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A Class of Competitive Learning Models which
Avoids Neuron Underutilization Problem

Clifford Sze-Tsan Choy and Wan-Chi Si8enior Member, IEEE

Abstract—In this paper, we study a qualitative property of With the concept of winner in the CL model, one can think

a class of competitive learning (CL) models, which is called of the input spacé? as being partitioned exhaustively infé
the multiplicatively biased competitive learning (MBCL) model, disjoint regions{€y, - --, Qx}, such that theith unit is the

namely that it avoids neuron underutilization with probability . f . t tox in th ion. If id
one as time goes to infinity. In the MBCL, the competition among winner for any Input vectok in the regioniz;. 1t we consider

neurons is biased by a multiplicative term, while only one weight those vectors which are within the regif¥n form aclusterand
vector is updated per learning step. This is of practical interest the state of théth unit.S; as theprototypefor these vectors, we
since its instances have computational complexities among thesee that a CL model is just a clustering algorithm [3], [4], in
lowest in existing CL models. In addition, in applications like which N prototypes are generated for the set of vector&.in

classification, vector quantizer design and probability density L
function estimation, a necessary condition for optimal perfor- Indeed, many existing CL models have been proposed to solve

mance is to avoid neuron underutilization. Hence, it is possible different forms of clustering problems, including pattern and
to define instances of MBCL to achieve optimal performance in speech recognition [2], [5]-[7], classification [8], [9], vector

these applications. quantizer design [10]-[14] and probability density function
Index Terms— Multiplicatively biased competitive learning, (Pdf) estimation [15], [16]. In all these CL models, the weight
neuron underutilization problem, vector quantization. vector w; is an important component (but may not be the

only one) in specifying the state of thth neurons;. At the
tth learning step, a neuron is then rewarded by modifying its

| INTRODUCTION weight vectorw(¢) according to the Grossberg’s learning rule
COMPETITIVE learning (CL) model is a class of un-[17], i.e.,

supervised learning models, which is characterized by
competitions among its units. To confine our scope of dis- Aw(t) = a(t)y:(x(t), S(t), t)(x(t) — w(t)) (1)
cussions in this paper, we define a general CL model as
follows. A CL model hasV units, in which theith unit has an Where «(¢) is a nonnegative learning rate, and
associatedtate S;. Then, the state of a CL model is denoted:(x(t), S(t), ) is the competition score of théth unit
by S = {S1, ---, Sy, I'}, which is the collection of states ofmentioned earlier. For the convergence of weight vectors,
N units as well as a global stafe representing information it is very often required thai(t) tends to zero as — oc.
common to all units (e.g., topological relationship in the selfNote that the larger the learning rate, the larger will be the
organizing map (SOM) [2]). At each learning step, an inpdeward. In fact, in the context of clustering, the weight vectors
vectorx is presented to the model, which can be considerét these CL models are the prototypes being generated or
as a sample from aimput spacedenoted byQ2. Units compete learned for their respective clusters.
among each other according to their relative fitness to the inputThe simple competitive learning (SCL) [18] is probably
vectorx, and a uniquavinneris selected, which is necessarilyjthe simplest CL model. The state of tih unit is uniquely

the one with the highest relative fitness. Ftreunit is assigned determined by its weight vector, i.e§; = {wi} Vi €
a competition scorey;(x, S, t) to quantify its relative fitness {1, -+, N}. The winnerk is the neuron satisfying

to the input vectox at the current stat§ and at timet, such .

that the winner is necessarily the one with the highest score. k= arg P N}{|x - wil} (2)

The winner is therrewarded most, although losers may be

rewarded as well to a lesser extent. In saying that:thainit wherex is the input vector]y| denotes the Euclidean norm

is rewarded, we mean that its state is modified such that itka vectory, and ties are broken arbitrarily. Then, only the

relative fitness to the input vecter is increased. winner's weight vectorwy is modified by the Grossberg's
learning rule in (1) with a positive learning rate. Despite its
simplicity, it was noticed by Rumelhart and Zipser [6] that
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(MBCL) model and to prove that it can avoid neuron unef a class of algorithms called the learning vector quantization
derutilization under appropriate conditions. We organize th{eVQ) algorithms. Their LVQ algorithm can be considered as
paper as follows. In the next section, we will define ous CL model in our sense, in whieh(x, S, ¢) is either O or 1.
notion of neuron underutilization, and discuss the implications Let us illustrate the physical meaning of the above definition
of neuron underutilization, namely, suboptimal performand®/ considering the SCL. Suppose the input vectors are sampled
and sensitivity to initial conditions. CL models which aim aindependently from the input spade = R¥ (i.e., the K-
avoiding this problem, either explicitly or implicitly, will be dimensional Euclidean space) with a stationary probability
reviewed. We will discuss two reasons for studying the MBCldensity functionp(x). Furthermore, for illustration purpose,
First, it can be efficiently implemented in a sequential enviet us suppose that the learning raté&) is zero fort > T,
ronment, which is crucial for practical applications of neuralhere is finite. Then, fort > 7', it must be the case that
networks. Actually, all existing instances of the MBCL have\w;(¢) = 0 (i.e., it is forced to “converge”). Since weight
complexities close to that of the SCL. Second, it can avoigctors are unchanged for all>> 7', we see that the SCL
neuron underutilization without any complicated control of itgives a stable partition of the input spa®& and is denoted
parameters during operations. In Section IlI, we will proposely {21, -- -, Qn}. If there is a neuror such thatP(};) = 0,
theorem stating the sufficient conditions for an MBCL to avoidhere P(Y) denotes the probability of the input being
neuron underutilization with probability one, and present treampled from the set” i.e.,

proof to support our claim. Finally, we will conclude this paper

with some discussions. It is our understanding that we are the PY) = / p(x)dx (6)
first to explicitly prove that a class of CL models can avoid the Y

neuron underutilization problem. By introducing this theorenfl€uron: cannot win infinitely often in time (sinc# is finite).
we hope that new instances of MBCL can be deve'oped Whib}?nce, according to the deﬁnition, neurOIi'S underut”ized.

can avoid neuron underutilization problem and yet suitable f6i" the other hand, i>(<2;) # 0 Vi, any neuron can win
specific applications. infinitely often in time and hence no neuron underutilization

problem exists in this case.

Conventionally, a neuron is considered to be underutilized
when it never wins. Note that our definition is more gen-
— eral than conventional ones, and we expect it is applicable
A. Definition L .

o _ to general situations. For example, when the input vectors

Let us formally state the definition of neuron underutilizagre sampled from a slowly time varying probability density

Il. NEURON UNDERUTILIZATION PROBLEM

tion we have adopted. _ N function p(x, t), then it may be possible that a neurowins
_ Definition 1: Given a CL model such that it partitions arfor only a finite number of times at the early stage of learning
input space? into regions{$y (), -- -, Qv (¢)} at any timet.  since the pdf has “shifted” out of its respective regin
Let us denote an indicator functiafy(t) such that According to our definition, neuron is underutilized, but if
1 if x(¢) € Qu(t) we use the conventional definition, it is not. However, if one
L(t) = € 2% (3) 4 . o ) .
0 otherwise. aims at tracking a slowly time-varying pdf using a CL model

e.g., pdf estimation on a slowly time-varying pdf), the fact that

h Then, when tr:je foI_IIQW|r_19 IS t”t‘)?’ the CL model does nq(*‘euroni is underutilized means that suboptimal performance
ave neuron underutilization problem: will be resulted some time in the future.

t'+T
Vi, 0 <t < oo, 3 finite integer? s.t. Z L(t) > 0. B. Implications of Neuron Underutilization
=t Conceptually, when there is no underutilized neuron, it
O means that the CL model makes the maximal usage of the re-
Equivalently, we have sources (neurons) being provided. There are two consequences
T of neuron underutilization, namely suboptimal performance
Vi, Lim Zlf(t) — o0, 4) and sensitivity to initial conditions. .
T—oo & Neuron underutilization will lead to suboptimal performance
) ) in some applications, and has been noticed by many re-
Conversely, when there is a neurgnsuch that searchers in applications including classification [8], [9], [21],
30 < # < oo, SLYt> ¢, I;(t) =0 (5) vector quantizer design [10], [11] and pdf estimatio_n [15],
[16]. Let us elaborate the effect of neuron underutilization
then, we say that the neuron usderutilized problem on each of these applications as follows. In pdf

In other words, a neuron is said to be underutilized whendstimation, input vectors are assumed to be sampled from
is not persistently excited,e., it wins (or being excited) for a stationary distributiom(x), and the objective is to assign
finitely many times given infinitely many learning times. Thisveight vectors (prototypes or representative vectors) such that
idea is borrowed from the idea of persistency of excitatiaheir distributions approximate as close j#0x) as possible
in parameter estimation literature, see for example [19], afice., to form a nonparametric model pfx)]. Consequently,
has appeared in the work of Kosmatopoulos and Christodoulatien it is given a sufficiently large number of neurons, regions
[20] as a sulfficient condition in their proof on the convergenda the vector space with zero probability must be assigned with
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no weight vector. However, when a CL model like the SCkero or one] by the Grossberg’s learning rule in (1) at each
is applied to pdf estimation, if a neuron is underutilized learning step. Note that the SCL is an instance of the LVQ
according to (5), the neuron does not win after some tinadgorithm. They proved, under the assumption that any neuron
instancet’. ConsequentlyP(2,(¢)) = 0 for ¢ > ¢/, and the is persistently excited (i.e., according to Definition 1) and
weight vectorwy, is situated at the region of zero probabilityother assumptions similar to those in the work of Clark and
Hence, at least one neuron is effectively useless in thiRavishankar [23], that their LVQ algorithm will converge
pdf estimation application, which corresponds to suboptimaith probability one. However, as they have pointed out in
performance. Likewise, in data clustering for classificatiotheir work, the assumption on persistency of excitation of any
purpose, if one is targeted at partitioning the set of vectonguron may not be satisfiable, e.g., in the SCL in which neuron
into a predetermined number of clusters as in [8], [9], anghderutilization is possible. Note that the MBCL we will define
[21], an underutilized neuron means that there is a regiamSection Il satisfies the requirement of their LVQ algorithm.
without any data vector. This means that the effective numbdence, by proving that an MBCL satisfies Definition 1, we can
of clusters is reduced. The codebook design problem in vectapply their theorem to prove that the MBCL will converge
guantizer design [22] is just a data clustering problem whewéth probability one.
the number of partitions on a set of training vectors is the However, we must point out that in some applications,
codebook size. Each weight vector is a codebook, and is usaaiding neuron underutilization problem may not be nec-
to represent the set of training vectors in its respective Vororegsary. For example, the SOM from Kohonen [2] can be
region. If approaches susceptible to neuron underutilizatioonsidered a CL model performing clustering with constraints
problem like the SCL is employed, it is possible that at leasth weight vectors. Weight vectors are constrained to a fixed
one weight vector does not represent any training vector, whitdpology, and when the underlying pgfx) does not match
means that the overall distortion introduced must be increas#us topology, some neurons may never win [24]. Since the
Hence, in these applications, a necessary condition for optinasljective of the SOM is to preserve topological relationship,
performance is to avoid the neuron underutilization problenthis may conflict with the requirement to avoid neuron under-
In addition, if a neuron in a CL model is underutilized, itsutilization.
performance may be very sensitive to initial conditions, as
in the case of the SCL. Indeed, in an unsupervised learning
model, since there is little prior knowledge concerning the. Approaches in Avoiding Neuron Underutilization
distribution of input vectors to be learned, the final state of the In recent years, many CL models were proposed to avoid

unsupervised learning model should not, ideally, be affect@glplicitly or explicitly the neuron underutilization problem.
by initial conditions, provided that it is learned for sufficientlyBasically, they can be considered as variants of two models
long time. Hence, insensitivity to initial conditions seems tgom Grossberg [18]: the partial-contrast (PC) model and the
be a reasonable prerequisite for an unsupervised CL modgiriable-threshold (VT) model.
In existing CL models, whenever a neuron wins, its weight 1) Variants of the PC Modelin the PC model [18], each
vector must be updated using (1) with nonnegative learnifguron has a weight vector only. Weight vectors of losers are
rate. Referring to the convergence analysis of (1) by Clafipdated [using (1)] as well as that of the winner, although with
and Ravishankar [23], they proved that when input veator 3 smaller learning rate. Suppose that the pdf is a stationary one,
is sampled from a set of training patterbisindependent of the concept is that by updating losers as well as winner, weight
previously sampled vectors, the weight vectowill converge vectors of losers may be dragged toward the convex hull of the
to the probabilistic centroid of in probability? if and only if pdf. However, if there are portions inside the convex hull of
lim, o a(t) = 0 and the serielimy ... Y;_, (t) diverges. the pdf with zero probability, neuron underutilization problem
Their work implies that the converged weight vector will bgnay still exist.
independent of its initial state since the probabilistic centroid The self-organizing map (SOM) from Kohonen [2] can be
of Y can be arbitrary, i.e., insensitivity to initial conditionsconsidered as a variant of the PC model, in which the learning
Since learning rate must be finite to be physically realizablgate of a neuron is a function of the “distance” between the
the above conditions mean that if the weight vector has {uron and the winner, where “distance” is defined according
converge to the probabilistic centroid, it is necessary for the a predefined topological relationship among neurons. The
weight vector to be updated infinitely often in time (i.o.t. folearning rate is a decreasing function of the “distance” from the
short). winner. As we have previously discussed, the SOM with fixed
The work of Kosmatopoulos and Christodoulou [20] extendspology may not avoid neuron underutilization. Accordingly,
that of Clark and Ravishankar [23] to the general situatigtangaset al. [24] suggested an approach to dynamically
in their LVQ algorithms, in which there are more than onghange the topological relationship among neurons, so as to
neuron. In their LVQ algorithms, weight vector of a neurogive a better approximation to the underlying pdf.
is either updated or unchanged [i.e;(x, S, t) is either  |n the work of Palet al, they considered a generalization
of the SCL called the generalized learning vector quantization
(GLVQ) [8] (the LVQ they were referring in their paper is just
lim P(|w(t)—z|| <2)=1 (7) the SCL in our paper; however, we prefer the name SCL since
R the LVQ may lead to confusion with the supervised learning
where||x|| is a norm for a vectox. algorithm from Kohonen [1]) to avoid neuron underutilization

2j.e., suppose: is the probabilistic centroid ¥, then for everye > 0
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problem, and demonstrated its performance in clustering faccording to
classification. In the GLVQ, learning rates are functions of

distances between the input vectorand all weight vectors. Vi, wi(t +1) =wi(t) + Awi(?)

Although the GLVQ minimizes a well-defined energy func- =wi(t) — a(t)vi(x(t), S(t), t)
tion, it was later demonstrated by Gonzaleizal. [21] that ~9d(x(t), wi(t)) (10)
the GLVQ resembles the behavior of the SCL under some ow;

conditions, which means that neuron underutilization in tk{ﬁ
GLVQ is indeed possible.

In [9], Karayianniset al. suggested a remedy to the GLVQ Vi, bi(t+ 1) = U(k, x(t), S(t), t). (12)
to avoid neuron underutilization by incorporating the concept ) ’ ) ) »
of fuzziness [25], [26]. The concept of fuzziness has also be%r"?te that only the winner's weight vector is modified.
applied by Chung and Lee [27] to explicitly avoid the neuron In the MBCL, the winnert at thetth learning step satisfies
underutilization problem. Other approaches like the partial- ke = arg min{M;(S(2), t) d(x(t), w;(£))} (12)
distortion-weighted fuzzy competitive learning algorithm [28] @
and the fuzzy learning vector quantization (FLVQ) in [29yhere d(x, w) and S(t) have their usual meanings, and
have also incorporated the concept of fuzziness. In thesg(g(+), +) is a scalar-valued function affecting which neuron
approaches, the learning rate of each neuron is a functiony@hs. Note that the influence is in the form of multiplication.
distances between the input vectorand all weight vectors, same as the case of the ABCL, weight vectors are modified
such that the winner has the largest learning rate. according to (10) and bias factors are modified according to

In [12], Martinetz et al. suggested the neural-gas networlfll)_
which can be considered as a variant of the PC model. The'rhe conscience Competitive |earning (CCL) Suggested by

learning rate is a function of the rank of the distances of thgeSieno [15] to solve the neuron underutilization problem is
input vector from all weight vectors, such that the smallefn instance of the ABCL, such that

the distance, the larger will be the learning rate. They have

hile bias factors are updated according to

proved that whenN tends to infinity, and under suitable d(x, w) = |x — w| (13a)
conditions including smoothness requirement on thepps], ‘ Y A
the stationary distribution of weight vectors corresponds to A8, 1) = = ¢ N bi(t) (13b)

the distribution of codewords in an asymptotically optimal 7, (i, x(t), S(t), t) = bi(t) + B(v:(x(t), S(t), t) — bi(t))
vector quantizer, i.ex p(x)%/(5+2) where K is the vector (13¢)
dimension [30]. Hence, they have implicitly shown that neuron
underutilization problem does not occur in the neural-gaghere 3 and ¢ are constants.
However, this occurs whefV tends to infinity. However, it has been recently demonstrated by Chen and
2) The VT Model:In the VT model [18], the concept is Chang [16] that theconscience parametef in (13b) in the
to increase the relative fitness of a unit when it fails t€CL must not be too large, or else competition according to
win competition, while fitness decreases for frequent winningL3b) becomes independent of the distance medsurew|>.
According to existing literature, we can classify CL modelsleither can it be too small, nor else the bias may not have any
which implement the idea of VT model into two types: theffect. The former case gives rise to what they referred to as
additively biased competitive learning (ABCL) model and thaeuron tangling phenomenowhile the latter case gives rise to
MBCL model. Indeed, in existing variants of the VT modelneuron underutilization problem. They investigated a number
only the winner’s weight vector is updated, as different frorof cases, and stated that the value(oin (13b) that makes
the PC model. We define these two models with referencettte “conscience” effective depends heavily on the size and
the general CL model introduced in Section 1. In both of theshe location of the input domain, the number of neurons, the
models, the state of thi¢gh neuron is determined by a scalgy initial locations of neurons, etc. Since such information, except
which we called thebias factorand a weight vectow;, i.e., the number of neurons, is not knovanpriori, they suggested
S; = {b;, w;}. Furthermore, if: is the winner in competition, the adaptive conscientious competitive learning (ACCL) to
the competition score of thih neuron is given by adaptively vary the value of. Although they showed that
the ACCL had better performance than the CCL, they did not
vi(x, S, t) = { (8) prove explicitly that neuron underutilization problem could be
avoided with certainty.
In the ABCL, the winnerk at thetth learning step satisfies Two versions of the frequency sensitive competitive learn-
ing (FSCL) which are instances of the MBCL model were
k = arg min{d(x(t), wi(t)) + A;(S(t), t)} (9) proposed by Ahalet al. [10] (we called it FSCL1) and by
‘ Krishnamurthy et al. [11] (we called it FSCL2), and are
where d(x, w) is the distance between the two vectors characterized by the following equations:
and w, S(t) is the current state of the CL model, i.e., d(x, W) = [x — w2 (14a)
S(t) = {51(t), .-+, Sn(t)}, and A;(S(¢t), t) is a scalar- S
valued function affecting which neuron wins. Note that the M;(5(8), ) = f(bi(t)) (14b)
influence is in the form of addition. Weight vectors are updated  U;(k, x(¢), S(¢), t) =b;(t) + v.(x(t), S(¢), t). (14c)

1 ifk=1
0 otherwise.
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In the FSCL1,f(u) =« while f(u) = «” =P{=t/Tt where3 state of theith neuron at theth learning step(wheret ¢

andT are constants at thith learning step. {0, 1, ---}) is denoted bysS;(t) = {b;(t), wi(t)} Vi €
Recently, there are two other instances of the MBCL whicfi, ---, N}, whereb;(t) € R is its bias factor andw;(¢) €
are based on the equidistortion principle [30]. The distortioR™ is its weight vector. The state of the MBCL is then given
equalized competitive learning (DECL) from Butler and Jiangy S(¢) = {S1(¢), ---, Sx(¢)}. For notational simplicity,
[13] has the form S will be used to denote the current state of the MBCL.
d(x, w) = |x — W|2 (15a) Simi!arly, for thez‘th neuronl,Si will denote its.current stgte,
bi(t) b; will den(_)te its current b|a§ factor and; will denote its
M(S(®),t) = (15b) current weight vector. The bias factor under the current state
> b S will also be denoted as;(S) or b;(S(t)).
J The index of the unique winner is given by
U(k, x(t), S(t), t) =b; () + v (x(t), S(t), t
( ®), 5(0). %) ( )bk(t; (x(®), 5(6). 1) n(x, §) = arg min{M,(9) d(x, w;)} a7
= a(x(t), wi(t))  (15¢) Z
ij(t) wherex € R¥ is the input vector when the MBCL is in state
i 4 S. An indicator function is defined, such that
b;(0) =1. 15 o
The distort o i - o s, 5y = {1 i =0 8) (18)
e distortion sensitive competitive learning (DSCL) from 0 otherwise.

Choy and Siu [14] is given by The distance measure is given ik, w) = G(x—w), where

d(x, w) =[x — w|" wherer is a positive G(-) is a scalar-valued function satisfying

constant 163) G <o elul<lvl  YuveR<  (19)
Mi(S(2), £) =bi(t) (16b) Gla-w) = g()G(w) Va>0,uecRX (19b)
Uz(kv X(t)v S(t)v t) :bz(t) +’7i(x(t)7 S(t)v t) ( ) . ictly i i | lued f . h th
dix(t ¢ 16c) 9() is a strictly increasing scalar-valued function such that
(x(8), wic(t) (16¢) g(0) = 0 andg(1) = 1, and|| - || is a norm inRX. [For
bi(0) > 0. (16d) example,G(u) = |ju||” wherer > 0 is a possible distance.]
According to existing ABCL's and MBCL'’s, only the Only the state of the winner will be updated, that is,
winner's weight vector is updated, which means that large ad(x, w;)
computational savings are possible in their sequential realiza- Aw; = — at)vi(x, S) 8v7v- - (20a)
tions as compared to variants of PC model. Suppose there Ab: =~i(x, S)Fi(x, §) (20b)

are N neurons and each weight vector h&s dimensions.

The complexity in determining the winner in an ABCL or afyhere F;(x, S) denotes the amount of increase of the bias
MBCL is comparable to or even lower than that in calculatingyctor, »;, when neuron wins.
learning rates in existing variants of the PC model. In fact, At each states, the input spac&” is partitioned exhaus-

a short cut method exists [14] which can reduce substantiafjyely into /v disjoint regions,{Q(S), ---, Qn(S)}, where
the number of operations in determining the winner in existing

MBCL's. In addition, each learning step updafés- K scalars $%(S) = {x € R*: M;(S) d(x, w3)

at most (in the CCL and ACCL), while onli 41 scalars at its < M;(S)d(x, wy) Vi#£jrVie {1, ---, N} (21)

minimum (in the FSCL, DECL, and DSCL) in existing variants . . . )

of the VT model. As compared to variants of PC model, A{0t€ that any point on the boundaries between regions is

most NK scalars have to be modified since leaming rat@$Signed to a unique arbitrary region. We will also (5¢f)

on each neuron can be nonzero. Hence, large computatidifa® {0 denote the region corresponding to iie neuron at

savings are possible. the tth learning step. _ _
Although the ABCL can be as computationally efficient Each regionf2;(s) can be constructed by the intersection

as that of the MBCL, we prefer the latter for the sake dif finitely many sets, that is,

S|mpI|_C|ty. In the_ACCL_ from Chen and Chang [16],_ the () = ﬂ I (S),

adaptive rule which adjusts the conscience paramétar L

(13b) has introduced extra parameters into their approq%ere

which must be specified. On the other hand, we will prove )

that approaches as simple as the FSCL1 [10] and the pschii(5) = {x € R*: Mi(S) d(x, wi) < M;(S) d(x, w;) }-

[14] can avoid neuron underutilization problem. (22)

Let us define the following notations for the convenience
of our discussion. Letd and B denote two sets, thed\ B
o denotes the set of elements i but not in B. For a set
A. Preliminaries A C R¥, its volume is denoted by (A). Given a countable

Let us define the MBCL under consideration in this papeet A, the number of elements will be denoted |a§. The
explicitly. The MBCL hasN neurons, which is finite. The probability of an eventB in a probability space will be

Ill. THEOREM AND PROOF
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denoted byP(B), while the conditional probability of this
event givenm random variablesy, -- -, ym iS denoted by
P(B|y1, -, ¥m)- For a sequence with valuds,, as, ---}
such thatvi > j, a; > a4, andlim;_,..a; = «q, then we
denote this by the notatio®; T; ... a. Similarly, the notation
ai lisoo @ Means thav's > j, a; < ay, andlim;_, a; = a.

For our subsequent analysis, let us introduce the following

definitions.
Definition 2: Given a functionf(x): RX — R, we define
its support, T sy, which is the smallest set such that

/ f(y)dy = 0.
RENT p(y
O

Definition 3: Let A be a set. Itsconnected decomposition
is a partition denoted a® s = {A;, ---, A,,} wherem is
the number of elements, such that

1) Vi, A; is connected, and

2) Vi # 4, A4 U A; is not connected.

(23)

O
Definition 4: We definells = {S: V¢, b;(S) > 0}, which is

1263

s)

finitely many isolated singularities [i.el)T%_(v
{{v1}, -+, {ym}} wherem is finite].
5) For any stateS € Ilg:
a) M;(S) > 0V, and
b) Vi, 5. Mi(S)/M;(S) Qij(bi/b;), where
Q;;(r) is continuous and strictly increasing in
such thatlim,_, @Q;;(r) = 0. [Note that since
Qi;(r)y = 1/(Q;:(1/r)), it must be the case that
lim, 00 Qs5(r) = 0.]
Then, ast — oo, the MBCL will not have any underutilized
neuron w.p. 1. |

C. The Proof

Before presenting the detailed mathematical proof, let us
loosely describe our idea in proving Theorem 1 in the fol-
lowing. Suppose the learning rates for all weight vectors are
zero, such thatv; is unchanged during learning. Furthermore,
for simplicity, suppose that there is exactly one neugon
being underutilized, while all the other neurons are excited
persistently. Note that according to Condition 4) in Theorem

|

in Theorem 1.
Definition 5: The sequencdz,} converges tor almost
surely (a.s.) or with probability one (w.p. 1) if

7?( ):1.

lim z, =2

n—oo

(24)
O

B. The Theorem
Theorem 1: Suppose that the following conditions are sa
isfied for the MBCL defined above.

1) The initial stateS(0) of the MBCL is bounded, i.e., all
weight vectors and bias factors are bounded, ®r@d
bZ(O) > 0.
The learning ratex(t), is nonnegative for all timé > 0,
and is sufficiently small that

d(x, wi + Awy) < d(x, wy)
where Aw; is given by (20a).

2)
(25)

3)
identically distributed random vectors, whose probabilit

Let {x(0), x(1), ---} be a sequence of independenxve

a quantity which must be nonzero with probability one. Hence,

after sufficiently long time, the bias factor of this neuignvill

be arbitrarily smaller than bias factor of any other neuron, and

that b;(¢)/b,(¢) will be arbitrarily small for sufficiently large

t for any i # j. Note that this ratio is nonnegative. Hence if

this situation persists indefinitely, this ratio will tend to zero.
In order to understand the consequence of this ratio tending

to zero, we have to analyze the relationship between the

ratio M;(S)/M;(S) Yj # 4 and the volume of the region

tQf,(t). Note that the regio};(¢) is the intersection ofv — 1

setsT';;(t) as defined in (22). Since the weight vector is
not changed during learning, a decrease in the volume of
any setl’;;(t) will lead to a reduction in the volume of the
region 2;(¢). Consider the boundary of the g&t;(¢), which

is denoted as

aly;(t) = {x € RX: Mi(S) d(x, w;)

= M;(5)d(x, wj)}.
(28)
refer to this as théecision surfacef I';;(¢). The shape

f this surface is related to the ratid;(S)/M;(S)—concave

Yelative to the weight vectow; when this ratio is larger

density function is given by(x), such that then one, while convex relative to the weight vectet

a) p(x) is Lipschitz continuous, i.e.,

Vxy, Xz, |p(x1) — p(x2)] < h||x1 —x2|| (26) of this ratio, we consider two weight vectovs, and wy in
whereh > 0 is the Lipschitz constant, anl- || is the two-dimensional case, and their deC|S|orj surm&ez(t.).

a norm inRK. Fig. 1 shows the decision surfaces for different ratios of
b) T is bounded h that th . h M, (S)/M-(S). It is obvious that when this ratio is greater
) Ty() is bounded, such that there exists a YP®{han 1, a larger ratio means a more convex (relativevig

sphere B(c, Cr) = {x: d(x,¢) < Cr} With g ta00 and hencé, »(t) decreases in volume. On the other
Tp(.) C B(c, Cg).

For any stateS € Ils:
a) there exists positive finit€’z such that
Vx € B(C, CR), Cp> E(X, S) >0, and

b) either there is no solution to the equatibyix, S) =
0 [i.e., T(ﬁ-(- 5) = (], or its solutions correspond to

4) means a more concave surface, and hefigg(t) increases
(27) that the volume of’;;(¢) has a tendency to increase when the
ratio M,(S)/M;(S) decreases.

According to the requirement in Condition 5) in Theorem
1, this ratio decreases when the ratig¢)/b;(¢t) decreases.

when this ratio is smaller than one. To visualize the effect

hand, when this ratio is smaller than one, a smaller ratio

in volume. Extending this idea to higher dimensions, we see
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Fig. 1. Decision surface between two weight vecters = [!] andwz = [|] is denoted a®l' = {x € R?: m1|x — w1| = m2|x — wz|}. The

above are plots of decision surfaces with different ratip/m-: (from the bottommost curve to the topmost curve), respectively, 5, 3.1569, 1.9932, 1.2585,
0.7946, 0.5017, 0.3168, and 0.2. The horizontal axis isatttémension, while the vertical is thg-axis.

This means that after sufficiently long time, the volume of thend 4,(0) are finite, we have

region £2;(¢) will increase to an arbitrarily large value. Since T
the pdfp(x) is finite and the MBCL is initialized with finite Hm b;(t) = oo = lim Zli(t) - (30)
state, it will only take finite amount of time fd2;(¢) to “cut” t—eo T—oo 13

the support ofy(x), such thatP(£2;(¢')) > 0 for some timet'.
This mechanism makes neurbwins again. Conceptually, this
mechanism goes on indefinitely such that whenever a neu
is underutilized for sufficiently long time, it will win again.
Our proof requires the following lemma, which will be Vi, P(Iim bi(t) = oo) =1. (32)
proved in Appendix A. oo
Lemma 1: Suppose an MBCL satisfies the conditions if0 prove (31), we will first prove that

which means that the MBCL has no underutilization problem.
rHOence, in order to prove the MBCL has no underutilization
pr%blem with probability one, it is sufficient to prove that

Theorem 1. Then for any statg € Ilg, any region$;(S) N
satisfies| Dg, ()| < oc. | P < lim bi(t) = oo) =1. (32)
Proof of Theorem 1:Since we require thati, b,(0) > 0 e i

and thatv4, ¢, Ab;(t) > 0 (Condition 4a), it is obvious that @ Then based on (32), we will prove (31).
possible stateS, in the MBCL satisfies/, ¢, b;(¢) > 0. This Proof of (32): Let us consider the sumAb(t) =

justifies the fact thalls is the set of permissible states of thi:N Abi(t), which is a function ofx(¢) and S(¢) only
i=1 i\Y) :

MBCL under consideration, as defined in Definition 4. Indeed, given the same initial conditigh0), S(¢) is uniquely

Furthermore, according to Lemma 1, for the distance M&gstermined by(x(0), ---, x(t—1)}. Hence,Ab(t) is actually
sure under consideration and for all possible states, each regiofy\ction of {x(0) T ’

; o TS 0), ---, x(t)}. Then, we have the following

is composed of finitely many connected subsets. This 'mpI'Fé"lationships

that the input space is also partitioned into finitely many ) .

connected subsets. Hence, Af(-) satisfies Condition 4), it 1) According to Condition 4), we havéb(t) = 0.

. : . 2) We show thatP(Ab(¢) = 0|5(¢)) = 0, V¢ as follows.

is possible for the integraf,, F'(x)p(x)dx to be nonzero. SinceAb(t) = N, mi(x(t), S(t). ) F(x(2). S(2)
Outline of the Proof: According to (20b), we have and thatZN ;(X(i;)l ;Z(t) t)’ o 1:or ail ) x(’t) an(,j

=1 ’ ) it ) ’

T S(t), we have
lim b;(¢) = lim Z%(x(t), S())Fi(x(t), S(t)) + b;(0)

T N
<Cp lim Y yi(x(1), (1)) + bi(0) =Y P(x € Q(S(1)I5(t)
— 00 =0 =1
according to Condition 4. (29) “P(Ei(x, 5(8)) = 0x € 2:(5(8)))
~
Note that in case of the MBCLI,(t) as defined in Definition = Z/ p(x)dx.  (33)
xETe A9, (S(t))

1 is equivalent toy;(x(¢), S(¢)) as defined in (18). Sinc€r =1 Fi( S()
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According to Condition 4b), we have to consider twdy

cases. Whe(', s =0, itis obvious thatP(Ab(t) =

0|S(t)) =0. In the other caselt. (. sy composes of

finitely many isolated smgulantles Due to the Lipschitz Cp = maX{

2Cg, max sup  d(x, W (0))} (38)
continuity requirement op(x) [Condition 3a)], we have

J  x€B(c,Cr)

Vy, PHy}) = hm/ p(x)dx =0. (34) This bound is derived by considering two cases for any neuron
=0 d(x, y)<r} j.

Hence, we havéP(Ab(t) = 0|5(t)) = 0. 1) The weight vectow; is initialized within the hypersphere

B(e, Cg). In this case, it can either be the situation

when neuronj wins at least once, or does not have a

chance to win.

Assume thaflimy .., 37, Ab(t) < oo, i.e., the sum con-
verges. Sincé\b(t) > 0, this implies thalim;_, ., Ab(t) =0
However, it has been shown above tRAtAL(t) = 0|S(¢)) =

0 for all stateS(t) and timet. Hence, by contradiction, we a) In the former situation, its weight vector is updated
conclude that (32) is true. accor_d_lng to (_20a). Since the learning rate s_atlsfles
Proof of (31): Since (32) is valid, it is equivalent to Condition 2), it must be the case that the distance
say that we have the eveudt in the sample space of all between the weight vector; and the input vectox
possible sequences of input vectxg0), x(1), - - -) such that do.es.not increase after learning. Smce. input vector
P(E) = 1, where x is in the hyperspheré(c, Cr) (Condition 3b),
the weight vector after learning is still within the
{ . N } hypersphere.
E =< (x(0), x(1), ---): lim bi(t) =00 ;. (35) o i . ]
o0 i b) In the latter situation, its weight vector is never
) ) _ ) updated, and hence, it must be still inside the hy-
It is always possible to decompose this event into persphere for infinitely long time.
E— U Ew (36a) Hence, the distancé(x, w) is bo_unded by the diameter
WCL o, N} of the hyperspher&(c, Cr), which corresponds to the
W first term in the bracket in (38).
where 2) The weight vectorw; is initialized outside the hyper-
hm bk() 00 sphere B(ec, Cg). Similar to the previous case, the
VkeW. and neuron may win or may not win. Let us consider the
Ew =4 x(0), x(1), --): lim b;(¢) ’< 00 : extreme situation when the neuron never wins. Since its
H@?L. €{l, -, N\W weight vector is never updated, the distan¢g, w) is

bounded byup, g, c,) d(x, w(0)). This leads us to
include the second term in the bracket in (38).
Note thatP(Ey) = 0 since (32) is valid. If it is true that SinceVi € W<, b;i(t) < bjmax) at any timet, we have
P(Eq1, ... ny) = 1, the validity of (31) then follows. Hence, b;(t) /bx(t) < bi(max)/br(t). Owing to the increasing nature
it is sufficient to prove thaP(Ew) =0,VW C {1, ---, N}. of Qu(-) [Condition 5)], we have
Let us consider the evenky in (36b) in the follow-

ing, whereW C {1,---, N}. We define the complement b; ; (max)

(o) =2+ (55)

(36b)

t)
of W asWe = {1, ---, N}\W. According to (36b) that
limy o0 bi(t) < oo Vi € W€, there exists a finite bound

bi(max) SUCh thatlim, ... b;(t) < bi(max) Vi € WC. In the < Qﬂ< ’(‘113"‘))

following, where we have not explicitly defined,s used as ’CW 2 IC” bi(t)

an index in the setV< while k& as an index in the sé¥v. < max  Q l< max bi(mx)) (39)
For a neuronk € W at a particular time, we have = jeweiew I\mcW by (t)

x € (5(t)) N B(e, Cr) Substituting (38) and (39) into (37), we know th@f,(¢) N

= Vie W Mp(S(1)) d(x, wi(t)) B(c, Cg) is bounded byB(wy(t), p(S())), which is a
< M;(S(t)) d(x, wi(t)) hypersphere with radids(S(t)) centered atwy(t), where
= Vie WS, d(x, wg(t))
< Qm(lh(t))d(xv wi(t)). 37) PSH)=Cp | jmax, Qul(ri(t))
i (t) with
Let us derive an upper bound fei(x, wy) V& € W, by r;(t) = max J’(max)' (40)
deriving bounds for the two terms to the right of the above meWw by, (t)

inequality.
The distance between any sampled vectoand weight
vector w of any neuron [i.e.d(x, w)] at time ¢ is bounded  3Note that distance is according to the meast(te, y).
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With respect to the two sets of neurorid; and W<, T, There are two conditions whefb(t) = 0, namely, when

is partitioned into two set€2..(S(¢)) and Q=(S(¢)) at a either

particular stateS(t), where 1) x(t) € Q:(S(t)) and Fy(x(t), S(t)) = 0, wherei €
we, or

Hence, Ej;, can be rewritten as

Qoo (S(1)) :{ U s

2) x(t) € Q(S(t)), wherek € W.
N Ty
kecW

Ey = E%/I 1 U E%/I 2
where
By 1 = {(X(O)v x(1), -++) € Bw:x(t) € Th (. su)

N Qi(S(t))Vie W ast — oo}

%(S(t»:{ U szi<s<t>>} N T (@D

1€We

Let us define the following:

A / fd e 7o
Qeo(S51) = | Blwi(t), p(5(1))) By, o ={(x(0), x(1), ---) € Ew: x(t) € (5(2))
kCW Vke W ast — oo}
Vaol(t) = > V(B(wi(t), p(S(1))).  (42) ={(x(0), x(1), ---) € Bw: x(t) € Quo(S(t))
kEW ast — OO}, (47)
Then, we have the following upper bounds: with Q..(-) as defined in (41).
Note that by applying the same argument in proving
QOO(S(t)) D Qo (S(t)) the integral _in (33) evalu_a_tes t_o zero, we know that
and P(Eiy,,) = 0in (47). In addition, sincd/(t) | 0 and
. . that V(Q.0(S(t))) = Vao(t) is the upper-bounded by, (¢)
V(Qso(5(1))) = V(Q(5(1))) < Vo 8)- (43) according to (43), it must be théin, .. V(Q2..(S(t))) = 0.
Sincep(x) is Lipschitz continuous, we know th&(Ey; ,) =
Similarly, with the following definitions: 0 as well. Hence, we hav®(Lw) = 0.
This completes our proof. O

s (t) = V(L) — Voo(t) : (44) D. Discussions

As a consequence of no neuron underutilization according to
Theorem 1, bias factors of all neurons of any MBCL satisfying
the theorem will tend to infinity as time goes to infinity. This
may pose problem in practical realization, especially when the

we have the following lower bounds:

Q=5(5(1)) CQ=s(5(2)) number of learning stepisis very large. In order to alleviate
and this problem, we present an equivalent realization of an MBCL
V(Qs(S(1) = V(Qs(S(1))) > Vas(?). (45) satisfying conditions in Theorem 1, usingprmalized bias

factors c¢; instead of bias factors;,. Normalized bias factor

. is defined as
Since we are considering sequences{&f0), x(1), ---} ¢

from the eventEy in (36b), it is true thatvk € W, ) bi(t)
limy_ o0 bx () = oo. FurthermoreAby(t) V¢ is bounded [i.e., VE>0, i€l -, N, a(t) = — (48)
< Cr according to Condition 4a), such thaf(t) will not
suddenly “jump” from finite to an infinite value], we havein Which the corresponding bias factor is normalized by the
7(t) limeo 0 in (40). From the increasing and continuougumber of learning stepg. According to Condition 5) of
properties of@Q;.(-) [Condition 5)], we know thatp(S(t)) Theorem 1, we have
in (40) decreases progressively with time. In fact, we have Mi(S) b .
p(S(t) li~oo 0. Hence, we haveV(t) li—oo 0 and Vi, j, =" :Qij<—Z> :QU»(—Z). (49)
Vis(t) Teseo V(YXypy)- It has to be recalled thaf(Y,.)) # 0 M;(5) bj €
as implied by the Lipschitz continuous property pfx)
[Condition 3a)].

Since Ab;(t) > 0V 4, in order forlim,_, ., b;(t) < oo (i.e.,
converging), it is necessarily true thBtn, .., Ab;(¢) = 0. ] ¢
Let us defineAb(t) = 3, yy- Abi(t), and the evenky,: n(x, ) = arg min {Qil <a>d(xv Wi)}- (50)

To realize the original MBCL using normalized bias factors,
we redefine (17) such that the winner’s index satisfies

E{y = {(x(O), x(1), -++) € Bw: tlil)go Ab(t) = 0} (46) (Since it is obvious thab;(t) > 0 for all ¢ > 0, ¢;(¢) is
nonzero for allt > 0. Hence, the choice of denominator is
then we haveby, C Ejy, andP(Ew ) < P(Ey, ). completely arbitrary. We choose neuron 1 as the denominator
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for convenience.) Furthermore, from (20b), updating equationHence, interesting future works along this direction of
for the normalized bias factor;, is given by research will be in relaxing the requirements on the bias-
updating function and the smoothness requiremen(er).

1

(ci(t) — vi(x(8), S() Fi(x(2), 5(1))). V. CONCLUSIONS
(51) In this paper, we have analyzed a class of CL models called
Weight vectors are updated in the same way as in the origit@a¢ MBCL model, which can be efficiently implemented in
MBCL (20a). It is obvious that this new realization givesequential environment. We have proved that under suitable
exactly the same states as the original one, except that cfinditions that the MBCL can avoid neuron underutilization
bias factors are scaled down hySince these normalized biasproblem with probability one, according to Theorem 1. Indeed,
factors are bounded for atl> 0 (as shown in Appendix B), as we have summarized and analyzed in Section Il, neu-
we consider this to be a practical realization for prolongg@n underutilization implies suboptimal performance (e.g., in
learning. However, in each learning step, all normalized bigissification, vector quantizer design, and probability density
factors have to be updated, whereas in the original MBCfuynction estimation) and sensitivity to initial conditions, and
only the bias factor of the winner needs to be updated. THi€nce must be avoided in unsupervised learning. Furthermore,
increases learning time in sequential realization. Note that frdi proving that an MBCL can avoid neuron underutilization
our experimental results on the DSCL and FSCL1 [14], the®éth probability one, the convergence property of the MBCL
MBCL'’s converge faster than a neural-gas network [12] ar@@n be arrived at by using the convergence theorem from
the DSCL performs better than all others. Indeed, their faépsmatopoulos and Christodoulou [20].
convergence property suggests that prolonged training may noEonventionally, almost all theoretical studies on existing
be necessary in practice. Therefore, we expect that for practi€dl models have been concentrating on finding the energy
usage in sequential environment, the original implementatifinction that a particular CL model is minimizing. Although
of the MBCL is sufficient and more efficient. it is possible to demonstrate the global optimality of these
According to Theorem 1, it holds even when the learningPproaches, we have no idea on whether neuron underuti-
rate is zero. Although as we have loosely described in tligation problem will occur. For example, although in case
previous section that the regid®;(¢) of the ith neuron will of the SCL, it has a well-defined energy function (e.g., in
eventually “cut” the support of the pdf(x) independent [1]) indicating that it is possible to converge to a globally
of the learning rate (as long as it is sufficiently small an@ptimal solution, the effect of poor initialization cannot be
nonnegative), the MBCL will be useless if weight vectordeduced. On the other hand, the analysis of “neural-gas” by
are not modified. On the other hand, since any neuron wiflartinetz et al. [12] indicates that the distribution of weight
eventually win, by using a learning rate that decreases avectors approaches the codevectors distribution of a globally
sufficiently slow rate, it is always possible for the weigheptimal vector quantizer under the limiting conditions of large
vector to move to the interior of the support of the pdk) IV and sufficiently smootlp(x). This indeed could imply that
from any initial conditions after sufficiently long time. Henceno neuron is underused, although this is true only in the limit
this makes the MBCL insensitive to initial conditions as wef large N and smoottp(x). However, in this paper, we have
have described in Section II. presented a qualitative analysis on the ability of the MBCL
Our approach to proving Theorem 1 demands for very look avoid neuron underutilization problem. To the best of our
smoothness requirement on the pdk). However, since we knowledge, we are the first to consider this problem in a
have to prove that the probability of the evel;, , is zero mathematically rigorous way.
in (47), “impulses” in thep(x) are disallowed. Consider the By proposing the theorem, we define sufficient conditions
case wherim, ... V(Q..(S(¢))) = 0, one has for an MBCL to avoid neuron underutilization. We hope
that new instances of the MBCL can be suggested based
on this framework, such that some optimality criteria can be
Qoo(5(20)) = U {wi(o0)}- (52)  achieved specific to the targeted applications, and yet neuron
kew underutilization problem can be avoided. Indeed, if neuron
underutilization problem will lead to suboptimal performances
Obviously, if “impulses” exist, there exists som& +# in the targeted applications, we will expect this new MBCL
{1, ---, N}, such thatP(Ey; ,) # 0 in (47). Consequently, to have good performance. Note that the major difference
we cannot conclud®(E ... ny) = 1. between existing MBCL'’s to which our theorem is applica-
Theorem 1 guarantees that two existing instances, namddie differs only in the way bias factors are increased, i.e.,
the FSCL1 [10] and the DSCL [14], do not have neurof(x, S) in (20b). We expect that by modifying this function,
underutilization problem. However, our theorem is not applspecific optimality criteria can be achieved. For example,
cable to two other instances: the FSCL2 and the DECL. ime have recently proposed an instance of the MBCL, the
the FSCL2,M,(S) is time-dependent. In the DECL, we haveDSCL [14], which can satisfy the equidistortion principle in
Fi(x, S) = (bi/ 32, b;) d(x, w;) such that wherb; < oo and  vector quantizer design [30] and outperforms a number of
Zj b; = oo in the limit whent — oo, we haveF;(x, §) =0, existing CL models in vector quantizer design. We expect
which violates the requirement dfj(x, S) [Condition 4b) in that this is partially due to its capability in avoiding neuron
Theorem 1]. underutilization problem.
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APPENDIX A Hence

PROOF OF LEMMA 1:
lx —cill £ f(@lIx — ezl

= ||z — 1l < f(9)llz — ezl
& G(z—c1) < qG(z — ca)
& d(z, c1) € qd(z, c2).

With reference to (22)2;(.S) at any states is constructed
by the intersection ofV — 1 setsl’;;. Note that for any two
setsA; and 4, we have
(58)

|DAI| < oA |D‘42| < 00 = |DA1 ﬂAz| < oo. (53)

This proves (55), which completes our proof.
Hence, if|Dr,;| < oo V4, 4, we can deduce thaDg, (s)| <

o0 APPENDIX B

Let us definel'(cy, ¢z, ¢), where BOUNDEDNESS OFNORMALIZED BIAS FACTORS

In the following, we will show that the normalized bias
factors defined in (48) are bound&d > 0.

Proof: Let us consider the updating equation of the
normalized bias factor; in (51). Recalled that;(x, S) is
nonnegative and bounded [Condition 4a) of Theorem 1], and
that v;(x, S) is either zero or one.

I'(cy, c2, 9) = {X € RN d(x, 1) < qd(x, Cz)}

where0 < ¢ < 1. (54)
Furthermore, let us defing;; = M;(S)/M;(S). Then, for
a particular setl’;; defined in (22), if0 < ¢;; < 1, we
havel';; = I'(w;, wj, ¢;;). Otherwise, we can expreds; In order to prove the boundedness of normalized bias

o , L
as R\ (wj, wi, gi;). In the former case, it'(wi, wj, 4;i)  factors, we assume that for théh neuron, it is true that
is connected, it must be true thay; is connected as well. In . ., ~ ast — oo. Then

the latter case, sincR” is obviously connected, the connect-
edness ofl"(w;, wi, ¢;;) implies that|Dr,,| < oc. In either
case, we have to prove the connectedneds(of, c2, ¢).

In order to prove the connectednessIticy, cz2, ¢), we

consider a poink € I'(eq, 2, ¢), and define the line segmentynere Cr is the upper bound off}(x, S) as defined in

L(x):z = p(x—c1)+c1 VB € [0, 1]. If any pointz on this  condition 4a (Theorem 1). Note that the following is true:
line segmeni(x) is also within the sef(cy, c2, ¢), we know

thatx is connected withke;. Consequently, for any two points

I stVe>t, Ple(t) > Cp)=1 (59)

x1, X2 € I'(c1, ¢z, q), they are connected through the point ¢ = %i(X, S)Fi(x, §) > ¢; = Fi(x, §) 2 ¢; = Cr. (60)
c1, which means thaf'(eq, cq, ¢) is connected. Hence, we
have to prove By combining (59) and (60) with (51), we have
Vge[o,1], Vx € R, d(x, c1) < qd(x, cz)
/
=Vze L(x), d(z, ¢1) < qd(z, c2). (55) Vi> 1, P(Ac(t) <0) =1 (61)
Let ¢ € (0, 1], then This implies thatVt > #, P(e;(t) < e(t)) = 1, which

Vx e RE d(x, ¢1) < qd(x, ¢2)
& Gx —c1) S G(f(g)(x - c2))
(we defineg(f(q)) = g whereg(-) is defined in(19))
& [x—ell < fg)lx —caf
(according to(19) and||a - u|| = a||ul]

for any a > 0 since|| - || is a norm). (56)

Note that since the functiog(-) in (19) is strictly increasing,
its inversef(-) must exist, and thal < f(q) < 1Vgq € [0, 1].
Now, let us evaluate the following difference:

|z — e1ll — f(@)l|z — ezl
= fllx — c1|| = f(@)||lz — 2| (since]| - || is a norm)
< Bllx — el + fl@)llx — 2zl = f(@)lx — ezl
(since|x — cz|| < |lx — z[| + ||z — c2|))
< Bllx — el + A1 = Blx —eal| =[x — el
(sincex e I' = ||x — ¢q]|| £ f(g)||x — c2]]
according to(56))

=1 =-/(f(g) - Dlx-e] <0 (57)

contradicts our original assumption that— oo ast — oc.
This completes our proof. O
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