
Abstract
Buffer insertion has successfully been applied to reduce
delay in global interconnect paths; however, existing
techniques only optimize delay and timing slack. With the
increasing ratio of coupling to total capacitance and the use
of aggressive dynamic logic circuit families, noise is
becoming a major design bottleneck. We present
comprehensive buffer insertion techniques for noise and
delay optimization. Our experiments on a microprocessor
design show that our approach fixes all noise violations that
were identified by a detailed, simulation-based noise
analysis tool. Further, we show that the performance penalty
induced by optimizing both delay and noise as opposed to
only delay is 2%.

1.  Introduction
Performance optimization has always been a critical step in
the design of integrated circuits. Process technology scaling
has made interconnect performance more dominant than
transistor and logic performance. With the continued scaling
of process technology, the interconnect resistance per unit
length continues to increase, the capacitance per unit length
remains roughly constant and logic delay continues to
decrease. These trends have caused interconnect delay to
become more dominant than logic delay. Process technology
options, such copper wires, can only provide temporary
relief. The trend of increasing interconnect dominance is
expected to continue.

Interconnect-driven timing optimization techniques, such as
wire sizing, buffer insertion and gate sizing have gained
widespread acceptance in deep submicron design [7]. In
particular, buffer insertion techniques have been successful
in reducing interconnect delay. To the first order,
interconnect delay is proportional to the square of the length
of the wire. Inserting buffers effectively divides the wire into
smaller segments, which makes the interconnect delay
almost linear in terms length (plus the buffer delays).
Additional advantages of buffer insertion will make this
optimization even more pervasive as the ratio of device to
interconnect delay continues to decrease.

Several works study delay-driven buffer insertion. Closed
formed solutions for 2-pin nets are proposed in [1] [4] [5]
and [9]. In [16], Van Ginneken develops a dynamic
programming algorithm which finds theoptimal buffer
placement under the Elmore delay model [10]. In [12], Lillis

et al. extends this algorithm to simultaneously perform wire
sizing, while also minimizing the total number of buffers.
Finally, Alpert and Devgan [1] propose a wire segmenting
pre-processing algorithm to handle the one buffer per wire
limitation of Van Ginneken’s algorithm, which results in a
smooth trade-off between solution quality and run time.

Although timing optimization has always been critical in the
design process, present day design techniques and process
technologies are making noise analysis and avoidance as
important. The shrinking of the minimum distance between
adjacent wires has caused an increase in their coupled
capacitance. Furthermore, as the ratio of wire thickness to
width continues to increase, so will the ratio of coupling to
total capacitance. Coupling capacitance can cause a
switching net to induce noise onto a neighboring net,
resulting in an incorrect functional response. Further, the
widespread use of dynamic logic circuits has made noise
avoidance even more critical since these logic families are
more susceptible to noise failure. It is no longer sufficient or
even acceptable to optimize only for delay. Noise avoidance
techniques must become an integral part of the performance
optimization environment. Buffer insertion provides a
suitable platform for optimizing both timing and noise.

Figure 1  Noise on a victim net (a) without and (b) with a buffer.

Figure 1(a) shows the noise effect that an aggressor net (top)
can have on a victim net (bottom). The coupling capacitance
may cause an input signal on the aggressor net to induce a
noise pulse on the victim net. If the resulting noise is greater
than the tolerable noise margin of the sink, then an electrical
fault results. Figure 1(b) shows how inserting a buffer can
distribute the capacitive coupling between the two newly
created wires, resulting in smaller noise pulses on the input
of the inserted buffer and on the sink. If the amplitude of
these noise pulses are less than he noise margins for the sink
and the buffer, then the circuit will function correctly.

Noise analysis is typically performed through detailed circuit
simulation or through reduced order interconnect analysis
(e.g., AWE[13] and RICE[15]). Although the latter is more
efficient, it is still too slow to be used within an optimization
tool. Instead, we adopt the noise metric of [8].

The rest of the paper is as follows. Section 2 presents
notation and definitions. In Section 3, we derive a formula
for the maximum wire length such that no noise violation is
induced and also present two optimal algorithms for noise
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avoidance. Section 4 presents a third algorithm for
minimizing delay such that all noise constraints are
satisfied. Finally, Section 5 presents experimental results.

2.  Preliminaries
A routing tree  contains a set of wires
and a set of nodes  where  is the
uniquesource node,  is the set ofsink nodes, and  is
the set ofinternal nodes. A wire  with length

 is an ordered pair of nodes in which the signal propagates
from  to . Each node  has a uniqueparent
wire . The tree is assumed to bebinary, i.e., each
node can have at most two children.1 Let the left and right
children of  be denoted by  and
respectively. Assume that if  has only one child, then it is

. The path from node  to , denoted by
, is the set of wires that connect  to . We are

also given a buffer library .

A buffer insertion solution is a mapping
which either assigns a buffer or no buffer, denoted by , to
each internal node of .2 Let
denote the number of internal nodes with inserted buffers.
Wires are segmented as in [1] to create as many internal
nodes as necessary to form a reasonable set of buffer
locations. Assigning  buffers to  induces  nets, and
hence  subtrees, each with no internally placed buffers.
For each , let ,
the subtree rooted at , be the maximal subtree of  such
that  is the source and  contains no internal buffers.
Observe that if ,  contains only one node.

2.1  Delay Optimization
As in [1][12][16], we adopt the Elmore delay model [10] for
interconnect delays and a linear model for gate delays. For
each gate , let  denote the input capacitance,  the
resistance and  the intrinsic delay of . Let  and
respectively denote the lumped capacitance and resistance
for each wire . The capacitiveload seen at node  is
the total lumped capacitance  of , i.e.,

. (1)

The Elmore delay for a wire  is given by
. The delay through a gate

 is given by . If
, then . The total delay from

 to  is given by

. (2)

Each sink  has a given required arrival time , and
assume that the input signal arrives at the source node at
time zero. The condition
must hold for the circuit to meet timing requirements. For
every , let
be theslack at  where  is the set of all sinks that are
downstream from . Observe that the circuit meets its
timing if and only if .

1  A non-binary tree can be converted into a binary tree by inserting
wires with zero resistance and capacitance where appropriate.

2  A buffer placed on an internal node with degree  is interpreted
as having one input, one output, and  fanouts.

2.2  Noise Avoidance
In [8], Devgan proposes a coupled noise estimation metric
which is an upper bound for RC and overdamped RLC
circuits. The metric depends on the resistance of the victim
net, the resistance of the gate driving the victim net,
coupling capacitances to the aggressor nets, and the rise
times and the slopes of the signals on the aggressor nets. For
example, consider the three aggressor nets and the single 2-
pin victim net in Figure 2. The wire in the victim net is
segmented into seven new wires such that each new wire is
completely coupled to either 0, 1 or 2 of the aggressor nets.

Figure 2  Wire segmenting scheme for multiple aggressor nets.

The coupling capacitance from an aggressor net can be
modeled as some fraction of the wire capacitance of the
victim net. Given  simultaneously switching aggressor nets

 near wire , let  be the ratios of coupling to
wire capacitance from the aggressor nets to , and let

 be theslopes (i.e., power supply voltage over
input rise time) of the aggressor net signals. The total
current  induced by the aggressor nets on  is

(3)

Often, information about neighboring aggressor nets is
incomplete, especially when buffer insertion is performed
before routing. When performing buffer insertion in
estimation mode, one might assume that (i) each wire is
coupled to exactly one aggressor net, (ii) the slope of all
aggressor nets is , and (iii) some fixed ratio  of the total
capacitance of each wire is due to coupling capacitance.
Under these assumptions  for each wire .

Let  be the total downstream current seen at , i.e.,

. (4)

Each wire adds to the noise induced on the victim net. The
amount of additionalnoise induced from a wire is
given by . The total additional
noise seen at a sink  starting at some upstream node  is
given by

(5)

where  if there is no gate at . The path from  to
has no intermediate buffers. If an intermediate buffer is
present, the noise computation begins from the output of the
buffer, since the buffer is a restoring stage. Each node

 has a predeterminednoise margin . The
condition , ,

 must hold for there to be no
electrical faults. We define the noise slack for every
as . Noise slack
serves equivalently as a noise margin for internal nodes.
Noise constraints for downstream sinks in  are satisfied
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if and only if  is greater than the noise seen at .
Observe that  for each
if there are no noise violations.

2.3  Problem Formulations
We study two different buffer insertion problems. The first
problem seeks to fix all noise violations with the fewest
possible buffers. Delay is not considered

Problem 1: Given a tree , a buffer
library , and noise margins  for each ,
find a solution  which minimizes ,
such that  for each .

This problem may be useful for non-critical nets, for which
delay optimization is unnecessary. For timing-critical nets,
we must consider both noise and delay at the same time.

Problem 2: Given a tree , a buffer
library , and noise margins  for each ,
find a solution  which minimizes
such that  for each .

A third formulation can seek to minimize the total number
of buffers inserted by while satisfying both noise and timing
constraints. Algorithm 3, which is used to solve Problem 2,
can also be applied to address this third formulation using
an extension of Lillis et al, [12] to Van Ginneken [16].

3.  Noise Constrained Buffer Insertion
We begin with the simplest case of a wire with uniform
width and neighboring coupling capacitance, as shown in
Figure 3. For each wire , let  and
respectively be the wire resistance per unit length and the
current per unit length. Since current is a constant times
wire capacitance, we can use a -model to represent its
distribution.

Figure 3  Uniform coupling capacitance for a single wire.

Theorem 1 For a given wire  in a routing tree ,
a buffer  needs to be inserted on  to satisfy noise con-
straints if and only if

. (6)

Proof: For noise constraints to be satisfied, we must have
 which is a

quadratic in . Solving for  yields the theorem.

Figure 4  Iterative application of Theorem 1.

Theorem 2 A net that has been optimally buffered to mini-
mizedelay alonemay be susceptible to noise violations.

Proof: Consider a wire  in which  and  are
gates in the buffered net (a similar analysis holds for a path
from  to ). Let  be the slope of an aggressor net, and let

 be the ratio of coupling to total capacitance for . If there
is a noise violation at , then the following must hold.

(7)

Solving for  yields

. (8)

For any fixed values for the parameters on the right side of
the inequality, a noise violation will occur if the noise
margin is small enough. Even if  is reasonably large,
an aggressor net can have a very large slope  and a high
coupling ratio  which would also cause a violation.

3.1  Noise Avoidance for Single-Sink Trees
Theorem 1 suggests how to insert buffers for single-sink
trees. Begin at the sink and work up the tree, updating the
total downstream current and noise slacks of visited internal
nodes. At each internal node, use Theorem 1 to decide if a
buffer should be inserted. The algorithm terminates when
the source node is reached.

Algorithm 1, Noise Avoidance for Single-Sink Trees, is
presented in Figure 5. The algorithm accepts a routing tree,
and a single buffer type . Step 1 initializes the current and
noise slack of the sink node, then Steps 2-4 climb up the tree
visiting each node in turn. Step 3 examines whether or not a
buffer needs to be inserted on the current wire , by
computing the noise from placing a buffer at . If this noise
is less than the noise slack, no buffer needs to be inserted, so
the algorithm computes the downstream current and noise
slack for node , then moves to the next wire. But, if the
noise is larger then the noise slack, then a buffer must be
inserted. Step 4 computes the maximum length that this
buffer may be inserted from , and inserts it there at a new
internal node . Finally, Step 5 computes the noise slack at
the driver and inserts a buffer right after the driver if there is
a noise violation (which can only occur if ).
Optimality follows from the fact that buffers are always
inserted their maximal distance up the tree, according to
Theorem 1.
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Input:  ≡ Routing tree
≡ buffer type

Output: ≡ Buffer Insertion Solution

1. Set , .
2. while  do
       Let  be the parent wire for .
3.     if
            Set ,
            Set . Set .
4.      else
            Let , .

            Set .

            Create internal node  (with parent  and child )
               on  at distance  from . Set .
            Set , , and .
5.
    if , create internal node  at . Set .

Figure 5  Algorithm 1, Noise Avoidance for Single-Sink Trees.
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3.2  Noise Avoidance for Multi-Sink Trees
Some difficulty arises in extending Algorithm 1 to multiple
sinks. Let , , and  respectively be the
wire, current and noise slack for the left (right) branch of an
internal node  with two children. It is possible that

,  and , i.e.,
the noise constraints for the left and right branches are
satisfied but merging the left and right branches will induce
a noise violation. Thus, a buffer must be placed on either the
left or right branch immediately after . One cannot
immediately deduce which branch to choose since one
needs to know the characteristics and location of the gate
driving . Since the algorithm is bottom-up, the location of
this gate has not yet been determined.

We propose to generate a set ofcandidate solutions for each
node and propagate these candidate solutions up the tree, in
the same spirit as in Van Ginneken’s algorithm [16]. A
candidate  is a 3-tuple  where  is

the downstream current seen at ,  is the noise slack
for , and  is the current solution for the subtree .
Let  denote the resulting solution from
merging the left solution  and the right solution  for
an internal node  with two children. For each  in ,
we assign  if either  or
and  otherwise. Whenever a node with two
children is encountered and a buffer needs to be inserted,
both a left and right candidate is generated. The candidates
are sorted in non-decreasing order by downstream current
so that inferior solutions can be pruned [16]. Given two
candidates  and ,
is inferior to  if and only if  and .

Algorithm 2 is similar to Algorithm 1, except for Steps 4-7
which handle nodes with two children. Step 4 iterates
through each candidate for the left branch and each
candidate in the right branch using the Van Ginneken’s
linear merging technique. Step 5 tests whether merging the
two candidates results in a noise violation, and if not, Step 7
merges the two sets of candidates without inserting a buffer.
If there is a violation, then two new solutions, one with a
buffer on the left branch and one a new buffer on the right
branch, are generated and inserted into the current list of
candidates.   When the algorithm terminates, the solution(s)
in  with the fewest number of buffers is chosen.

The algorithm returns an optimal solution to Problem 1 in
time quadratic in . As for Algorithm 1, one can obtain an
optimal solution for a buffer library with multiple buffer
types by selecting the buffer type with least resistance.

4.  Optimizing Noise and Delay
To address Problem 2, we modify the approach of Van
Ginneken [16] to include noise avoidance. Whenever Van
Ginneken’s algorithm considers inserting a buffer, we check
the noise constraints; if they have been violated, the buffer is
not inserted. Hence, our algorithm generates fewer solutions
than Van Ginneken’s algorithm since itprunes solutions
which have noise violations.

As before, a list of candidates is computed for each node,
except that acandidate  is
now a 5-tuple where  is the load seen at ,  is the
slack at ,  is the downstream current seen at ,
is the noise slack at , and  is the current solution. Figure
7 illustrates Algorithm 3, which is the same as Van
Ginneken’s3 except for the modifications in boldface. Step 1
of Figure 7 segments the wires to generate sufficient
possible buffer locations. Step 2 calls Find_Cands which

3  The algorithm can be modified to handle inverting buffers [12].

Input: ≡ Current node to be processed
Output: ≡ List of candidate solutions for node
Globals: ≡ Routing tree

≡ Buffer library

1. if , then set
2. else if  has only one child then

3. else if  has two children

      Set  and .
4.    while  and  do
         Let  be the ith candidate in list .
         Let  be the jth candidate in list .
5.       if  then
             Insert nodes  just after  on the
                  left and right branches.
             Set , .
             Assign ,
6.

          else
7.
8. if  is the source then
      for each  do

          if  create internal node  at .
             Set .
      return
9. Let  be the parent wire of
      for each  do
          if  then
             Set
          else
10.         Let , .

             Set

             Create internal node  (with parent  and child )
                      on wire  at distance  from .

,
11. Prune  of inferior solutions and return

Figure 6  Algorithm 2, Noise Avoidance for Multi-Sink Trees.
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2. .
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          Set

Set .
4. return
    with maximum such that

Figure 7  Algorithm 3: Optimizing Noise and Delay.
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returns a list of candidate solutions. Step 3 adds the driver
delay and computes the noise slack, then the candidate with
the best timing slack, such that noise constraints are
satisfied, is returned in Step 4.

The Find_Cands procedure shown in Figure 8. It takes the
node  as input, recursively computes the lists of possible
candidates for all the nodes in , and then returns the
candidates for . Find_Cands consists of four main parts:

• Steps 1-4 constructs candidates for the children of  and
merges them to form , the set of candidates for .

• Step 5 inserts considers each buffer type in the library
and adds the buffer which yields the largest slacksuch
that noise constraints are satisfied. A buffer will not be
inserted if there is a noise violation. This step is the fun-
damental difference between Algorithm 3 and Van Gin-
neken’s algorithm [16].

• Step 6 computes the new load, slack, current and noise
slack for each candidate induced by the parent wire of .

• Finally, Step 7 prunes inferior candidates from , using
the pruning schemes of [12][16].

Modifications for noise avoidance do not increase the
 time complexity of Van Ginneken’s algorithm

since the modifications are mostly constant time operations
for bookkeeping and pruning.

Theorem 3 If  and ,
then Algorithm 3 returns an optimal solution to Problem 2.

Proof: Refer to [2] for a proof. With multiple buffers in the
buffer library, the optimality of Algorithm 3 is no longer
guaranteed. However, in practice, Algorithm 3 generates
solutions that are very close to optima; our experimental
results in the next section strongly support this claim.

5.  Experimental Results
The algorithm we use in our experiments is an extended
version of Algorithm 3, called BuffOpt, which can trade-off
between delay reduction, noise avoidance, and the total
number of buffers [12]. We refer to the algorithm which
optimizes only delay [1][12][16] as DOpt. DOpt is the same
as Algorithm 3 but without the boldface text. For our
experiments, we selected a set of 500 critical nets from a
modern Power PC microprocessor design. Table 1 shows the
distribution of the sizes of these nets. To verify BuffOpt, we
also ran a detailed, simulation-based noise analysis tool,
called 3dnoise [14]. 3dnoise was run both before and after
BuffOpt and DOpt.To perform noise analysis, 3dnoise uses
accurate moment-matching based techniques that are
similar to RICE [15].

Table 1: Sink distribution of the 500 test nets.
We ran BuffOpt, DOpt and 3dnoise all in estimation mode
(see Subsection 2.2) assuming a 0.7 coupling to total
capacitance ratio from a single aggressor net with rise time
0.25 nanoseconds and a power supply voltage of 1.8V. The
tolerable noise margin for every gate was set to 0.8V. The
buffer library contained 5 inverting and 6 non-inverting
buffers of varying power levels. Our experiments show that

• BuffOpt eliminated all noise problems in the design,
• DOpt could not fix all noise problems, and
• the average delay penalty from using BuffOpt instead of

DOpt was less than 2%.

5.1  BuffOpt Successfully Avoids Noise
We ran BuffOpt on the 500 nets, and observed that BuffOpt
identified 423 noise violations and successfully inserted
buffers to fix all of them. To verify BuffOpt’s identification
of noise violations, we ran 3dnoise on the nets before
running BuffOpt.   The accurate analysis of 3dnoise
identified 386 nets with noise violations, all of which were
also identified by BuffOpt. BuffOpt identified 423 - 386 =
37 more nets with violations, which shows that the noise
metric [8] is slightly conservative. We also ran 3dnoise on
the nets after running BuffOpt, and 3dnoise identified no
noise violations. This data is summarized in Table 2.

Table 2: Number of noise violations reported by 3dnoise before
and after running BuffOpt.

Input: ≡ Current node to be processed
Output: ≡ List of candidate solutions for node
Globals:  ≡ Routing tree

≡ Buffer library

1. if  then
2. else if  has only one child then
        for each  do

3. else if  has two children

        Set  and
4.     while  and  do
            Let  be jth candidate in .
            Let  be kth candidate in .
            Let ,

            if  then . if  then .
5. if  is a feasible buffer location then
        for each buffer  do
             Find  that maximizes

such that
            if such a candidate exists then
                Set  and

6. Let  be the parent wire for .
        for each  do
            Set
            Set

7. Prune  of inferior solutions and return S.

Figure 8  Find_Cands Procedure(v).
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5.2  Optimizing Delay Alone is Insufficient
We now compare BuffOpt to DOpt (optimal delay-driven
buffer insertion) in terms of noise avoidance. Since BuffOpt
never inserted more than four buffers on any net, we ran
DOpt four times in which no solution was allowed to have
more than  buffers where  ranged from 1 to 4. We denote
one such run of DOpt by DOpt(k). Table 3 compares
DOpt(k) with BuffOpt. TBI stands for “total buffers
inserted” (i.e.,  times the number of nets with
buffers)4, and #NVs stands for “number of noise
violations”.

Observe that running DOpt(4) causes the addition of 1126
more buffers than BuffOpt, yet there are still 13 noise
violations. Reducing the maximum number of buffers that
can be inserted by DOpt only increases the number of noise
violations and still causes more buffers to be inserted for

. Thus, as shown by Theorem 2, noise avoidancemust
be integrated into the algorithm to guarantee no noise
violations. Finally, observe that BuffOpt uses less CPU than
DOpt(k) for . This occurs because BuffOpt prunes
candidates with noise violation, which gives BuffOpt fewer
total candidates to analyze.

5.3  The Delay Penalty is Small

Finally, we compare DOpt to BuffOpt in terms of total
delay. We first ran BuffOpt on the 500 nets and recorded the
buffers inserted for each net. We then ran DOpt for the same
number of buffers as BuffOpt inserted in order to make an
apples to apples comparison. We computed the reduction in
total delay for each net and averaged the results by the
number of buffers inserted. The cumulative results are
presented in Table 4. For example, there were 232 nets for
which two buffers were inserted, and on average BuffOpt
reduced delay by 336.0 picoseconds while DOpt reduced
delay by 338.2 picoseconds. The overall delay penalty is

4 For example, BuffOpt inserted
 buffers.

 percent. The average delay
reduction over all 423 nets is computed by taking the total
delay reduction for all nets and dividing by 423.5

Observe from the last column that the overall average delay
penalty is only 6 ps, or equivalently 1.99%, from avoiding
noise. Thus, Buffopt is able to integrate noise into a delay-
driven algorithm with virtually no loss in total delay.

Recall that Algorithm 3 is optimal when the buffer library
contains a single buffer type, but we could not guarantee
optimality for a larger buffer library. The DOpt results in
Table 4 form an upper bound on the optimal solution to
Problem 2 since DOpt is optimal for delay alone. Observe
that even with a buffer library of size 11, BuffOpt solutions
are virtually optimal since they are on average within 2% of
an upper bound.
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5 E.g., for BuffOpt, the weighted average of 301.1 is given by

Method  # Nets with d Buffers TBI # NVs Total
CPUd=0 d=1 d=2 d=3 d=4

None 500 0 386 N/A

DOpt(1) 7 493 493 150 216

DOpt(2) 5 19 476 971 37 613

DOpt(3) 5 16 77 402 1376 21 936

DOpt(4) 4 16 29 35 416 1843 13 1135

BuffOpt 77 161 232 28 2 717 0 980

Table 3: BuffOpt versus DOpt(k) for noise.

# Buffers 0 1 2 3 4 Avg DR

# Times 77 161 232 28 2 423

BuffOpt 0 124.8 336.0 1043.4 45.5 301.1

DOpt 0 135.8 338.2 1053.1 50.3 307.1

Delay Penalty 0 8.77 0.64 0.93 10.50 1.99

Table 4: Average delay reduction from buffer insertion.

k k

d∑ d

0 77⋅( ) 1 161⋅( ) 2 232⋅( )+ +
3 84⋅( ) 4 2⋅( )+ + 717=

k 2≥

k 3≥

100 338.2 336.0–( ) 338.2⁄ 0.64=

161 124.8⋅( ) 336.0 232⋅( ) 1043.4 28⋅( ) 45.5 2⋅( )+ + +( ) 423⁄
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