Buffer Insertion for Noise and Delay Optimization

Charles J. Alpert Anirudh Devgan Stephen T. Quay
IBM Austin Research Laboratory IBM Austin Research Laboratory IBM Microelectronics Division
Austin, TX 78660 Austin, TX 78660 Austin, TX 78660
alpert@austin.ibm.com devgan@austin.ibm.com quayst@austin.ibm.com
Abstract et al. extends this algorithm to simultaneously perform wire

Buffer insertion has successfully been applied to reducéi_zmg’ while also minimizing the total number of buffers.
delay in global interconnect paths; however, existingNa!ly, Alpert and Devgan [1] propose a wire segmenting

techniques only optimize delay and timing slack. With thﬁre—processmg algorithm to handie the one buffer per wire

. . : . : mitation of Van Ginneken’s algorithm, which results in a
increasing ratio of coupling to total capacitance and the usgmqoth trade-off between solution quality and run time.
of aggressive dynamic logic circuit families, noise is

becoming a major design bottleneck. We presenflthough timing optimization has always been critical in the
comprehensive buffer insertion techniques for noise anf@Sign process, present day design techniques and process
delay optimization. Our experiments on a microprocessofechnologies are making noise analysis and avoidance as

. . Cm imlat ortant. The shrinking of the minimum distance between
design show that our approach fixes all noise violations thagzljpacent wires has ca?used an increase in their coupled
were identified by a detailed, simulation-based noisgapacitance. Furthermore, as the ratio of wire thickness to

analysis tool. Further, we show that the performance penalty;igth continues to increase, so will the ratio of coupling to
induced by optimizing both delay and noise as opposed tgtal capacitance. Coupling capacitance can cause a

only delay is 2%. switching net to induce noise onto a neighboring net,
. resulting in an incorrect functional response. Further, the
1. Introduction widespread use of dynamic logic circuits has made noise

Performance optimization has always been a critical step iavoidance even more critical since these logic families are
the design of integrated circuits. Process technology scalingore susceptible to noise failure. It is no longer sufficient or
has made interconnect performance more dominant thaven acceptable to optimize only for delay. Noise avoidance
transistor and logic performance. With the continued scalintechniques must become an integral part of the performance
of process technology, the interconnect resistance per uriptimization environment. Buffer insertion provides a
length continues to increase, the capacitance per unit lengshitable platform for optimizing both timing and noise.
remains roughly constant and logic delay continues to

decrease. These trends have caused interconnect delay to —/_l

become more dominant than logic delay. Process technology T T
options, such copper wires, can only provide temporary (@) [> T T
relief. The trend of increasing interconnect dominance is

expected to continue.

|

Interconnect-driven timing optimization techniques, such as _/ |
wire sizing, buffer insertion and gate sizing have gained T T .. T I
widespread acceptance in deep submicron design [7]. In (b) [> TT K T T D
particular, buffer insertion techniques have been successful a4 e

in reducing interconnect delay. To the first order,_.) - . .
interconnect delay is proportional to the square of the lengthigure 1 Noise on a victim net (a) without and (b) with a buffer.

O e i e nughjaute 1) shows th noiee ofec ha an agaressor et (op)
almost linear in terms length (plus the buffer delays)magyhggfsgna%\i”ncgm Qizggioétr(l)%)e. ngr%%g%tnr?eﬁge}ﬁgiggea
Additional advantages of buffer insertion will make this qise uise on the victim net. If the resulting noise is greater
optimization even more pervasive as the ratio of device 14,51 the tolerable noise margin of the sink, then an electrical
interconnect delay continues to decrease. fault results. Figure 1(b) shows how inserting a buffer can
Several works study delay-driven buffer insertion. Closedlistribute the capacitive coupling between the two newly
formed solutions for 2-pin nets are proposed in [1] [4] [5]created wires, resulting in smaller noise pulses on the input
and [9]. In [16], Van Ginneken develops a dynamicOf the inserted buffer and on the sink. If the amplitude of
programming algorithm which finds theptimal buffer ~ these noise pulses are less than he noise margins for the sink
placement under the Elmore delay model [10]. In [12], Lillisand the buffer, then the circuit will function correctly.

Noise analysis is typically performed through detailed circuit
simulation or through reduced order interconnect analysis
(e.g., AWE[13] and RICE[15]). Although the latter is more
efficient, it is still too slow to be used within an optimization
tool. Instead, we adopt the noise metric of [8].

The rest of the paper is as follows. Section 2 presents
notation and definitions. In Section 3, we derive a formula
for the maximum wire length such that no noise violation is
induced and also present two optimal algorithms for noise

35" Design Automation Conference ®
Copyright ©1998 ACM
1-58113-049-x-98/0006/$3.50 DAC98 - 06/98 San Francisco, CA USA

avoidance. Section 4 presents a third algorithm for 2.2 Noise Avoidance
minimizing delay such that all noise constraints are |, [8] Devgan proposes a coupled noise estimation metric
satisfied. Finally, Section 5 presents experimental results. \yhich is an upper bound for RC and overdamped RLC
T circuits. The metric depends on the resistance of the victim
2. Pr_e“mma“es . . net, the resistance oﬁ‘) the gate driving the victim net,
A routingtree T = (V, E) contains a set ofi—1 wires E coupling capacitances to the aggressor nets, and the rise
and a set oh nodesv = {{sqg 0 SI0 IN} whereso isthe times and the slopes of the signals on the aggressor nets. For
uniguesourcenode, S| is the set afinknodes, andN is example, consider the three aggressor nets and the single 2-
the set ofnternalnodes. A wirge = (u)) JE withlength i victim net in Figure 2. The wire in the victim net is
| is an ordered pair of nodes in which the signal pmpagategegmented into seven new wires such that each new wire is
from u tov. Each node 0 SID IN -~ has a unigparent completely coupled to either 0, 1 or 2 of the aggressor nets.

wire (u,v) OE. The tree is assumed to bmary, i.e., each
SR —
|
|

node can have at most two childrehet the left and right _/
children of v be denoted by .left(v) and.right(v) Iﬁl
H—H

respectively. Assume that¥f has only one child, then it is D T T 1 T | D

T.left(v). The path from nodeu tov , denoted by 1 1 11 |

path(u V), is the set of wires that connect o . We are T T T

also given a buffer librarg = {b;, b, ..., b} . /] |

A buffer insertion solution is a mapping: IN - B O { b} Figure 2 Wire segmenting scheme for multiple aggressor nets.
which either assigns a buffer or no buffer, denoted by , to))

each internal node of 2 Let [M| = [{vO IN: M(v) OB} The coupling capacitance from an aggressor net can be

denote the number of internal nodes with inserted buffers.modeled as some fraction of the wire capacitance of the
Wires are segmented as in [1] to create as many interna¥ictim net. Givent simultaneously switching aggressor nets
nodes as necessary to form a reasonable set of buffet. ...t near wiree , let;, ..., A, be the ratios of coupling to
locations. Assigningk buffers to6 inducks 1 nets, and Wire capacitance from the aggressor netseto , and let
hencek +1 subtrees, each with no internally placed buffers.fy, -, iy be theslopes(i.e., power supply voltage over
For eachvOV , letT(v) = ({v} O Sk, O INy, Erey) input rise time) of the aggressor net signals. The total
the subtree rooted at, be the maximal subtred af ’such current!, induced by the aggressor netseon s

that v is the source ant(v) contains no internal buffers. ¢
Observe that it/ D'SI .,T(v.) contains only one node. I, =C, z () 3)

2.1 Delay Optimization . _ =1 _ _
As in [1][12][16], we adopt the Elmore delay model [10] for Often, information about neighboring aggressor nets is
interconnect delays and a linear model for gate delays. Fofncomplete, especially when buffer insertion is performed
each gatev , leC, denote the input capacitamge, thebefore routing. When performing buffer insertion in
resistance an&, the intrinsic delaywf . &t d estimation modeone might assume that (i) each wire is
respectively denote the lumped capacitance and resistanceoupled to exactly one aggressor net, (ii) the slope of all
for each wireeJ E . The capacitilead seen at node is aggressor nets ig , and (i) some fixed ratio of the total

the total lumped capacitanGs ofv) ,i.e., capacitance of each wire is due to coupling capacitance.
) Under these assumptiohs= AuC, for each vere

Crw = | Cut DZ Ce- @) Let 1., be the total downstream current seem at , i.e.,
WH Sk el Ery
The Elmore delay for a wiree = (u V) is given by Iy = lo- (4)
Delay(§ = R(Co/2+Crpy)- The delay through a gate eDZm)

vO{sq OB s given By Delay(y) = K, +RCrq) - If Each wire adds to the noise induced on the victim net. The
VOIN,M(v) = b, th.e”D%'aY(") =0 . The tota de(lay from amount of additionatoiseinduced from a wire = (4 v) is
vOV tositl Sl is given by given by Noisg § = Ry(l/2+1(,) . The total additional
Delay(v— s} = Delay(8 + Delay(y) . (2) noise seen at a Sink starting at some upstreamwode s

iven b
e=(uW)gpath(\4 s) g y

Each sinksi has a given required arrival tiR&T(s) , and Nois sj = | + Nois 5
assume that the input signal arrives at the source node at Isev=8) = IryRy Ise(9 ©)
time zero. The conditiolsi O S|, Delay(so- s) < RAT(s)

el pafi(v~ s)
P Y ; whereR, = 0 ifthereis no gateat . The path frem sito
must hold for the circuit to meet timing requirements. For paq ncF;Vintermediate buffe?s. If an interr%ediate buffer is
everyvOV, letq(v) = mmsiD.dS(?]RAT(s) -~Delay(v-—s) present, the noise computation begins from the output of the
be theslackatv whereds(v) is the set of all sinks that aré p ger since the buffer is a restoring stage. Each node
downstream fromv . Observe that the circuit meets its , ;50 B has a predeterminatbise marginNM(v) . The
timing if and only ifa(sg) 20 . conditon OvO{sg O{IN|M(v)OB} , UsiO Sk, ,
Noisg v sj<NM(si) must hold for there to be no
electrical faults. We define the noise slack for everyv
1 A non-binary tree can be converted into a binary tree by inserting@S NS(V) = ming; by, NM(si) —Noisg(v— s . Noise slack
wires with zero resistance and capacitance where appropriate. serves equwalentFy ‘4s a noise margin for internal nodes.

2 A buffer placed on an internal node with degdee s interpreted Noise constraints for downstream sinksTigv) are satisfied
as having one input, one output, athe 1 fanouts.

if and only if N§(\) is greater than the noise seenvat
Observe thaNg(y =0 for eachO {sc; O {IN|M(v) O B}
if there are no noise violations.

2.3 Problem Formulations

We study two different buffer insertion problems. The first
problem seeks to fix all noise violations with the fewest
possible buffers. Delay is not considered

Problem 1 Given a treelT = ({sd OSIO IN,E) , a buffer
library B, and noise marginsiM(v) for eaet SIO B
find a solutionM: IN - (BO{b}) which minimize$v|
such thatN§(y) =0 for eachO{sd O{IN|M(v) OB}

This problem may be useful for non-critical nets, for which
delay optimization is unnecessary. For timing-critical nets,
we must consider both noise and delay at the same time.

Problem 2 Given a treeT = ({so} O SIO IN,E) , a buffer
library B, and noise marginsiM(v) for eaet] SIO B
find a solutionM: IN - (BO{b}) which minimizeg(so
such thatN§(y) =20 for eachO{sd O{IN|M(v) OB}

A third formulation can seek to minimize the total number
of buffers inserted by while satisfying both noise and timing

A\ be the ratio of coupling to total capacitancedor . If there
is a noise violation at , then the following must hold.

Ro . |Rocf . 2NM(v)
>R *JORO * RO ")
Solving for NM(v) vyields
RCA\i2 , 2leR
NM(v) < 2“86+ Ebg. (8)

For any fixed values for the parameters on the right side of
the inequality, a noise violation will occur if the noise
margin is small enough. EvenNfM(v) is reasonably large,
an aggressor net can have a very large sjope and a high
coupling ration which would also cause a violatian.

3.1 Noise Avoidance for Single-Sink Trees
Theorem 1 suggests how to insert buffers for single-sink
trees. Begin at the sink and work up the tree, updating the
total downstream current and noise slacks of visited internal
nodes. At each internal node, use Theorem 1 to decide if a
buffer should be inserted. The algorithm terminates when
the source node is reached.

constraints. Algorithm 3, which is used to solve Problem 2,
can also be applied to address this third formulation using
an extension of Lillis et al, [12] to Van Ginneken [16].

Input: T = ({so O{si} OIN,E) =Routing tree
b = buffer type

Output: M: IN - B = Buffer Insertion Solution

3. Noise Constrained Buffer Insertion

We begin with the simplest case of a wire with uniform
width and neighboring coupling capacitance, as shown in
Figure 3. For each wire , l&R = R/I, and=1/I,
respectively be the wire resistance per unit length and the
current per unit length. Since current is a constant timeg
wire capacitance, we can usema -model to represent it
distribution.

|
D D

Figure 3 Uniform coupling capacitance for a single wire.

11 11
TT I T

1. Setl; si) = 0,NS(s) = NM(si) ,v = si.
2. while 2v¢ so do
Lete = (u V) be the parent wire for

3. ifRy(Iyy +1e) * Relly(yy +1/2) <NV
elT u) = ITI\(]v +|e '
SeNS(y = é(v)—Re(IT(v)He/Z) .Set = u
4. else
Letl = 1/l, R= R/l .
Ro 'ty , [Rocf, droaf , 2NS(y
Set = -—g-T-*oROYOT 0T TR
Create internal node (with parent and child
ore atdistande fromm .9é(w) = b
Setr,) =0 NSwW = NM(b) ,and = w
5.N§(s9 = (NS($9 —Rgol1(sq

if N§(sQ <0, create internal node ab . Sdt(w) = b

Theorem 1 For a given wiree = (y, V) in arouting tree

a bufferb needs to be inserted en
straints if and only if

to satisfy noise con-

Rorf , dr

R, ot o
R |

! R |

<
e=

f NS g

Figure 5 Algorithm 1, Noise Avoidance for Single-Sink Trees.

Algorithm 1, Noise Avoidance for Single-Sink Trees, is

presented in Figure 5. The algorithm accepts a routing tree,
and a single buffer typp . Step 1 initializes the current and
noise slack of the sink node, then Steps 2-4 climb up the tree

Proof: For noise constraints to be satisfied, we must haveyisiting each node in turn. Step 3 examines whether or not a

Ry(lo* 7o) ¥ RI((11/2) + 17,) SNS(Y which is a
qﬂad?atig(l\ﬁ)le . Seolving foreT(\g)/ields the theorem.

P~ Y

Figure 4 Iterative application of Theorem 1.

3N\
%

1
Si

N
2V

Theorem 2 A net that has been optimally buffered to mini-
mizedelay alonanay be susceptible to noise violations.

Proof: Consider a wiree = (4) in which and are

buffer needs to be inserted on the current wire (u V) , by
computing the noise from placing a bufferuat . If this noise
is less than the noise slack, no buffer needs to be inserted, so
the algorithm computes the downstream current and noise
slack for nodeu , then moves to the next wire. But, if the
noise is larger then the noise slack, then a buffer must be
inserted. Step 4 computes the maximum length that this
buffer may be inserted from , and inserts it there at a new
internal nodew . Finally, Step 5 computes the noise slack at
the driver and inserts a buffer right after the driver if there is
a noise violation (which can only occur R,,>R,).
Optimality follows from the fact that buffers are always

gates in the buffered net (a similar analysis holds for a pathinserted their maximal distance up the tree, according to
fromu tov). Letjt be the slope of an aggressor net, and letTheorem 1.

3.2 Noise Avoidance for Multi-Sink Trees the downstream current seenvatN Sy, is the noise slack
Some difficulty arises in extending Algorithm 1 to multiple for v, andM is the current solution for the subtmee)

sinks. Lete(e,) ,I (1) , andNS(NS) respectively be the L&t M =M OM, denote the resulting solution from
wire, current and noise slack for the left (right) branch of an Merging the left solution, ~ and the right solutish ~ for
internal nodev with two children. It is possible that an internal noder with two children. For eash = Tiw)
R NS, R, <NS andR(l,+I)>min(NS, NS) ,ie., We assignM(w) =b if eithem,(w) = b OMd(W) =b

the noise constraints for the left and right branches areand M(w) = b otherwise. Whenever a node with two
satisfied but merging the left and right branches will induce children is encountered and a buffer needs to be inserted,
a noise violation. Thus, a buffer must be placed on either theP0th a left and right candidate is generated. The candidates
left or right branch immediately aftev . One cannot areé sorted in non-decreasing order by downstream current
immediately deduce which branch to choose since oneSO that inferior solutions can be pruned [16]. Given two
needs to know the characteristics and location of the gat€andidates; = (1, NS, M;) —and, = (1, NS, M;) g,
driving v . Since the algorithm is bottom-up, the location of IS inferior to a, if and only ifi; >1, andN$ <NS, .

this gate has not yet been determined. Algorithm 2 is similar to Algorithm 1, except for Steps 4-7
which handle nodes with two children. Step 4 iterates
through each candidate for the left branch and each
candidate in the right branch using the Van Ginneken’s
linear merging technique. Step 5 tests whether merging the
two candidates results in a noise violation, and if not, Step 7

Input: v = Current node to be processed

Output: S = List of candidate solutions for node

Globals: T = ({sq OSIO IN, E) =Routing tree
B = Buffer library

1.if v SI, then seS = {(0, NM(V), b)} merges the two sets of candidates without inserting a buffer.
2. else ifv has only one child then If there is a violation, then two new solutions, one with a
S = Algorithm2(T.left(v)) buffer on the left branch and one a new buffer on the right
3. else ifv has two children branch, are generated and inserted into the current list of
S = Algorithm2(T.left(v)) candidates. When the algorithm terminates, the solution(s)
S = Algorithm2(T.right(v)) in S with the fewest number of buffers is chosen.
4 Swer?n;j i ‘sandan:cki \ér\ do The algorithm returns an optimal solution to Problem 1 in
" leta, = (' NS M) be thel candidate in lis§, time quadratic inv| . As for Algorithm 1, one can obtain an
Leta = (II' NS; Ml) be thel] candidate in lis6, ' optimal solution for a buffer library with multiple buffer
. if RbEII . Irr) R min(rIV%, NS) then types by selecting the buffer type with least resistance.
insert nodas), w, _Justafter on the 4. Optimizing Noise and Delay
Sel\i[’[inM“gMbrfnc es- To address Problem 2, we modify the approach of Van
Assig;rivlb(vx}) =b l\%’r(w - b Ginneken [16] to include noise avoidance. Whenever Van
6 S - S0 |{(Il min(NMr(b)rNSr) MP O 3 Ginneken'’s algorithm considers inserting a buffer, we check
' S = so{(|’min(NM N'S(D)’M ' ,\'/\l/lf)} the noise constraints; if they have been violated, the buffer is
else ‘ I’ P r not inserted. Hence, our algorithm generates fewer solutions
_ ; than Van Ginneken’s algorithm since gtunes solutions
It S = SU{(}*+ 1, min(NS,NS), M T M)} which have noise violatio%s. g

8. if v is the source then

for eacha = (IQV)’ Ny, M)OS do Input: T = ({so OSIO IN,E) =Routing tree
NS(sg = N SQ_R.solT(SOi B = Buffer library
if I;S(l\/f(owj O_ (E)reate internal node 80 Output: o = Best candidate solution for sourse
returnS 1.T = SegmentWireq T, B [1].
9. Lete = (y V) be the parent wire of 2.S = Find Candg s0.
for eachor = (I1(,), NS(),M) S do 3. for eacha = (Cy (4, (SO, IT%O), NS(v),M)OS do
fRy(I 1y + |eS +Re(l(y +1/2) <NV then Seqy(v) = q(V) —Kgo—RsCr(y
Setr = (lT(V) +1g N V)—Re(l'r(v)—|e/2)x M) SetNS(sg = NS(s9 — IT(so sQ*
else 4. rca_turn(CT(So), q(so), IT(SO), NS(s9,M)OS
10. Let =1/1, R= R/l . with maximumq(so) such that NS(sog =0
Set = Ry + Rorf + drwcf + 2NV Figure 7 Algorithm 3: Optimizing Noise and Delay.
R | OrO O O IR . . .
)]) As before, a list of candidates is computed for each node,
Create internal noge (with parent and child except that @andidatea = (C; o q(v), 7y NSV, M) is
onwire atdistance from . now a 5-tuple where€, ., is the load seew aty(v) is the
M(w) = b, a = (I(lg=1), NM(b) —IR.(l =), M) slack atv I, isthe downstream current seen atS(,)
11. PruneS of inferior solutions and retusn is the noise slack at , amd s the current solution. Figure

7 illustrates Algorithm 3, which is the same as Van
Ginneken’s except for the modifications in boldface. Step 1
We propose to generate a setafhdidatesolutions for each ~ of Figure 7 segments the wires to generate sufficient
node and propagate these candidate solutions up the tree, @ossible buffer locations. Step 2 calls Find_Cands which
the same spirit as in Van Ginneken’s algorithm [16]. A
candidatea is a 3-tuple(ly(,,, NSy, M) where,, is

Figure 6 Algorithm 2, Noise Avoidance for Multi-Sink Trees.

3 The algorithm can be modified to handle inverting buffers [12].

returns a list of candidate solutions. Step 3 adds the drivefTheorem 3 If |B| = {b} and NM(b) = NM(si), UsiO SI,
delay and computes the noise slack, then the candidate withthen Algorithm 3 returns an optimal solution to Problem 2.

the best timing slack, such that noise constraints are

satisfied, is returned in Step 4.

Proof: Refer to [2] for a proof. With multiple buffers in the
buffer library, the optimality of Algorithm 3 is no longer

The Find_Cands procedure shown in Figure 8. It takes theguaranteed. However, in practice, Algorithm 3 generates
nodev as input, recursively computes the lists of possiblesolutions that are very close to optima; our experimental

candidates for all the nodes ir(v)
candidates for . Find_Cands consists of four main parts:

Steps 1-4 constructs candidates for the children of
merges them to forr8 , the set of candidates/for
Step 5 inserts considers each buffer type in the library
and adds the buffer which yields the largest sketh
that noise constraints are satisfiel buffer will not be
inserted if there is a noise violation. This step is the fun-
damental difference between Algorithm 3 and Van Gin-
neken’s algorithm [16].

slack for each candidate induced by the parent wite of .

Finally, Step 7 prunes inferior candidates fr@m
the pruning schemes of [12][16].

Modifgcagions for noise avoidance do not increase the
o(V|“|Bl") time complexity of Van Ginneken’s algorithm

, using

, and then returns theresults in the next section strongly support this claim.

5. Experimental Results

andrhe algorithm we use in our experiments is an extended

version of Algorithm 3, called BuffOpt, which can trade-off
between delay reduction, noise avoidance, and the total
number of buffers [12]. We refer to the algorithm which
optimizes only delay [1][12][16] as DOpt. DOpt is the same
as Algorithm 3 but without the boldface text. For our
experiments, we selected a set of 500 critical nets from a
modern Power PC microprocessor design. Table 1 shows the

Step 6 computes the new load, slack, current and noiselistribution of the sizes of these nets. To verify BuffOpt, we

also ran a detailed, simulation-based noise analysis tool,
called 3dnoise [14]. 3dnoise was run both before and after
BuffOpt and DOpt.To perform noise analysis, 3dnoise uses
accurate moment-matching based techniques that are
similar to RICE [15].

since the modifications are mostly constant time operationd#Sinks] 1| 2| 3| 4| 5-7 8-1p 11-20 21-40 417
for bookkeeping and pruning.
ping and pruning #Nets| 169 33 38 38 556 69 63 39 1p
Input: v = Current node to be processed e e
Output: S = List of candidate solutions for node Table 1: Sink distribution of the 500 test nets.
Globals: T = ({sc} 0 SIO IN,E) =Routing tree We ran BuffOpt, DOpt and 3dnoise all in estimation mode
B = Buffer library (see Subsection 2.2) assuming a 0.7 coupling to total
St sc=q capacitance ratio from a single aggressor net with rise time
O _ 0.25 nanoseconds and a power supply voltage of 1.8V. The
L.if vO SI thenS = {(G, RAT(V),0, NM(V), M)} tolerable noise margin for every gate was set to 0.8V. The
2. else ifv_has only one child then buffer library contained 5 inverting and 6 non-inverting

for eacto O Find_Candg Tleft(v))) do
S = SO{a}
. else ifv has two children
§ = Find_Candg Tleft(v))
S = Find_Candg Tright(v))
Se =1 and =1
whilei < |S| andj<|S| do
Leta, = (C, q, I, NS, M) be'f candidate in§ .
Leta, = (C,,q,,|,NS, ,M,) be R candidate ins, .
Letg = min(q,q,) .NS = min(N§, NS))
S=SO0{(G+C, ql,+1,NSMOM,)}
ifg,<q, theni =i+1 .ifg <q, thej =j+1
. if v is a feasible buffer location then
for each buffeb0 B do
Find(Cy\y, a(V), IT(V), NS(v), M) O S that maximizg
q(v) - kb— R,Cy, such that NS(v) —1+,)R, 20
if such a candidate exists then
SeM(v) = b and
S, = § 0(Cp a(v) K, —R,Cy,, 0, NM (b), M)
S=80§
.Lete = (u V) be the parent wire far .
for eacho = (C; V) q(v), I+ V) NS(v),M)OS do
Seqg = q(v)— e(Ce/2+C§T(V)
SeNS = NSV -Ry(l¢/2+ 1)
S= S0{(G*+Csa, IT(V)+1e, NS, M)} —a
. PruneS of inferior solutions andreturn S.

bS

Figure 8 Find_Cands Procedure(v).

buffers of varying power levels. Our experiments show that

BuffOpt eliminated all noise problems in the design,
DOpt could not fix all noise problems, and

the average delay penalty from using BuffOpt instead of
DOpt was less than 2%.

5.1 BuffOpt Successfully Avoids Noise

We ran BuffOpt on the 500 nets, and observed that BuffOpt
identified 423 noise violations and successfully inserted
buffers to fix all of them. To verify BuffOpt's identification
of noise violations, we ran 3dnoise on the nets before
running BuffOpt. The accurate analysis of 3dnoise
identified 386 nets with noise violations, all of which were
also identified by BuffOpt. BuffOpt identified 423 - 386 =
37 more nets with violations, which shows that the noise
metric [8] is slightly conservative. We also ran 3dnoise on
the nets after running BuffOpt, and 3dnoise identified no
noise violations. This data is summarized in Table 2

Nets| # Optimize¢l # Noise Violatiofs
Before BuffOpt] 500 0 386
After BuffOpt | 500 423 0

Table 2: Number of noise violations reported by 3dnoise before
and after running BuffOpt.

5.2 Optimizing Delay Alone is Insufficient 100(338.2- 336.J/338.2 = 0.64 percent. The average delay

We now compare BuffOpt to DOpt (optimal delay-driven reduction over all 423 nets is computed by taking the total
buffer insertion) in terms of noise avoidance. Since BuffOpt delay reduction for all nets and dividing by 423.

never inserted more than four buffers on any net, we rangpserve from the last column that the overall average delay
DOpt four times in which no solution was allowed to have penalty is only 6 ps, or equivalently 1.99%, from avoiding
omnoéestﬂgﬁ(ru%Ufg?‘rstéhp?neby rgg%??k)fro_lmaéléo g \é\é‘?n%%?g;enoise. Thus, Buffopt is able to integrate noise into a delay-
DOpt(k) with BuffOpt. TBI stands for ‘total buffers driven algorithm with virtually no loss in total delay.
inserted” (i.e., $d times the number of nets with Recall that Algorithm 3 is optimal when the buffer library
buffersf, and “#¥NVs stands for “number of noise contains a single buffer type, but we could not guarantee
violations”. optimality for a larger buffer library. The DOpt results in
Table 4 form an upper bound on the optimal solution to
Method| # Nets with d Buffers] TH #N\s Total Problem 2 since DOpt is optimal for delay alone. Observe
=0l =1 d=3 d=3 a=k CPU that even with a buffer library of size 11, BuffOpt solutions
i Mt e Mt il are virtually optimal since they are on average within 2% of

None | 500 0| 386] N/A an upper bound.
DOpt(1)] 7 | 493 494 150 21 Acknowledgments
The authors would like to thank Joe Rahmeh for his help
DOpt(2)] 5| 19] 478 o 37| eip with 3dnoise and the PowerPC design data.
DOpt(3)] 5| 16| 77| 402 137 21 93
References

DOpt(4)| 4 | 16| 29| 35 41p 1843 13 11p5S [1] C.J. Alpert and A. Devgan, “Wire Se%rggntingforlmproved

3 Buffer Insertion”,DAC, 1997, pp. 588-
BuffOpt] 77| 161 232 28 2] 71 0 9gp [2] (é % Allpert, S. 'I_'I._QHay and A. I%evgaralé%%m reher&sxle
Table 3: BuffOpt versus DOpt(k) for noise. Agriﬁrlggg_”'on echniques’, submitte rans. CAD

. . 3] C.J. Alpert, S. T. Quay and A. Devgan, “Comprehensive
Observe that running DOpt(4) causes the addition of 1126l Buffer Insertion TeQ<:hn)|/ques for Noise Avoidan%e”, u.s.

more buffers than BuffOpt, yet there are still 13 noise patent filed, 1997.

violations. Reducing the maximum number of buffers that [4] H. B. Bakoglu,Circuits, Interconnections, and Packaging for
can be inserted by DOpt only increases the number of noise_ VLS| Addison-Wesley, 1990. _
violations and still causes more buffers to be inserted for[3] C.C.N. Chuand D. F. Wong, “Closed Form Solution to

; : Simultaneous Buffer Insertion/Sizing and Wire Sizirigter-
k=2. Thus, as shown by Theorem 2, noise avoidamast national Symposium on Physical Desi§897, pp. 192-197.

be integrated into the algorithm to guarantee no noise[s] cC.C.N.Chu and D. F. Wong, “A New Approach to Simulta-
violations. Finally, observe that BuffOpt uses less CPU than neous Buffer Insertion and Wire SizingCéjAD, 1997, pp.
DOpt(k) for k=3 . This occurs because BuffOpt prunes 614-621

i i i i i i i [7] J.Cong, L. He, C.-K. Koh, and P. H. Madden, “Performance
candidates with noise violation, which gives BuffOpt fewer Optimization of VLSI Interconnect Layoutntegration: the

total candidates to analyze. VLS| Journal 21, 1996, pp. 1-94.
: 8] A. Devgan, “Efficient Coupled Noise Estimation for On-Chi
5.3 The Delay Penalty is Small] orotacis |GAD. 2687 pp. 147-151. P
[9] S.Dhar and M. A. Franklin, “Optimum Buffer Circuits for
Buffers 0] 1 2 3 4 | Avg DH Driving Long Uniform Lines”IEEE Journal of Solid-State

. - Circuits, 26(1), 1991, pp. 32-40.
Times 71 161| 232 28 2 423] [10] W. C. EImore, “The Transient Response of Damped Linear
Network with Particular Regard to Wideband Amplifier®”,

BuffOpt 01]124.8 336.0 1043/4 45p 301p Applied Physics19, 1948, pp. 55-63.
11] M. Z.-W. Kang, W. W.-M. Dai, T. Dillinger, and D. P. LaPo-
DOpt 0| 135.9 338.2 1053|]1 50B 307p = }i)n_, “Dellza}y Bo?mded BJLgngg 'Il'B%ce?Co%s%Jgti?olnzfor Timing
- riven Floorplanning” , , Pp. -712.
Delay Penaltyl g 877 064 098 10b0 1.9 [12]J. Lillis, C.-K. Cheng and T.-T. Y. Lin, “Optimal Wire Sizin
- - - and Buffer Insertion for Low Power and a Generalized Delay
Table 4: Average delay reduction from buffer insertion. Model”, |[EEE Journal of Solid-State Circujt31(3), 1996,

, _ pp. 437-447.
Finally, we compare DOpt to BuffOpt in terms of total [13]L.T. Pillage and R. A. Rohrer. Asymptotic Waveform Evalua-
delay. We first ran BuffOpt on the 500 nets and recorded the tion for Timing AnalysisIEEE Trans. CAD9(4):352-366,
buffers inserted for each net. We then ran DOpt for the sam April, 1990

number of buffers as BuffOpt inserted in order to make anetld'] JR'e%%Pm%B’{The 3d-Noise User GuidkBM Internal

apples to apples comparison. We computed the reduction in5] c. Ratzlaff and L. T. Pillage, “RICE: Rapid Interconnect cir-
total delay for each net and averaged the results by the ~ cuit Circuit Evaluator using As%/m?totic aveform Evalua-
number of buffers inserted. The cumulative results areElG] Eog’,PlEEE Tfag,s- CﬁDPF{;B@f '7P?, June 1t9'94D" ibuted
presented in Table 4. For example, there were 232 nets fo L P Fovan Linneken, buller Flacement in DIStriute
which two buffers were inserted, and on average Buffopt RC-lree Networks for Minimal Elmore DelayiSCAS 1990,

. . pp. 865-868.
reduced delay by 336.0 picoseconds while DOpt reduced
delay by 338.2 picoseconds. The overall delay penalty is

4 For example, BuffOpt inserte® [0I77) + (1 [1161) + (2 (232 5 E.g., for BuffOpt, the weighted average of 301.1 is given by
+(384) +(42) = 717 buffers. ((1610124.9 +(336.000237 +(1043.40029 + (45.5002)) /423

	CDROM Home Page
	DAC98
	Front Matter
	Table of Contents
	Session Index
	Author Index

