems is

region D(q7 T’) of the Origina| System (l) {—34829 —34()90/ —34517} It is apparent that the full-
2) Obtain the paramete?,, and the desired state covariankg, ~and reduced-order models have the same pole regi(%n and
of the reduced-order model by using Theorem 1. steady-state output covariance. Furthermoreylet (y1 2 ys)",

3) ChooseP and(Q appropriately such that (12) and (13) hold. ¥m = (ym1  ¥m2 yms)', respectively, stand for the outputs

4) Calculate the parameters,., D.,, of the reduced-order model of the full- and reduced-order models which are driven by the
from Theorem 2. white noise inputs. The simulation results (Figs. 1-6) show that
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Fig. 1. “—": the output ofy; and “--": the output ofy, . Fig. 4. The signal ofy> — yrm2.
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Fig. 2. The signal ofy1 — ym1. Fig. 5. “—": the output ofy; and “-.”: the output ofy,,3.
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Fig. 3. “=": the output ofyz and “-.”: the output ofy,,2. Fig. 6. The signal ofys — gms.

the reduced-order model approximates the full-order one well aR°COVER approach; and 3) since there exists much design freedom,
the real reduction objectives are met. the RPCOVER approach provides the possibility to realize multiple

Finally, it is remarkable that, although both the RPCOVER apnode! reduction requirements.
proach developed in the present paper and the well-stugied
Markov COVER theory aim at designing reduced-order models V. CONCLUSIONS
which match the steady-state output covariance and approximaterhis paper has developed a new approach to constructing reduced-
the transient behavior of the full-order model, in certain cases theder models which maintain both the steady-state behavior (via
RPCOVER approach supplements theMarkov COVER theory matching steady-state covariance) and the transient property (via
because: 1) the dominant pole region is very often used in practig@tching dominant pole region). An effective algebraic method has
to represent the transient performance index of linear systems; 2)been exploited to prove the existence of the desired reduced-order
complex transformations to specific coordinates are required in tdels and to derive the associated analytical expressions. Further
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o QT 0. 26
|:/‘121 X22:|> (26)

The necessity is obvious. To prove the sufficiency, we choose

¢ T - T
X2 = Xoy, Xoz = X
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to equationY = C,,X,.CL. The proof of Theorem 1 is then
completed.

Authorized licensed use limited to: Brunel University. Downloaded on March 19, 2009 at 12:16 from IEEE Xplore. Restrictions apply.



