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A Class of Competitive Learning Models which
Avoids Neuron Underutilization Problem

Clifford Sze-Tsan Choy and Wan-Chi Siu,Senior Member, IEEE

Abstract—In this paper, we study a qualitative property of
a class of competitive learning (CL) models, which is called
the multiplicatively biased competitive learning (MBCL) model,
namely that it avoids neuron underutilization with probability
one as time goes to infinity. In the MBCL, the competition among
neurons is biased by a multiplicative term, while only one weight
vector is updated per learning step. This is of practical interest
since its instances have computational complexities among the
lowest in existing CL models. In addition, in applications like
classification, vector quantizer design and probability density
function estimation, a necessary condition for optimal perfor-
mance is to avoid neuron underutilization. Hence, it is possible
to define instances of MBCL to achieve optimal performance in
these applications.

Index Terms— Multiplicatively biased competitive learning,
neuron underutilization problem, vector quantization.

I. INTRODUCTION

COMPETITIVE learning (CL) model is a class of un-
supervised1 learning models, which is characterized by

competitions among its units. To confine our scope of dis-
cussions in this paper, we define a general CL model as
follows. A CL model has units, in which the th unit has an
associatedstate . Then, the state of a CL model is denoted
by , which is the collection of states of

units as well as a global state representing information
common to all units (e.g., topological relationship in the self-
organizing map (SOM) [2]). At each learning step, an input
vector is presented to the model, which can be considered
as a sample from aninput spacedenoted by . Units compete
among each other according to their relative fitness to the input
vector , and a uniquewinner is selected, which is necessarily
the one with the highest relative fitness. Theth unit is assigned
a competition score to quantify its relative fitness
to the input vector at the current state and at time , such
that the winner is necessarily the one with the highest score.
The winner is thenrewardedmost, although losers may be
rewarded as well to a lesser extent. In saying that theth unit
is rewarded, we mean that its state is modified such that its
relative fitness to the input vector is increased.
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1Although there are supervised CL models under the name learning vector

quantization (LVQ) studied by Kohonen [1], we only consider unsupervised
CL models in this paper.

With the concept of winner in the CL model, one can think
of the input space as being partitioned exhaustively into
disjoint regions , such that theth unit is the
winner for any input vector in the region . If we consider
those vectors which are within the region form aclusterand
the state of theth unit as theprototypefor these vectors, we
see that a CL model is just a clustering algorithm [3], [4], in
which prototypes are generated for the set of vectors in.
Indeed, many existing CL models have been proposed to solve
different forms of clustering problems, including pattern and
speech recognition [2], [5]–[7], classification [8], [9], vector
quantizer design [10]–[14] and probability density function
(pdf) estimation [15], [16]. In all these CL models, the weight
vector is an important component (but may not be the
only one) in specifying the state of theth neuron . At the
th learning step, a neuron is then rewarded by modifying its

weight vector according to the Grossberg’s learning rule
[17], i.e.,

(1)

where is a nonnegative learning rate, and
is the competition score of theth unit

mentioned earlier. For the convergence of weight vectors,
it is very often required that tends to zero as .
Note that the larger the learning rate, the larger will be the
reward. In fact, in the context of clustering, the weight vectors
in these CL models are the prototypes being generated or
learned for their respective clusters.

The simple competitive learning (SCL) [18] is probably
the simplest CL model. The state of theth unit is uniquely
determined by its weight vector, i.e.,

. The winner is the neuron satisfying

(2)

where is the input vector, denotes the Euclidean norm
of a vector , and ties are broken arbitrarily. Then, only the
winner’s weight vector is modified by the Grossberg’s
learning rule in (1) with a positive learning rate. Despite its
simplicity, it was noticed by Rumelhart and Zipser [6] that
when input vectors were not drawn from a simply connected
region or when weight vectors were not initially located
uniformly within the aforementioned region, some of the
neurons in the SCL will never win. We refer to this as the
neuron underutilizationproblem in this paper.

The objective of this paper is to suggest a class of CL
models called the multiplicatively biased competitive learning
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(MBCL) model and to prove that it can avoid neuron un-
derutilization under appropriate conditions. We organize this
paper as follows. In the next section, we will define our
notion of neuron underutilization, and discuss the implications
of neuron underutilization, namely, suboptimal performance
and sensitivity to initial conditions. CL models which aim at
avoiding this problem, either explicitly or implicitly, will be
reviewed. We will discuss two reasons for studying the MBCL.
First, it can be efficiently implemented in a sequential envi-
ronment, which is crucial for practical applications of neural
networks. Actually, all existing instances of the MBCL have
complexities close to that of the SCL. Second, it can avoid
neuron underutilization without any complicated control of its
parameters during operations. In Section III, we will propose a
theorem stating the sufficient conditions for an MBCL to avoid
neuron underutilization with probability one, and present the
proof to support our claim. Finally, we will conclude this paper
with some discussions. It is our understanding that we are the
first to explicitly prove that a class of CL models can avoid the
neuron underutilization problem. By introducing this theorem,
we hope that new instances of MBCL can be developed which
can avoid neuron underutilization problem and yet suitable for
specific applications.

II. NEURON UNDERUTILIZATION PROBLEM

A. Definition

Let us formally state the definition of neuron underutiliza-
tion we have adopted.

Definition 1: Given a CL model such that it partitions an
input space into regions at any time .
Let us denote an indicator function such that

if
otherwise.

(3)

Then, when the following is true, the CL model does not
have neuron underutilization problem:

finite integer s.t.

Equivalently, we have

(4)

Conversely, when there is a neuron, such that

s.t. (5)

then, we say that the neuron isunderutilized.
In other words, a neuron is said to be underutilized when it

is not persistently excited,i.e., it wins (or being excited) for
finitely many times given infinitely many learning times. This
idea is borrowed from the idea of persistency of excitation
in parameter estimation literature, see for example [19], and
has appeared in the work of Kosmatopoulos and Christodoulou
[20] as a sufficient condition in their proof on the convergence

of a class of algorithms called the learning vector quantization
(LVQ) algorithms. Their LVQ algorithm can be considered as
a CL model in our sense, in which is either 0 or 1.

Let us illustrate the physical meaning of the above definition
by considering the SCL. Suppose the input vectors are sampled
independently from the input space (i.e., the -
dimensional Euclidean space) with a stationary probability
density function . Furthermore, for illustration purpose,
let us suppose that the learning rate is zero for ,
where is finite. Then, for , it must be the case that

(i.e., it is forced to “converge”). Since weight
vectors are unchanged for all , we see that the SCL
gives a stable partition of the input space and is denoted
by . If there is a neuron such that ,
where denotes the probability of the input being
sampled from the set i.e.,

(6)

neuron cannot win infinitely often in time (since is finite).
Hence, according to the definition, neuronis underutilized.
On the other hand, if , any neuron can win
infinitely often in time and hence no neuron underutilization
problem exists in this case.

Conventionally, a neuron is considered to be underutilized
when it never wins. Note that our definition is more gen-
eral than conventional ones, and we expect it is applicable
to general situations. For example, when the input vectors
are sampled from a slowly time varying probability density
function , then it may be possible that a neuronwins
for only a finite number of times at the early stage of learning
since the pdf has “shifted” out of its respective region.
According to our definition, neuron is underutilized, but if
we use the conventional definition, it is not. However, if one
aims at tracking a slowly time-varying pdf using a CL model
(e.g., pdf estimation on a slowly time-varying pdf), the fact that
neuron is underutilized means that suboptimal performance
will be resulted some time in the future.

B. Implications of Neuron Underutilization

Conceptually, when there is no underutilized neuron, it
means that the CL model makes the maximal usage of the re-
sources (neurons) being provided. There are two consequences
of neuron underutilization, namely suboptimal performance
and sensitivity to initial conditions.

Neuron underutilization will lead to suboptimal performance
in some applications, and has been noticed by many re-
searchers in applications including classification [8], [9], [21],
vector quantizer design [10], [11] and pdf estimation [15],
[16]. Let us elaborate the effect of neuron underutilization
problem on each of these applications as follows. In pdf
estimation, input vectors are assumed to be sampled from
a stationary distribution , and the objective is to assign
weight vectors (prototypes or representative vectors) such that
their distributions approximate as close to as possible
[i.e., to form a nonparametric model of ]. Consequently,
when it is given a sufficiently large number of neurons, regions
in the vector space with zero probability must be assigned with
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no weight vector. However, when a CL model like the SCL
is applied to pdf estimation, if a neuron is underutilized
according to (5), the neuron does not win after some time
instance . Consequently, for , and the
weight vector is situated at the region of zero probability.
Hence, at least one neuron is effectively useless in this
pdf estimation application, which corresponds to suboptimal
performance. Likewise, in data clustering for classification
purpose, if one is targeted at partitioning the set of vectors
into a predetermined number of clusters as in [8], [9], and
[21], an underutilized neuron means that there is a region
without any data vector. This means that the effective number
of clusters is reduced. The codebook design problem in vector
quantizer design [22] is just a data clustering problem where
the number of partitions on a set of training vectors is the
codebook size. Each weight vector is a codebook, and is used
to represent the set of training vectors in its respective Voronoi
region. If approaches susceptible to neuron underutilization
problem like the SCL is employed, it is possible that at least
one weight vector does not represent any training vector, which
means that the overall distortion introduced must be increased.
Hence, in these applications, a necessary condition for optimal
performance is to avoid the neuron underutilization problem.

In addition, if a neuron in a CL model is underutilized, its
performance may be very sensitive to initial conditions, as
in the case of the SCL. Indeed, in an unsupervised learning
model, since there is little prior knowledge concerning the
distribution of input vectors to be learned, the final state of the
unsupervised learning model should not, ideally, be affected
by initial conditions, provided that it is learned for sufficiently
long time. Hence, insensitivity to initial conditions seems to
be a reasonable prerequisite for an unsupervised CL model.
In existing CL models, whenever a neuron wins, its weight
vector must be updated using (1) with nonnegative learning
rate. Referring to the convergence analysis of (1) by Clark
and Ravishankar [23], they proved that when input vector
is sampled from a set of training patternsindependent of
previously sampled vectors, the weight vectorwill converge
to the probabilistic centroid of in probability2 if and only if

and the series diverges.
Their work implies that the converged weight vector will be
independent of its initial state since the probabilistic centroid
of can be arbitrary, i.e., insensitivity to initial conditions.
Since learning rate must be finite to be physically realizable,
the above conditions mean that if the weight vector has to
converge to the probabilistic centroid, it is necessary for the
weight vector to be updated infinitely often in time (i.o.t. for
short).

The work of Kosmatopoulos and Christodoulou [20] extends
that of Clark and Ravishankar [23] to the general situation
in their LVQ algorithms, in which there are more than one
neuron. In their LVQ algorithms, weight vector of a neuron
is either updated or unchanged [i.e., is either

2i.e., supposez is the probabilistic centroid ofY , then for every" > 0

lim
t!1

P(kw(t)� zk < ") = 1 (7)

wherekxk is a norm for a vectorx.

zero or one] by the Grossberg’s learning rule in (1) at each
learning step. Note that the SCL is an instance of the LVQ
algorithm. They proved, under the assumption that any neuron
is persistently excited (i.e., according to Definition 1) and
other assumptions similar to those in the work of Clark and
Ravishankar [23], that their LVQ algorithm will converge
with probability one. However, as they have pointed out in
their work, the assumption on persistency of excitation of any
neuron may not be satisfiable, e.g., in the SCL in which neuron
underutilization is possible. Note that the MBCL we will define
in Section III satisfies the requirement of their LVQ algorithm.
Hence, by proving that an MBCL satisfies Definition 1, we can
apply their theorem to prove that the MBCL will converge
with probability one.

However, we must point out that in some applications,
avoiding neuron underutilization problem may not be nec-
essary. For example, the SOM from Kohonen [2] can be
considered a CL model performing clustering with constraints
on weight vectors. Weight vectors are constrained to a fixed
topology, and when the underlying pdf does not match
this topology, some neurons may never win [24]. Since the
objective of the SOM is to preserve topological relationship,
this may conflict with the requirement to avoid neuron under-
utilization.

C. Approaches in Avoiding Neuron Underutilization

In recent years, many CL models were proposed to avoid
implicitly or explicitly the neuron underutilization problem.
Basically, they can be considered as variants of two models
from Grossberg [18]: the partial-contrast (PC) model and the
variable-threshold (VT) model.

1) Variants of the PC Model:In the PC model [18], each
neuron has a weight vector only. Weight vectors of losers are
updated [using (1)] as well as that of the winner, although with
a smaller learning rate. Suppose that the pdf is a stationary one,
the concept is that by updating losers as well as winner, weight
vectors of losers may be dragged toward the convex hull of the
pdf. However, if there are portions inside the convex hull of
the pdf with zero probability, neuron underutilization problem
may still exist.

The self-organizing map (SOM) from Kohonen [2] can be
considered as a variant of the PC model, in which the learning
rate of a neuron is a function of the “distance” between the
neuron and the winner, where “distance” is defined according
to a predefined topological relationship among neurons. The
learning rate is a decreasing function of the “distance” from the
winner. As we have previously discussed, the SOM with fixed
topology may not avoid neuron underutilization. Accordingly,
Kangas et al. [24] suggested an approach to dynamically
change the topological relationship among neurons, so as to
give a better approximation to the underlying pdf.

In the work of Palet al., they considered a generalization
of the SCL called the generalized learning vector quantization
(GLVQ) [8] (the LVQ they were referring in their paper is just
the SCL in our paper; however, we prefer the name SCL since
the LVQ may lead to confusion with the supervised learning
algorithm from Kohonen [1]) to avoid neuron underutilization
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problem, and demonstrated its performance in clustering for
classification. In the GLVQ, learning rates are functions of
distances between the input vectorand all weight vectors.
Although the GLVQ minimizes a well-defined energy func-
tion, it was later demonstrated by Gonzalezet al. [21] that
the GLVQ resembles the behavior of the SCL under some
conditions, which means that neuron underutilization in the
GLVQ is indeed possible.

In [9], Karayianniset al. suggested a remedy to the GLVQ
to avoid neuron underutilization by incorporating the concept
of fuzziness [25], [26]. The concept of fuzziness has also been
applied by Chung and Lee [27] to explicitly avoid the neuron
underutilization problem. Other approaches like the partial-
distortion-weighted fuzzy competitive learning algorithm [28]
and the fuzzy learning vector quantization (FLVQ) in [29]
have also incorporated the concept of fuzziness. In these
approaches, the learning rate of each neuron is a function of
distances between the input vectorand all weight vectors,
such that the winner has the largest learning rate.

In [12], Martinetz et al. suggested the neural-gas network
which can be considered as a variant of the PC model. The
learning rate is a function of the rank of the distances of the
input vector from all weight vectors, such that the smaller
the distance, the larger will be the learning rate. They have
proved that when tends to infinity, and under suitable
conditions including smoothness requirement on the pdf ,
the stationary distribution of weight vectors corresponds to
the distribution of codewords in an asymptotically optimal
vector quantizer, i.e., where is the vector
dimension [30]. Hence, they have implicitly shown that neuron
underutilization problem does not occur in the neural-gas.
However, this occurs when tends to infinity.

2) The VT Model: In the VT model [18], the concept is
to increase the relative fitness of a unit when it fails to
win competition, while fitness decreases for frequent winning.
According to existing literature, we can classify CL models
which implement the idea of VT model into two types: the
additively biased competitive learning (ABCL) model and the
MBCL model. Indeed, in existing variants of the VT model,
only the winner’s weight vector is updated, as different from
the PC model. We define these two models with reference to
the general CL model introduced in Section I. In both of these
models, the state of theth neuron is determined by a scalar,
which we called thebias factorand a weight vector , i.e.,

. Furthermore, if is the winner in competition,
the competition score of theth neuron is given by

if
otherwise.

(8)

In the ABCL, the winner at the th learning step satisfies

(9)

where is the distance between the two vectors
and , is the current state of the CL model, i.e.,

, and is a scalar-
valued function affecting which neuron wins. Note that the
influence is in the form of addition. Weight vectors are updated

according to

(10)

while bias factors are updated according to

(11)

Note that only the winner’s weight vector is modified.
In the MBCL, the winner at the th learning step satisfies

(12)

where and have their usual meanings, and
is a scalar-valued function affecting which neuron

wins. Note that the influence is in the form of multiplication.
Same as the case of the ABCL, weight vectors are modified
according to (10) and bias factors are modified according to
(11).

The conscience competitive learning (CCL) suggested by
DeSieno [15] to solve the neuron underutilization problem is
an instance of the ABCL, such that

(13a)

(13b)

(13c)

where and are constants.
However, it has been recently demonstrated by Chen and

Chang [16] that theconscience parameter in (13b) in the
CCL must not be too large, or else competition according to
(13b) becomes independent of the distance measure .
Neither can it be too small, nor else the bias may not have any
effect. The former case gives rise to what they referred to as
neuron tangling phenomenon,while the latter case gives rise to
neuron underutilization problem. They investigated a number
of cases, and stated that the value ofin (13b) that makes
the “conscience” effective depends heavily on the size and
the location of the input domain, the number of neurons, the
initial locations of neurons, etc. Since such information, except
the number of neurons, is not knowna priori, they suggested
the adaptive conscientious competitive learning (ACCL) to
adaptively vary the value of . Although they showed that
the ACCL had better performance than the CCL, they did not
prove explicitly that neuron underutilization problem could be
avoided with certainty.

Two versions of the frequency sensitive competitive learn-
ing (FSCL) which are instances of the MBCL model were
proposed by Ahaltet al. [10] (we called it FSCL1) and by
Krishnamurthy et al. [11] (we called it FSCL2), and are
characterized by the following equations:

(14a)

(14b)

(14c)
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In the FSCL1, while where
and are constants at theth learning step.

Recently, there are two other instances of the MBCL which
are based on the equidistortion principle [30]. The distortion
equalized competitive learning (DECL) from Butler and Jiang
[13] has the form

(15a)

(15b)

(15c)

(15d)

The distortion sensitive competitive learning (DSCL) from
Choy and Siu [14] is given by

where is a positive

constant (16a)

(16b)

(16c)

(16d)

According to existing ABCL’s and MBCL’s, only the
winner’s weight vector is updated, which means that large
computational savings are possible in their sequential realiza-
tions as compared to variants of PC model. Suppose there
are neurons and each weight vector has dimensions.
The complexity in determining the winner in an ABCL or an
MBCL is comparable to or even lower than that in calculating
learning rates in existing variants of the PC model. In fact,
a short cut method exists [14] which can reduce substantially
the number of operations in determining the winner in existing
MBCL’s. In addition, each learning step updates scalars
at most (in the CCL and ACCL), while only scalars at its
minimum (in the FSCL, DECL, and DSCL) in existing variants
of the VT model. As compared to variants of PC model, at
most scalars have to be modified since learning rates
on each neuron can be nonzero. Hence, large computational
savings are possible.

Although the ABCL can be as computationally efficient
as that of the MBCL, we prefer the latter for the sake of
simplicity. In the ACCL from Chen and Chang [16], the
adaptive rule which adjusts the conscience parameterin
(13b) has introduced extra parameters into their approach
which must be specified. On the other hand, we will prove
that approaches as simple as the FSCL1 [10] and the DSCL
[14] can avoid neuron underutilization problem.

III. T HEOREM AND PROOF

A. Preliminaries

Let us define the MBCL under consideration in this paper
explicitly. The MBCL has neurons, which is finite. The

state of the th neuron at the th learning step where
is denoted by ,

, where is its bias factor and
is its weight vector. The state of the MBCL is then given

by . For notational simplicity,
will be used to denote the current state of the MBCL.

Similarly, for the th neuron, will denote its current state,
will denote its current bias factor and will denote its

current weight vector. The bias factor under the current state
will also be denoted as or .
The index of the unique winner is given by

(17)

where is the input vector when the MBCL is in state
. An indicator function is defined, such that

if
otherwise.

(18)

The distance measure is given by , where
is a scalar-valued function satisfying

(19a)

(19b)

is a strictly increasing scalar-valued function such that
and , and is a norm in . [For

example, where is a possible distance.]
Only the state of the winner will be updated, that is,

(20a)

(20b)

where denotes the amount of increase of the bias
factor, , when neuron wins.

At each state , the input space is partitioned exhaus-
tively into disjoint regions, , where

(21)

Note that any point on the boundaries between regions is
assigned to a unique arbitrary region. We will also use
or to denote the region corresponding to theth neuron at
the th learning step.

Each region can be constructed by the intersection
of finitely many sets, that is,

where

(22)

Let us define the following notations for the convenience
of our discussion. Let and denote two sets, then
denotes the set of elements in but not in . For a set

, its volume is denoted by . Given a countable
set , the number of elements will be denoted as. The
probability of an event in a probability space will be
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denoted by , while the conditional probability of this
event given random variables is denoted by

. For a sequence with values
such that , , and , then we
denote this by the notation . Similarly, the notation

means that , , and .
For our subsequent analysis, let us introduce the following

definitions.
Definition 2: Given a function : , we define

its support, , which is the smallest set such that

(23)

Definition 3: Let be a set. Itsconnected decomposition
is a partition denoted as where is
the number of elements, such that

1) , is connected, and
2) , is not connected.

Definition 4: We define : , , which is
the set of permissible states of the MBCL satisfying conditions
in Theorem 1.

Definition 5: The sequence converges to almost
surely (a.s.) or with probability one (w.p. 1) if

(24)

B. The Theorem

Theorem 1: Suppose that the following conditions are sat-
isfied for the MBCL defined above.

1) The initial state of the MBCL is bounded, i.e., all
weight vectors and bias factors are bounded, and,

.
2) The learning rate, , is nonnegative for all time ,

and is sufficiently small that

(25)

where is given by (20a).
3) Let be a sequence of independent

identically distributed random vectors, whose probability
density function is given by , such that

a) is Lipschitz continuous, i.e.,

(26)

where is the Lipschitz constant, and is
a norm in .

b) is bounded, such that there exists a hyper-
sphere : with

.

4) For any state :

a) there exists positive finite such that

and (27)

b) either there is no solution to the equation
[i.e., ], or its solutions correspond to

finitely many isolated singularities [i.e.,
where is finite].

5) For any state :

a) , and
b) , , , where

is continuous and strictly increasing in,
such that . [Note that since

, it must be the case that
.]

Then, as , the MBCL will not have any underutilized
neuron w.p. 1.

C. The Proof

Before presenting the detailed mathematical proof, let us
loosely describe our idea in proving Theorem 1 in the fol-
lowing. Suppose the learning rates for all weight vectors are
zero, such that is unchanged during learning. Furthermore,
for simplicity, suppose that there is exactly one neuron
being underutilized, while all the other neurons are excited
persistently. Note that according to Condition 4) in Theorem
1, whenever a neuron wins, its bias factor will be increased by
a quantity which must be nonzero with probability one. Hence,
after sufficiently long time, the bias factor of this neuronwill
be arbitrarily smaller than bias factor of any other neuron, and
that will be arbitrarily small for sufficiently large

for any . Note that this ratio is nonnegative. Hence if
this situation persists indefinitely, this ratio will tend to zero.

In order to understand the consequence of this ratio tending
to zero, we have to analyze the relationship between the
ratio and the volume of the region

. Note that the region is the intersection of
sets as defined in (22). Since the weight vector is
not changed during learning, a decrease in the volume of
any set will lead to a reduction in the volume of the
region . Consider the boundary of the set , which
is denoted as

(28)
We refer to this as thedecision surfaceof . The shape
of this surface is related to the ratio —concave
relative to the weight vector when this ratio is larger
then one, while convex relative to the weight vector
when this ratio is smaller than one. To visualize the effect
of this ratio, we consider two weight vectors and in
the two-dimensional case, and their decision surface .
Fig. 1 shows the decision surfaces for different ratios of

. It is obvious that when this ratio is greater
than 1, a larger ratio means a more convex (relative to)
surface, and hence, decreases in volume. On the other
hand, when this ratio is smaller than one, a smaller ratio
means a more concave surface, and hence, increases
in volume. Extending this idea to higher dimensions, we see
that the volume of has a tendency to increase when the
ratio decreases.

According to the requirement in Condition 5) in Theorem
1, this ratio decreases when the ratio decreases.
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Fig. 1. Decision surface between two weight vectorsw1 =
1

0
andw2 =

1

1
is denoted as@� = fx 2 <2: m1jx � w1j = m2jx � w2jg. The

above are plots of decision surfaces with different ratiom1=m2: (from the bottommost curve to the topmost curve), respectively, 5, 3.1569, 1.9932, 1.2585,
0.7946, 0.5017, 0.3168, and 0.2. The horizontal axis is thex-dimension, while the vertical is they-axis.

This means that after sufficiently long time, the volume of the
region will increase to an arbitrarily large value. Since
the pdf is finite and the MBCL is initialized with finite
state, it will only take finite amount of time for to “cut”
the support of , such that for some time .
This mechanism makes neuronwins again. Conceptually, this
mechanism goes on indefinitely such that whenever a neuron
is underutilized for sufficiently long time, it will win again.

Our proof requires the following lemma, which will be
proved in Appendix A.

Lemma 1: Suppose an MBCL satisfies the conditions in
Theorem 1. Then for any state , any region
satisfies .

Proof of Theorem 1:Since we require that ,
and that , , (Condition 4a), it is obvious that a
possible state, , in the MBCL satisfies , , . This
justifies the fact that is the set of permissible states of the
MBCL under consideration, as defined in Definition 4.

Furthermore, according to Lemma 1, for the distance mea-
sure under consideration and for all possible states, each region
is composed of finitely many connected subsets. This implies
that the input space is also partitioned into finitely many
connected subsets. Hence, if satisfies Condition 4), it
is possible for the integral to be nonzero.

Outline of the Proof: According to (20b), we have

according to Condition 4. (29)

Note that in case of the MBCL, as defined in Definition
1 is equivalent to as defined in (18). Since

and are finite, we have

(30)

which means that the MBCL has no underutilization problem.
Hence, in order to prove the MBCL has no underutilization
problem with probability one, it is sufficient to prove that

(31)

To prove (31), we will first prove that

(32)

Then, based on (32), we will prove (31).
Proof of (32): Let us consider the sum

, which is a function of and only.
Indeed, given the same initial condition , is uniquely
determined by . Hence, is actually
a function of . Then, we have the following
relationships.

1) According to Condition 4), we have .
2) We show that , as follows.

Since ,
and that for all , , and

, we have

(33)
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According to Condition 4b), we have to consider two
cases. When , it is obvious that

. In the other case, composes of
finitely many isolated singularities. Due to the Lipschitz
continuity requirement on [Condition 3a)], we have

(34)

Hence, we have .

Assume that , i.e., the sum con-
verges. Since , this implies that .
However, it has been shown above that

for all state and time . Hence, by contradiction, we
conclude that (32) is true.

Proof of (31): Since (32) is valid, it is equivalent to
say that we have the event in the sample space of all
possible sequences of input vectors , such that

, where

(35)

It is always possible to decompose this event into

(36a)

where

and

(36b)

Note that since (32) is valid. If it is true that
, the validity of (31) then follows. Hence,

it is sufficient to prove that , .
Let us consider the event in (36b) in the follow-

ing, where . We define the complement
of as . According to (36b) that

, there exists a finite bound
such that . In the

following, where we have not explicitly defined,is used as
an index in the set while as an index in the set .

For a neuron at a particular time, we have

(37)

Let us derive an upper bound for , by
deriving bounds for the two terms to the right of the above
inequality.

The distance between any sampled vectorand weight
vector of any neuron [i.e., ] at time is bounded

by

(38)

This bound is derived by considering two cases for any neuron
.

1) The weight vector is initialized within the hypersphere
. In this case, it can either be the situation

when neuron wins at least once, or does not have a
chance to win.

a) In the former situation, its weight vector is updated
according to (20a). Since the learning rate satisfies
Condition 2), it must be the case that the distance
between the weight vector and the input vector
does not increase after learning. Since input vector

is in the hypersphere (Condition 3b),
the weight vector after learning is still within the
hypersphere.

b) In the latter situation, its weight vector is never
updated, and hence, it must be still inside the hy-
persphere for infinitely long time.

Hence, the distance is bounded by the diameter
of the hypersphere , which corresponds to the
first term in the bracket in (38).

2) The weight vector is initialized outside the hyper-
sphere . Similar to the previous case, the
neuron may win or may not win. Let us consider the
extreme situation when the neuron never wins. Since its
weight vector is never updated, the distance is
bounded by . This leads us to
include the second term in the bracket in (38).

Since , at any time , we have
. Owing to the increasing nature

of [Condition 5)], we have

(39)

Substituting (38) and (39) into (37), we know that
is bounded by , , which is a

hypersphere with radius3 centered at , where

with

(40)

3Note that distance is according to the measured(x; y).
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With respect to the two sets of neurons, and ,
is partitioned into two sets and at a
particular state , where

(41)

Let us define the following:

(42)

Then, we have the following upper bounds:

and

(43)

Similarly, with the following definitions:

(44)

we have the following lower bounds:

and

(45)

Since we are considering sequences of
from the event in (36b), it is true that ,

. Furthermore, is bounded [i.e.,
according to Condition 4a), such that will not

suddenly “jump” from finite to an infinite value], we have
in (40). From the increasing and continuous

properties of [Condition 5)], we know that
in (40) decreases progressively with time. In fact, we have

. Hence, we have and
. It has to be recalled that

as implied by the Lipschitz continuous property of
[Condition 3a)].

Since , in order for (i.e.,
converging), it is necessarily true that .
Let us define , and the event :

(46)

then we have and .

There are two conditions when , namely, when
either

1) and , where
; or

2) , where .

Hence, can be rewritten as

where

as

as

as (47)

with as defined in (41).
Note that by applying the same argument in proving

the integral in (33) evaluates to zero, we know that
in (47). In addition, since and

that is the upper-bounded by
according to (43), it must be that .
Since is Lipschitz continuous, we know that

as well. Hence, we have .
This completes our proof.

D. Discussions

As a consequence of no neuron underutilization according to
Theorem 1, bias factors of all neurons of any MBCL satisfying
the theorem will tend to infinity as time goes to infinity. This
may pose problem in practical realization, especially when the
number of learning stepsis very large. In order to alleviate
this problem, we present an equivalent realization of an MBCL
satisfying conditions in Theorem 1, usingnormalized bias
factors instead of bias factors . Normalized bias factor

is defined as

(48)

in which the corresponding bias factor is normalized by the
number of learning steps,. According to Condition 5) of
Theorem 1, we have

(49)

To realize the original MBCL using normalized bias factors,
we redefine (17) such that the winner’s index satisfies

(50)

(Since it is obvious that for all , is
nonzero for all . Hence, the choice of denominator is
completely arbitrary. We choose neuron 1 as the denominator
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for convenience.) Furthermore, from (20b), updating equation
for the normalized bias factor, , is given by

(51)
Weight vectors are updated in the same way as in the original
MBCL (20a). It is obvious that this new realization gives
exactly the same states as the original one, except that all
bias factors are scaled down by. Since these normalized bias
factors are bounded for all (as shown in Appendix B),
we consider this to be a practical realization for prolonged
learning. However, in each learning step, all normalized bias
factors have to be updated, whereas in the original MBCL,
only the bias factor of the winner needs to be updated. This
increases learning time in sequential realization. Note that from
our experimental results on the DSCL and FSCL1 [14], these
MBCL’s converge faster than a neural-gas network [12] and
the DSCL performs better than all others. Indeed, their fast
convergence property suggests that prolonged training may not
be necessary in practice. Therefore, we expect that for practical
usage in sequential environment, the original implementation
of the MBCL is sufficient and more efficient.

According to Theorem 1, it holds even when the learning
rate is zero. Although as we have loosely described in the
previous section that the region of the th neuron will
eventually “cut” the support of the pdf independent
of the learning rate (as long as it is sufficiently small and
nonnegative), the MBCL will be useless if weight vectors
are not modified. On the other hand, since any neuron will
eventually win, by using a learning rate that decreases at a
sufficiently slow rate, it is always possible for the weight
vector to move to the interior of the support of the pdf
from any initial conditions after sufficiently long time. Hence,
this makes the MBCL insensitive to initial conditions as we
have described in Section II.

Our approach to proving Theorem 1 demands for very loose
smoothness requirement on the pdf . However, since we
have to prove that the probability of the event is zero
in (47), “impulses” in the are disallowed. Consider the
case when , one has

(52)

Obviously, if “impulses” exist, there exists some
, such that in (47). Consequently,

we cannot conclude .
Theorem 1 guarantees that two existing instances, namely,

the FSCL1 [10] and the DSCL [14], do not have neuron
underutilization problem. However, our theorem is not appli-
cable to two other instances: the FSCL2 and the DECL. In
the FSCL2, is time-dependent. In the DECL, we have

such that when and
in the limit when , we have ,

which violates the requirement on [Condition 4b) in
Theorem 1].

Hence, interesting future works along this direction of
research will be in relaxing the requirements on the bias-
updating function and the smoothness requirement on.

IV. CONCLUSIONS

In this paper, we have analyzed a class of CL models called
the MBCL model, which can be efficiently implemented in
sequential environment. We have proved that under suitable
conditions that the MBCL can avoid neuron underutilization
problem with probability one, according to Theorem 1. Indeed,
as we have summarized and analyzed in Section II, neu-
ron underutilization implies suboptimal performance (e.g., in
classification, vector quantizer design, and probability density
function estimation) and sensitivity to initial conditions, and
hence must be avoided in unsupervised learning. Furthermore,
by proving that an MBCL can avoid neuron underutilization
with probability one, the convergence property of the MBCL
can be arrived at by using the convergence theorem from
Kosmatopoulos and Christodoulou [20].

Conventionally, almost all theoretical studies on existing
CL models have been concentrating on finding the energy
function that a particular CL model is minimizing. Although
it is possible to demonstrate the global optimality of these
approaches, we have no idea on whether neuron underuti-
lization problem will occur. For example, although in case
of the SCL, it has a well-defined energy function (e.g., in
[1]) indicating that it is possible to converge to a globally
optimal solution, the effect of poor initialization cannot be
deduced. On the other hand, the analysis of “neural-gas” by
Martinetz et al. [12] indicates that the distribution of weight
vectors approaches the codevectors distribution of a globally
optimal vector quantizer under the limiting conditions of large

and sufficiently smooth . This indeed could imply that
no neuron is underused, although this is true only in the limit
of large and smooth . However, in this paper, we have
presented a qualitative analysis on the ability of the MBCL
to avoid neuron underutilization problem. To the best of our
knowledge, we are the first to consider this problem in a
mathematically rigorous way.

By proposing the theorem, we define sufficient conditions
for an MBCL to avoid neuron underutilization. We hope
that new instances of the MBCL can be suggested based
on this framework, such that some optimality criteria can be
achieved specific to the targeted applications, and yet neuron
underutilization problem can be avoided. Indeed, if neuron
underutilization problem will lead to suboptimal performances
in the targeted applications, we will expect this new MBCL
to have good performance. Note that the major difference
between existing MBCL’s to which our theorem is applica-
ble differs only in the way bias factors are increased, i.e.,

in (20b). We expect that by modifying this function,
specific optimality criteria can be achieved. For example,
we have recently proposed an instance of the MBCL, the
DSCL [14], which can satisfy the equidistortion principle in
vector quantizer design [30] and outperforms a number of
existing CL models in vector quantizer design. We expect
that this is partially due to its capability in avoiding neuron
underutilization problem.
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APPENDIX A
PROOF OF LEMMA 1:

With reference to (22), at any state is constructed
by the intersection of sets . Note that for any two
sets and , we have

(53)

Hence, if , , we can deduce that
.
Let us define , where

where (54)

Furthermore, let us define . Then, for
a particular set defined in (22), if , we
have . Otherwise, we can express
as . In the former case, if
is connected, it must be true that is connected as well. In
the latter case, since is obviously connected, the connect-
edness of implies that . In either
case, we have to prove the connectedness of .

In order to prove the connectedness of , we
consider a point , and define the line segment

: . If any point on this
line segment is also within the set , we know
that is connected with . Consequently, for any two points

, they are connected through the point
, which means that is connected. Hence, we

have to prove

(55)

Let , then

we define where is defined in

according to and

for any since is a norm (56)

Note that since the function in (19) is strictly increasing,
its inverse must exist, and that .
Now, let us evaluate the following difference:

since is a norm

since

since

according to

(57)

Hence

(58)

This proves (55), which completes our proof.

APPENDIX B
BOUNDEDNESS OFNORMALIZED BIAS FACTORS

In the following, we will show that the normalized bias
factors defined in (48) are bounded .

Proof: Let us consider the updating equation of the
normalized bias factor in (51). Recalled that is
nonnegative and bounded [Condition 4a) of Theorem 1], and
that is either zero or one.

In order to prove the boundedness of normalized bias
factors, we assume that for theth neuron, it is true that

as . Then

s.t. (59)

where is the upper bound of as defined in
Condition 4a (Theorem 1). Note that the following is true:

(60)

By combining (59) and (60) with (51), we have

(61)

This implies that , , which
contradicts our original assumption that as .

This completes our proof.
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