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Objective Estimation of Perceived Speech
Quality—Part I: Development of the
Measuring Normalizing Block Technique

Stephen Voran

Abstract—Perceived speech quality is most directly measured but such tests are often fairly expensive, time-consuming, and
by subjective listening tests. These tests are often slow andjabor-intensive. These costs are often well-justified, and there
expensive, and numerous attempts have been made to supplejg g goupt that the most important measurements of perceived
ment them with objective estimators of perceived speech quality. - . .

These attempts have found limited success, primarily in analog speech quality will ?"WaYS rely on formal subjective t_eStS' .
and higher-rate, error-free digital environments where speech ~ There are also situations where the costs associated with
waveforms are preserved or nearly preserved. The objective formal subjective tests do not seem to be justified. In partic-
estimation of the perceived quality of highly compressed digital ylar, much speech codec development and optimization work
speech, possibly with bit errors or frame erasures has remained apparently relies on objective estimators of perceived speech

an open question. We report our findings regarding two essential . s . . "
components of objective estimators of perceived speech quality: quality, along with “informal listening tests.” Of 26 codecs

perceptual transformations and distance measures. A perceptual described at the 1995 IEEE Workshop on Speech Coding
transformation modifies a representation of an audio signal in for Telecommunications, only 11 had been tested in formal
a way that is approximately equivalent to the human hearing subjective tests. Signal-to-noise ratio (SNR) or segmental SNR
process. A distance measure reflects the magnitude ofaperceived(SNRseg) was used to estimate perceived speech quality in
distance between two perceptually transformed signals. - -

We then describe a new objective estimation approach that uses ten caseg, cepstral distance (CD) was used twice, and Bark
a simple but effective perceptual transformation and a distance Spectral distortion (BSD) was used once [1]. Codec evaluations
measure that consists of a hierarchy of measuring normaliz- presented at the 1997 IEEE Workshop on Speech Coding for
ing blocks. Each measuring normalizing block integrates two Telecommunications relied mainly on informal and formal
perceptually transformed signals over some time or frequency subjective tests [2].

interval to determine the average difference across that interval. . . .
This difference is then normglized out of one signal, and is SNR and SNRseg are simple to |.mpllem.entz have stralgh.tfor-
further processed to generate one or more measurements. TheWward interpretations, and can provide indications of perceived
resulting new estimators, and several established estimators, are quality in some waveform-preserving speech systems. Unfor-
thoroughly evaluated and compared in Part Il of this paper. tunately, as shown in Part Il of this paper [3] and in [4]-[6],
Hierarchical structures of measuring normalizing blocks, or other when they are used to evaluate more general coding and
structures of measuring normalizing blocks may also address . . .
open issues in perceived audio quality estimation, layered speechtransmlssmn.systems, SNR and SNRseg then show I|t.tle, if
or audio coding, automatic speech or speaker recognition, audio any, correlation to perceived speech quality. The continued
signal enhancement, and other areas. popularity of these two estimators is likely due to their history,
Index Terms—Auditory system, measuring normalizing blocks, their simplicity, and the lack of a widely tested and gccepted
speech coding, speech quality estimation, speech quality testing,”éplacement. The main body of ITU-T Recommendation P.861
subjective testing. describes a perceived speech quality estimation algorithm
called perceptual speech quality measure (PSQM), but its
scope is limited to higher bit rate speech codecs operating
over error-free channels [7], [8]. The objective measurement
IGITAL speech encoding and transmission involve gf the perceived quality of highly compressed digital speech,
four-way compromise between complexity, delay, bijossibly with bit errors or frame erasures has remained an
rate, and the perceived quality of decoded speech. Complexipen question.
delay, and bit rate can often be quantified in fairly straight- Researchers have recently begun to include explicit models
forward ways, but perceived quality can be more difficult teyr some of the known attributes of human auditory percep-
measure. Subjective listening or conversation tests can be uggf in their estimators of perceived speech or audio quality
to gather firsthand evidence about perceived speech qualiy.-[18]. The motivation for this perception-based approach

. . , is to create estimators that “hear” speech signals through the
Manuscript received March 26, 1998; revised September 29, 1998. The . S
associate editor coordinating the review of this manuscript and approvingsfrf‘me transformations that humans hear them. In principle,
for publication was Dr. Peter Kroon. this was a significant advance. In practice, when estima-
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Fig. 1. High-level block diagram of the objective estimation approach.

the detectability and perceived loudness of many differedear parallel between Fig. 1 and DCR tests, the results given
combinations of tones and narrow bands of noise have baenPart Il show that the approach of Fig. 1 provides useful
derived, the nonlinear, time-varying nature of human heariggtimates of perceived speech quality as measured in ACR
makes aggregating those results into practical models for tiests. This is not surprising since listeners may well accomplish
processing of more general signals (e.g., speech) a formidathie ACR rating task by forming an internal template of a
task. Simplifying approximations are often made, resultingerfect version of the test signal for comparison purposes.
in moderately complex models that generally are not testéfus, ACR tests might become DCR tests inside the listener.
beyond tones and noise, if they are tested at all. Secohd,[18], it is suggested that objective estimators be used to
human perception of speech quality involves both hearing afigtimate differences between ACR test results.

judgment. Extensive efforts to model hearing have often beenln the following sections, we describe a delay estimation
followed by relatively trivial models for judgment. Our studiest!gorithm and a simple but effective perceptual transformation.
have led us to reverse this emphasis, resulting in a simple, yg@ discuss distance measures and identify invariances in

effective, model for hearing, and a more sophisticated mod&nventional distance measures that are clearly not percep-
for judgment. tually consistent. Elimination of these undesired invariances

A high-level description of our approach is shown in Fig. fnotivates the development of measuring normalizing blocks
The delay of the device under test is first estimated arﬁMNBS)' MNB's are defmgd, and then combined in hlergrcm-
compensated for. The perceptual transformation contain ca| structures that form distance measures. The resulting new

simple model for hearing, and the distance measure mod B algorithms for objectively estimating perceived speech

judgment. This partition is an approximation. There is no Sirg_uality are described in full detail in Appendix A. In Part Il of
gle clean .dividing line between human heari.ng and judgmemis paper we provide evaluations of the resulting objective es-

: . ) timators of perceived speech quality through comparison with
The distance measure generates a_udltory d|_s tance (A_D) val & results of nine subjective tests. Part Il also contains further
Ideally, these nonnegative values increase in a consistent

Pervations and discussion, and a set of benchmark objective

as the input spee'ch. and o.utput speech signals move_a%ﬂmates of perceived speech quality for standardized codecs.
perceptually. A logistic function can be used to map AD into

a finite interval, to better match finite subjective test results.
Note that Fig. 1 describes an estimation approach based on Il. DELAY ESTIMATION

the comparison of two speech signals. This most closelyAs shown in Fig. 1, the delay of the device under test

parallels the subjective tests known as degradation categ@iMst be estimated and compensated for prior to the estima-
rating (DCR) tests, or A-B comparison tests. In DCR testéion of perceived speech quality. Many speech codecs do
listeners hear the reference and test signals sequentially, aod preserve speech waveforms. When waveforms are not
are asked to compare them. In the simpler and more poputaeserved, waveform cross-correlation and other waveform-

absolute category rating (ACR) tests, listeners hear only theatching techniques give ambiguous or erroneous delay esti-
test signal and are asked to rate its quality. In spite of timeates. For this reason we have developed a two-stage delay
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estimation algorithm. The algorithm is included in [19]. Apattern due to simple stimulus 1 adgh(f) is the cochlear
coarse stage uses speech envelopes, and a fine stage exs@ttion pattern due to simple stimulus 2 then the total
speech power spectral densities (PSD’s), both of which arechlear excitation pattern has often been modeled as
approximately preserved by speech codecs.

Speech envelopes are calculated in the coarse stage by
rectifying speech samples and lowpass filtering them to an E(f) =[EL(f)? +E2(f)p]1/f’. (1)
approximate bandwidth of 125 Hz. These envelopes are then
subsampled at 250 samples/s, and cross-correlated. The peak

in the smoothed cross-correlation function becomes the coars@vever, different values aof have been selected by various
delay estimate with an uncertainty gf4 ms. authors. The maximum functionp“= ~” is used in [21],

Whenever possible, the fine stage then refines this estimate- 1 in [22]-[25], p = 0.5 in [26], andp = 0.48 in [27].
by cross-correlating PSD’s. PSD’s are calculated from |8 [28], p = 0.4 is shown to be most useful whel,(f) is
ms segments of speech samples. Each segment is Hamnjs&d to estimate the perception of coding distortions, and in
windowed and transformed using a discrete Fourier transfo[pB] values ofp between 0.1 and 0.3 provide the best fit to
(DFT) or fast Fourier transform (FFT). The magnitude oéxperimental results. A comparative study wjth= 0.25, 0.5,
the complex transform result is then extracted. The delayp, ando is given in [30].
estimation algorithm performs PSD correlation multiple times We have studied many of the perceptual transformation
and checks the locations of the resulting peaks for consistengymponents that have been proposed to model various at-
For some speech codecs PSD’s are not adequately presefdgdtes of the hearing process [8]-[17], [20]-[35]. By ob-
and fine estimates are not consistent. This indicates that, frggtving correlations with subjective test results, we have
a high resolution viewpoint, the delay is not constant. In theggught to identify the most effective perceptual transformation
situations, the coarse delay estimate, along with its inheer’@rnponentS, and the most appropriate level of perceptua|
4-ms uncertainty, becomes the total delay estimate. transformation detail for perceived speech quality estimation

The two-stage process is efficient because the coarse st@@g, [36]. This work was repeated for a collection of different
can search a wide range of delay values, but at low resolutigfistance measures. We found that simpler perceptual trans-
Once the coarse stage has finished its work, its low-resolutigfimations can be as effective or more effective than more
estimate provides a starting place for the fine stage th&§mplex ones. This observation is in general agreement with
follows. The fine stage needs to search only a narrow ran@g and [11]. In particular, we have found that the nonuniform
of delay values, consistent with the uncertainty of the coarf@quency resolution and the nonlinear loudness perception
estimate. The Sensitivity of the MNB algorithms to errors igeem to be the most important properties to model. In fact,
delay estimation is discussed in Part Il of this paper. these are the only two properties that are explicitly modeled
in the perceptual transformation described below. Further,
we found that correlation results are much more sensitive to
the choice of a distance measure than to the details of the

Perceptual transformations seek to model human hearingp&rceptual transformation.
useful perceptual transformation will modify the representation We have arrived at a very simple yet effective percep-
of an audio signal in a way that is approximately equivalemtal transformation that is built from a sequence of already
to the human hearing process. The goal is to mimic humastablished steps. This perceptual transformation is applied
hearing so that only information that is perceptually relevat frequency domain representations of the speech signals.
is retained. The literature of psychoacoustics is full of exspeech signals are broken into frames, multiplied by a Ham-
perimental results that describe how humans perceive tomeiig window, and then transformed to the frequency domain
and bands of noise. Many references can be found in [20king an FFT. Our investigations have not identified any phase
From these results, one finds several prominent propertiegasurements that reliably result in perceptually relevant
of human hearing that might be modeled in a perceptuaformation. Thus, only the squared magnitudes of the FFT
transformation. It is clear that the ear’s frequency resolutioniigsults are retained. The results that follow are based on a
not uniform on the Hertz scale. It is also clear that perceivesdmple rate of 8000 samples/s, a frame size of 128 samples
loudness is related to signal intensity in a nonlinear wayl6 ms) and a 50% frame overlap. We have experimented with
The ear's sensitivity is clearly a function of frequency, anffame sizes of 64 and 256 samples, and found them to be less
absolute hearing thresholds have been characterized. Finallseful for this application. We have also experimented with the
many studies have demonstrated time- and frequency-domiame overlap value, and have found this to be a less critical
masking effects. parameter.

Much less is known about how humans perceive more The nonuniform frequency resolution of the ear is treated
complex signals, such as speech. In typical models, complax the use of a psychoacoustic frequency scale. Several such
signals are decomposed into simple stimuli for which humatales have been proposed [20], [24], [33]-[35] and we have
auditory perception is better understood. Internal representdtermined that for this application, the minor differences
tions for the simple stimuli are calculated, and then combinégtween them are not particularly significant. We have elected
in some manner to generate an internal representation for tbeuse a Bark frequency scale. The Hertz scale frequency
original signal. For example, &1 (f) is the cochlear excitation variable f is replaced with the Bark frequency scale variable

Ill. PERCEPTUAL TRANSFORMATIONS
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which can be found in [33]. This relationship is plotted

in Fig. 2. Note thath increases approximately linearly with °8
J below about 500 Hz, and increases according to a,
compressive nonlinearity above about 500 Hz. This scale Was
derived to match experimental results on critical bands un°75
human hearing [20]. Roughly speaking, on this Bark scale
equal frequency intervals are of equal perceptual |mportance
We use this relationship to regroup frequency domain samplesss
that are uniformly spaced on the Hertz scale into bands that
have approximately uniform width on this Bark scale.

Many models for loudness perception as a function of signabss
intensity are available as well [20], [24], [28], [33]. Again, our o5
studies indicate that for this application, the choice of a model °
is not critical, as long as it contains a compressive nonlinearity.
We have chosen to use a logarithm to convert signal intensity
to perceived loudness.

We have also implemented models for the inner—outer &ghere X (f) and Y (f) are frequency-domain representations
transfer functllon, absolute hearing thre;holds, .equal loudngs$she input and output of the device under test, respectively,
curves, and time- and frequency-domain masking effects. WRd the integration is over some band of interest with band-
have elected not to include these models in our perceptyghith 0. Such distance measures are invariant to the sign of
transformation. While these attributes of hearing have all beg{e differenceX (f) — Y (f). This means that the hissy signal
well-documented in tone and noise experiments, modelifg(r) and the muffled signalz(f) in Fig. 3 will receive
them does not appear to help with the estimation of thge same distance value, which would not generally be a
perce|Ved quahty of 4-kHz bandwidth Speech. perceptua”y consistent result.

For a second example, consider the refined distance measure

8
Frequency (Bark)

Fig. 4. Distance measure invariance example 2.

IV. DISTANCE MEASURES

Distance measures seek to measure the magnitude ofé

perceived distance between two perceptually transformed )

nals. Unfortunately, many existing conventional distance mea- /e
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Fig. 6. Frequency measuring normalizing block (FMNB).

In (4) the sign ofY (f) — X (f) is acknowledged, with separatemeasures from hierarchies of MNB’s. Each MNB treats spec-
integrations, integration exponenisand weighting functions tral differences that are distributed over a given scale in
w(f). With the signalsX (f),Y1(f), and Y2(f) shown in time or frequency. The MNB provides simple modeling of
Fig. 4, DIX(f),Y1(/)] = D[X(f),Y2(f)]. Thisis unlikely to the disturbance caused by that spectral difference, and the
be a perceptually consistent result, becaYiggf) has a harsh ability of a listener to adapt to that spectral difference. When
sound, whileY2(f) has a hollow sound. Analogous examplemultiple MNB’s covering multiple time or frequency scales are

exist for undesired time-domain invariances. combined, they allow for simple modeling of the way in which
listeners adapt and react to more complex spectral deviations
V. MEASURING NORMALIZING BLOCKS that span different time and frequency scales.

Section IV provides several simple examples of undesired ) o o ) ]
invariances exhibited by conventional distance measurés. Measuring Normalizing Block Definitions and Discussion
These invariances are undesirable because they are ndt time measuring normalizing block (TMNB) is shown in
perceptually consistent: differences that are obvious to listené&ig. 5 and a frequency measuring normalizing block (FMNB)
disappear inside of these conventional distance measures. iBhgiven in Fig. 6. Each of these blocks takes perceptually
problem of undesired invariances in conventional distant@nsformed input and output signalX (f,t) and Y (f,1),
measures extends far beyond these examples. In geneespectively) as inputs, and returns a set of measurements
distance measures that follow, or are similar to, the forms ahd a normalized version df (f,¢). The TMNB integrates
(3) and (4) are invariant to the distributions of the differencesver some frequency scale, then measures differences and
that they are attempting to measure. Listeners, on the otimermalizes the output signal at multiple times. Finally, the
hand, are often sensitive to distributions of differences. positive and negative portions of the measurements are inte-

To address these shortcomings of conventional distargeted over time. In an FMNB the converse is true. An FMNB
measures, we developed MNB’s and then formed distaniceegrates over some time scale, then measures differences and
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normalizes the output signal at multiple frequencies. Finally, Lo -1 fi .
the positive and negative portions of the measurements are m(20) = fi—fic1 Jy, min(e(f, o), 0) df,
integrated over frequency. Through these steps, each MNB i=1toN (6)

provides a simple modeling of the disturbance caused by a
spectral difference at a given scale, and the ability of a listenghere
to adapt to that spectral difference. 1 ptotT 1 ot

We now formalize the MNB definitions. The TMNB op- ¢(f; o) / Y(f.t)dt— = / X(f,t) dt.
erating on the band of widthf2 that begins atf, using

T to T to

the measurement time intervals defined hy: = 0 to N, By design, both types of MNB'’s are idempotent.
?,?(ZT.allzesY(f, t)to Y(f,t) and generateBN measurements If MNB (X, Y) = (X, ¥, m), then
) MNB(X,Y) =(X,Y,0). (7
Y(f,t)=Y(f,t) — ,t), . .
(1) (fl ) C(fg ) In other words, a second pass through a given MNB will not
m(2i—1) = —*/ max(e( fo, t),0) dt, further alter the output signal, and the vector of measurements
ti—tict Ji, resulting from that second pass will contain only zeros. This
. -1 ti . property of MNB'’s is critical as it allows them to be cascaded
m(2i) = t—t 1 /t min(e(fo, ?), 0) dt, and yet they measure the deviation at a given time or frequency
i=1 t(;_]\lf ) scale once and only once.
where B. Distance Measures that Use Measuring Normalizing Blocks
1 phta Fot 2 In order to measure spectral deviations at multiple time
e(fo,t) = = / Y(f,t)df — = / X(f,t)df. and frequency scales, we have formed structures of TMNB's
Q Jg Q Jy, and FMNB'’s. We hypothesized that hierarchical structures

The FMNB definition is analogous, with the roles of timethat work from larger time and frequency scales down to

and frequency exchanged. At timg, the FMNB operating smallerl tt'mel!. ?nd fr,equ'([atncy scfalej V\tlotl.“d bedmost t_“ke|¥
over time scaler, using the measurement bands defined y emulate listeners: patterns of adaptation and reaction 1o

fi,i = 0 to N, normalizesY(f, ) to f/(f #) and generates pectral differences. By this technique spectral deviations at
2% measuren;entm(j)' ’ ’ one time or frequency scale are measured and removed before

the next smaller scale is considered. Results in Part Il of

Y(f,t) =Y (f.t) — e(f, to), this paper indicate that this hypothesis is a reasonable one.

1 £ Specifically, when these hierarchical structures are used as
m(2t—1)=—F— / max(e(f,to),0) df, distance measures in conjunction with the simple percep-
fi=fimt gy tual transformation described above, this top-down approach
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generates very useful estimates of perceived speech qualitym this linear combination is called auditory distance (AD):
A generalized diagram of these hierarchical MNB structures
is shown in Fig. 7. Each MNB in the structure generates a

measurement vectam,; ;. where w is a length 12 (MNB structure 1) or 11 (MNB
There are many alternatives to explore within the framewosycture 2) vector of weights. In practice, AD values are
of Fig. 7. As always, there is a complexity-performance tradgonnegative. When the input and output signals are identical,
off at work here. Through a sequence of heuristic explorationg| measurements are zero and AD is zero. As the input and
we have identified two MNB structures that offer relatively |0Vbutput signals move apart perceptually, AD increases.
complexity and high performance as estimators of perceivedVINB structures 1 and 2 were designed to be used as
speech quality across a wide range of conditions and qualifistance measures. The AD distance values they generate were
levels. These structures are shown in Figs. 8 and 9. Theésended to be used to estimate perceived speech quality.
are referred to as MNB structure 1 and MNB structure Bubjective perceived speech quality ratings usually cover finite
respectively. Other MNB structures may be more appropriatanges. The mean opinion score (MOS) scale is often used in
for more specific speech or audio quality estimation applCR tests, while the degradation mean opinion score (DMOS)
cations. In addition, these structures or other MNB structurssale is very popular for DCR tests. Both of these scales cover
may address open issues in perceived audio quality estimatithe interval from 1-5. Thus, correlation with these subjective
layered speech or audio coding, automatic speech or speakéing scales may be increased by mapping AD values into
recognition, audio signal enhancement, and other areas. a finite range. We use the following logistic function with
Both MNB structures start with an FMNB that is appliedsymptotes at 0 and 1:
to the input and output signals at the longest available time 1
scale. Four measurements are extracted and stored in the L(z) = 14 cantb’
measurement vector m. These measurements cover the lower ) ) )
and upper band edges of telephone band speech (0-500 Wgn« > 0, L(z) is a decreasing function of. We selected
3000-3500 Hz.) In essence, this MNB stage measures dftf function because it maps AD into a finite interval, it
equalizes out the long-term frequency response at the ed§8iPits the necessary scale compression at the high and low
of the telephone band. In MNB structure 1, a TMNB is thefuality extremes, and it is nearly linear over the intermediate

applied to the input and output signals at the largest frequerf§AIILY rarllnge. , develoned g
scale (approximately 15 Bark). This step can be viewed Note that MNB’s were developed to measure (react) an

as a short-time, wide-band spectral difference measuremémrmalize (adapt) in a way that emulates listeners. The MNB

followed by a fast adaptive gain stage that removes thsrgructurgs, In turn, were developed to perform Fhese' steps
spectral difference. Six additional TMNB's are then applieagquent|ally at decreasing scales, as we hypothesized listeners

at a smaller scale (approximately 2—3 Bark). These TMNB@Ight do. Comb_mm_g the TeS“'“”g me_asurements Ilnea_lrly
o . was a purely utilitarian choice, not motivated by properties

correspond to additional, narrower-band, spectral differenc . . .
. . . . Of perception or judgment. Part Il of this paper shows that

measurements and gain adaptations. Finally, a residual mea- )
: . the structures are successful in the sense that they generate
surement is made to take account of the spectral differences

. ) . Véery useful estimates of perceived speech quality. On the
at all remaining (finer) scales. In MNB structure 2, the m|ddI8 her hand, we do not claim any direct, firm, correspondence

por_tlt_)n of the. band undergoes two Ievelg of binary ba tween the algorithmic steps given above and the process of
SP"“‘”Q' resulting in bands that are app'rOX|mater 2-3 Ba man audition and judgment. That is, the MNB structures
wide. The extreme top and bottom portions of the band aggs 4pje to emulate the responses of listeners, but they do
each treated once by a separate TMNB. Finally a residygl; girectly explain or explicitly model how listeners arrive
measurement is made. We can also loosely describe the actipn,qse responses.

of these MNB structures as a dynamic decomposition of athe perceptual transformation and the MNB structures are
codec output signal. This decomposition proceeds in a Spag&cribed together in full detail in Appendix A. Part Il of this

that is defined partly by human hearing and judgment (via th@per provides further discussion, interpretation, and results.
MNB structure) and partly by the codec input signal.

The idempotence of the MNB along with the hierarchical VI. CONCLUSION
nature of MNB structures leads to linear dependence amongrhere is a clear need for estimators of perceived rela-

the MNB measurements. As shown in Figs. 8 and 9, onfiye speech quality that provide reliable estimates, especially
linearly independent measurements are retained. Thus, M3 lower-rate speech codecs, errored transmission channels,
structure 1 results in 12 measurements, while MNB structus@d other situations where waveforms are not preserved.
2 results in 11 measurements. For these two structures, a Although they are clearly not perceptually consistent, SNR-
set of linearly independent measurements can be formed frased estimators are still in common use, probably due to
just the positive portions of the error function§f,¢). These their history, their simplicity, and the lack of a widely tested
are the odd-numbered measurements in (5) and (6). Linemd accepted replacement. The recent attempts to incorporate
combinations of these measurements provide good estimatemotiels for human auditory perception into these estimators
the perceptual distance between two speech signals and garml clearly an important step forward. Unfortunately, it is
estimates of perceived speech quality. The value that resultd clear how simple models for the perception of tones and

AD =w" -m (8)

(9)
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Frequency Splitter Frequency Splitter
25-5B 10-12.58
\ 4 A 2 v v v v
TMNE | mes) TMNB |y | TMNB TMNB |9 o] TMNB TMNB | e
| h ¢ ¢ - ]
Residual —p m(11)

Measurement

Fig. 9. MNB structure 2.

bands of noise might be best combined to create perceptualisteners adapt and react differently to spectral deviations

transformations that model the perception of more genethht span different time and frequency scales. This motivates

signals such as speech. In addition, judgment is at leastths development of a family of analyses that cover multiple

important as hearing, but many highly refined hearing moddtequency and time scales. To best emulate listeners’ patterns
have been followed by fairly simplistic judgment modelspf adaptation and reaction to spectral deviations, these analyses
resulting in estimators that do not perform as reliably as oséould proceed from larger scales to smaller scales. Further,
might hope. Our studies of perceptual transformations asfectral deviations at one scale must be removed so they
distance measures have led us to an effective but rather simgaie not counted again as part of the deviations at other

perceptual transformation and more sophisticated distarmmles. To meet these requirements, we have developed time

measures built from measuring normalizing blocks. measuring normalizing blocks and frequency measuring nor-
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malizing blocks. These idempotent blocks have been combineatch frame begins 64 samples from the start of the previous

to form two hierarchical structures that comprise two distandeme. Any samples beyond the final full frame are discarded.

measures. In effect, these structures decompose a codec oufagh frame of samples is multiplied (sample by sample) by

signal in a space defined partly by human hearing and judge length 128 Hamming window:

ment, and partly by the codec input signal. The parameters of

this dynamic decomposition are combined linearly to form a h(i) = 0.54 — 0.46 cos <27r('i - 1)>’ 1 <i< 1928

measure of the perceptual distance between those two signals, 127

which in turn is used to form an estimate of relative perceived

speech quality. This new technique for objectively estimatirfyfter multiplication by the Hamming window, each frame is

perceived speech quality is thoroughly evaluated in Part tfRnsformed to a 128-point frequency domain vector using the

of this paper. These structures or other MNB structures mby T- Scaling in FFT implementations is apparently not well

also address open issues in perceived audio quality estimati®@@ndardized. The FFT used in this algorithm should be scaled

|ayered Speech or audio Coding, automatic Speech or Speé&ﬂ:hat the fOIIOWing condition is met. When a frame of 128

recognition’ audio signa| enhancement, and other areas. real-valued Samples, each with value 1, is the input to the FFT

(no Hamming window), then the complex value in the DC bin
APPENDIX A of the FFT output must b&28 + 0 - j. For each transformed

DESCRIPTION OFMNB ALGORITHMS frame, the squared-magnitude of frequency samples 1-65 (DC

This appendix provides complete descriptions of the MN#irough Nyquist) are retained. The results are stored in the
algorithms at a level of detail that allows for implementatiormatricesX andY'. These matrices contain 65 rows, an
To implement MNB structure 1, follow steps A—F and H. Te¢olumns, whereV2 is the number of frames that are extracted
implement MNB structure 2, follow steps A-E, G, and H. Térom the N1 original samples inc andy.
avoid a proliferation of variable names, this appendix does
not use a unique variable for each intermediate result. Rather,
variables are reused, just as they would be in a programmiig Frame Selection

language. Only frames that meet or exceed energy thresholds in both
X andY are used in calculation of AD. Fak, that energy

threshold is set to 15 dB below the energy of the peak frame
The input to the algorithm is a pair vectarsandy. These in X:

vectors contain speech samples from the input and output of
the speech device under test, respectively. The recommended ) o
speech sample precision is at least 16 bits. The assumed sample ~ #energy(j) = Z X(2,9),

rate is 8000 samples/s. The vectors must contain at least 1 s of =1

telephone bandwidth speech. (Vectors used in the development ~ athreshold =107 %/10. max (wenergy(7))-

of these algorithms ranged from 3-9 s in duration.) It is

assumed that the two vectors have the same length, @ty the energy threshold is set to 35 dB below the energy
are synchronized. Synchronization may be accomplished gisthe peak frame it

described in [18]. The mean value is then removed from each
of the N1 entries inz andy:

A. Signal Preparation

65

65
wenergy(j) = 3 Y@ ),
=1

N1
1
a(i) ==(1) - N1 Jz_:l 27, ythreshold = 1073>/10 . max (yenergy(4)).
- J
1 N1
y(i) =yli) — — - Z y(4), 1<+:< N1 Frames that meet or exceed both of these energy thresholds
N1 j=1 are retained:

Next, each of the vectors is normalized to a common RMS  ;.pcrgy(5) > athreshold AND

level: . yenergy(j) > ythreshold = framej is retained
N1
z(i) = (i) - 1 Z z(5)2 , If any frame contains one or more samples that are equal to
N1 = zero, that frame is eliminated from botK and Y. These
_ —(1/2) matrices now contain 65 rows, amid3 columns, whereV3 is
‘ ‘ 1 X, ‘ the number of frames that have been retainedvif= 0, the
y(0) =y(i) - N1 Z y(7) ’ 1<i< N1 input vectors do not contain suitable signals and this algorithm
g=1 is terminated.
. ) The thresholds given above appear to be the most useful for
B. Transformation to Frequency Domain the general problem of estimating perceived speech quality

Each vector is next broken into a series of frames, withcross the conditions described in Part Il of this paper.
128 samples in each frame. The frame overlap is 50%, &her thresholds may be more useful for other, more specific
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applications. In particular, multiple thresholds that separatel) Largest scale TMNB (14.9 Bark wide):
a speech or audio signal into several categories (e.g., main 65

signal, background noise, or silence) may be advantageous.

D. Perceived Loudness Approximation

Each of the frequency domain samplesinandY is then
logarithmically transformed to an approximation of perceived

loudness:

Y (i,7) =10 -log;o(Y (4, ),

65
100) = g7 3 V)~ g5 3 KXo
1<j< N3 (measurg
(normalizeY)
1 N3
m(5) = N3 Z max(t0(j), 0)

i=1
(save positive portion of measuremgnt

2) Define the vector of band limits g =
2 7 12 19 29 43 66]7. Then the six small-
scale TMNB’'s are implemented by the following

1<i<65 1<j<N3.

E. Frequency Measuring Normalizing Block pseudocode:

An FMNB is applied toX and Y at the longest avail-  [0fk=1106
able time scale, defined by the lengtiV1) of the input 1 g(k41)—1
vectors. Four measurements are extracted and stored in the $1(j) = ———~——~ Z Y (i,5)

~ g(k+1)—g(k)

measurement vecten. These measurements cover the lower i=g(k)

and upper band edges of telephone band speech. Positive 1 g(k+1)—1
and negative portions of the measurements are not separated. R Ry Z X(i,79),
Temporary vectorg1, f2, and f3 are used for clarity. g(k+1) — g(k) i=g(¥)

1<j< N3 (measurg

1 N3 1 N3 Y(LaJ) = Y(LaJ) - tl(J)a
100) = 53 ; Y(i.0) - 35 ; X(i.J). gik) <i<g(k+1)—1, 1<j<N3

(normalizeY’)
1<¢<65 (measurg N3
Y(i,5) =Y (4, 5) — f1(4), 1<i<65, 1<j<N3 m(5+k)= N3 Z max(#1(j),0)
(normalizeY) i=1
F200) = f1(i) — £1(17) 1<i<65 (save positive portion of measuremgnt

(normalize measurement 10kHz) end.

3) Residual measurement
£2(i,5) =Y (i,5) — X(i,5), 1<i<65 1<j<N3

(measure residugal
65 N3

m(12) :ﬁ S S max(e2(i, ),0)

i=2 j=1
(save positive portion of residual

4
f3(1) =5 > f2(14+4-(i-1)+j),
j=1
1<¢<16 (smooth the measurement

[m(1) m(2) m(3) m(4)]
=[f3(1) f3(2) s3(13) f3(14)]

(save 4 measurements.

measurement

G. Structure 2: Time Measuring Normalizing Blocks

In MNB structure 2, the middle portion of the band under-
goes two levels of binary band splitting, resulting in bands
F. Structure 1: Time Measuring Normalizing Blocks that are approximately 2—3 Bark wide. The extreme top and
In MNB structure 1, a TMNB is applied t& andY at the bottom portions of the band are each treated once by a separate
largest frequency scale (approximately 15 Bark). Six additionBMNB. Finally, a residual measurement is made. The result is
TMNB's are then applied at a smaller scale (approximatefgven additional measurements that are stored in the length 11
2-3 Bark). Finally, a residual measurement is made. The resg®umn vectorn. A graphical representation of MNB structure
is eight additional measurements that are stored in the lengtff given in Fig. 9. Temporary variablé®, {1, andm0, are
12 column vectorn. Temporary variableg0,¢1, and¢2 are Uused for clarity.
used for clarity. A graphical representation of MNB structure 1) Define the vectors of band limits
1 is given in Fig. 8. w = [2 7 43 7 19 7 12 19 29|¥ and
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TABLE |
LINEAR CoMBINATION WEIGHTS AND LOGISTIC
PARAMETERS FOR MNB STRUCTURES 1 AND 2

Structure 1 Structure 2
w(l) 0.0034 0.0000
w(2) -0.0650 -0.0837
w(3) -0.1304 -0.1199
w(4) 0.1352 0.1260
w(5) 0.5931 0.1660
w(6) 0.2040 0.6387
w(7) 0.5577 0.2195
w(8) 0.1008 0.0122
w(9) 0.0627 1.5544
w(10) 0.0052 0.0954
w(ll) 0.0107 0.1720
w(12) 1.1037 1
a 1.0000 1.0000
b -4.6877 -3.0613 21

(3]

v = [6 42 65 18 42 11 18 28 42]7. Then
all TMNB's are implemented by the following [4]
pseudocode:
fork=1t09 Bl
w(k)
N 1 Lo [6]
10()) = olF) w71 ;(:k) Y(4,5)
1 [7]
v(k) —u(k)+1
v(k) (8]
> X(ij), 1<j< N3 (measurg
i=u(k) [0l
uw(k) < <wk), 1<j< N3
(normalizeY’) [11]
1 N3
m0(k) = N3 Z max(t0(j),0)
=1 [12]
(save positive portion of measuremgent
end. [13]
" (14]
[(m(5) m(6) m(7) m(8) m(9) m(10)]
= [m0(1) m0(2) m0(3) m0(4) m0(6) m0O(8)]. (1]
2) Residual measurement
#1(i,) =Y (i,5) — X(i,j), 1<i<65 1<j<N3 0O
(measure residugl [17]
1 65 N3
m(11) = N3 .64 ; ; max(tl(¢,4),0) (18]
(save positive portion of residual
measuremeit [19]
[20]

H. Linear Combinations and Logistic Functions

The 12 or 11 measurements from MNB structures 1 ar%l]
2, respectively, are next combined linearly to generate an

381

AD value:

AD = w''m.

Finally, the AD value is passed through the logistic function
to generate the final algorithm output, L(AD):

_ 1

L(AD) - 1 + 6a~AD+b :

The weights and logistic parameters used in these steps are
given in Table I.
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