IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 20, NO. 10, OCTOBER 2001 1009

Deblurring Subject to Nonnegativity Constraints
When Known Functions Are Present With Application
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Abstract—The reconstruction of tomographic images is often therein. We limit ourselves to deblurring problems in which
treated as a linear deblurring problem. When a high-density, the data, kernel, and unknown function are each constrained to
man-made metal object is present somewhere in the image field, be nonnegative. Solution approaches in the presence of such a

it is a deblurring problem in which the unknown function has a traint d | d by Youla [301 b d | ¢
component that is known except for some location and orientation COnStraintare developed by Youla [30] based on a least-squares

parameters. We first address general linear deblurring problems  discrepancy-measure and by Snydgral. [21] based on a
in which a known function having unknown parameters is present. divergence discrepancy-measure (see also [1] and [25]). Using
We then show how the resulting iterative solution can be applied information-theoretic arguments, O’Sullivan [12] discusses
to tomographic imaging in the presence of man-made foréign jternating minimization algorithms that include this problem.
objects, and we a_pply the r_esult, in particular, to X-ray computed T h h falls within th I K of
tomography imaging used in support of brachytherapy treatment e approac we u,se, erefallswi . In eggnera ramewgr 0
of advanced cervical cancer. information-theoretic image formation described by O’Sullivan
et al. [13].

The novel aspect of the deblurring problem that we now ad-
dress is that, in addition to the nonnegativity constraint, the un-
known function has a component with a known form but which

. INTRODUCTION contains unknown parameters. We develop a solution based on

UR OBJECTIVE is to define and provide a solutiorf divergence discrepancy-measure. _ _

to a linear, deterministic, deblurring problem and then Our motivation for formulating the deblurring problem in
to indicate how the solution may be used. The results hall¢ context of X-ray tomography is that filtered backprojection
a wide range of possible applications. We illustrate one suRBP), which is the almost universally used method of image re-
application: X-ray tomographic imaging used in support dronstruction, produces images that are highly artifactual when
brachytherapy treatment of locally advanced cervical cancerNigh-density objects are inside the body. The artifacts often take
doing so, a new image reconstruction method is identified tH&€ form of alternating light and dark stripes of high amplitude
we callobject-constrained computerized tomograg®CCT). in a ;tar—burst pattem extending across the entire i_mage and

Linear deblurring problems arise when measured data 4pasking many details that may be of interest. For this reason,

modeled as a linear transformation of an unknown functioff:ray tomographic images intended to visualize soft tissues in
where the transformation is characterized by a known kerriBg Vicinity of prosthetic implants, surgical clips, spinal rods,
(i.e., point-spread function), and the unknown function igochlearimplants, brachytherapy applicators, etc., are of greatly
sought. Deconvolution problems are a special case when gH@linished or no clinical value when formed from projection
kernel is time or space invariant. Approaches for solving mas{pta by FBP. This difficulty is discussed by Fiata al. [4],
types of deblurring problems are widely discussed in the litdfalenderet al. [7], DeManet al. [3], Marks and Callen [11],

ature; for example, see the book by Stark [23] and referenddgbertsoret al.[18], Strumaset al. [24], and by many others.
Image reconstruction methods designed to reduce artifacts
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rather, it is iterative, requiring more computations. This methddreign object of known form in a reference coordinate-system,
enforces nonnegativity of the reconstructed attenuation furamd rotations and translations of it are of interest. Then, we may
tion. It also permits information about an embedded object selectd = (R, x¢), where(R, xo) is a rotation-matrix, transla-

be used. However, such objects must be completely opadism-vector pair that describes the object in its unknown position
and contained within a convex region at a known locatiosccording ta:, (Rz + x¢). In two dimensions, we define the ro-
within the body. We remove these limitations by adopting tation matrix 2 by

more model-based approach that permits all that is known .

about a man-made foreign object in the body to be exploited R— [ cosa Smo‘} 4)
during the formation of images, including its complicated —sinw  cosa

shape and nonuniform attenuation characteristics. The locatj
and orientation of the object in the body is not presuppos
but is determined as an integral and concurrent part of t
image-formation process.

it is parameterized by a single rotation angleThe trans-

ion vector,zg, is two-dimensional, for a total of three un-
fiown parameters characterizing the position and orientation
of the object. In three dimensions, we spedifpy three angles

(e, B, ), respectively called yaw, pitch, and roll, according to
Il. THE DEBLURRING PROBLEM: DEFINITION

We address the following constrained, linear, deterministic, ! 0 .0 cosf 0 —sinf
deblurring problem. A nonnegative functigm:(y), v € Y} R=10 cosy siny 0 1 0
and a nonnegative kerngh(y|x), v € Y, x € X} are given, 0 —siny cosvy sin3 0 cospf

and a nonnegative functiofe(x), x € X}, satisfying the ad-

missibility constraint defined below, is sought such that the ap- cosa s 0

proximation X | —sina cosa O (5)
0 0 1
m(y) =~ Y h(ylr)e(z)  yeY @ y . . :
ox and the position vector is three-dimensional (3-D), for a total of

six unknown parameters characterizing the position and orienta-
is “good.” The left-hand side of (1) denotes measured and log@sn. Objects having articulating parts or multiple, independent
rithmically transformed transmission profiles @nogram data parts can be accommodated but require additional parameters to
inCT terminology), while the right side models these data Wit&haracterize their position and orientation.
varying degrees of accuracy. We term the domairsndY the  For the reasons outlined in [21], we use Csiszar's I-diver-
input (image) and output (sinogram) spaces, respectively; theggce [2] as a discrepancy measure to identify an admissible
are discrete setsu(-) is a measured function(:|-) is aknown  functionc(-) that approximately satisfies (1)Thus, we seek an
kernel or point-spread function, amf) is a function to be de- gdmissible estimaté(z) = &(x : é) = &(z) + colz : é) de-
termined by solving the linear inverse problem (1). In [21], thfned forz € X by
unknown functione(-) is assumed to be nonnegative but oth-
erwise arbitrary. Here, this function is assumed to be a super- .
position of an unknown, nonnegative functin,(z), = € X} ox) = . e.ireggﬁﬁneeel lm(')
and a nonnegative functiofr,(z : 6), z € X, 6 € ©} that o ’
describes the shape and composition of a man-made objectwhbérec(-) is given in (3), and
contains parameters, representeddbgnd having values in a
compact parameter sék, that are unknown. To define admis- I [m(_) Z h(-|x)c(x)]

z€X

> h<~|a:’>c<x’>] (6)

' eX

sible solutions, we introduce the following subsets of the input
spaceX. Let X, (f) be the elements of that support the func-
tion ¢, (- : #) for parameter$, and letX,(#) = X N X,(6) be

the complementary set in the input space. Also(J&1) be the _ Z m(y)ln m(y)

set of functions that are zero i§,(#); that is =7 Z h(y|x)e(z)

zEX
C6)={a(x),z € X :a(x)=0,z€ X, (6)}. (2

An admissible solution for parametetshen has the form + z; z;( h(ylz)c(x) — m(y)] ) @
ye z€
c(z:0) =cp(x) + co(x : 0) For brevity, we denoté[m(-)|| 3, . y h(-|z)c(z)] by I(c). This
a(r), x € Xy(0), () € C(0) cost function is unavoidably nonconvex in the quantities to be
_ 2 _
{ca(x : 0), z € Xq(6). (3) estimated.

) . ) 1Csiszéar addresses the problem of selecting discrepancy measures for com-
The known functiore, (- : 8) can be parameterized in var-paring two functions. He does this by postulating desirable characteristics such

ious ways that can be selected appropriately to accommodagasures should have and then identifies measures having such characteristics.
For real-valued functions (i.e., positive and negative), he shows that the only

a glvgn application. For the tor_nographlc-lmaglng problem Wheasure consistent with his postulates is squared error. For nonnegative func-
considerg,(-) represents body tissues, and- : ) represents a tions, the only such measure is the I-divergence.
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I1l. THE DEBLURRING PROBLEM: SOLUTION a minimum is achieved; this determinéd+1). For each test

Our solution to (6) is in the form of a sequence of admig/alue ot in this search for a minimuna{**)(. : 6) is required;

sible estimategé®)(x), = € X, k = 0, 1, 2, ...}, produced this is determined using (12). Then, an admissible image for step

recursively. To state the iteration concisely, define the functidh ™ 1 of the lteration Is d('atermlr;e(ii using (.14)' .
P (zly : ©) as follows: An alternative expression féf*+4) (z : 6) in (12) is

- A(k+1) (.. . 0) =
C xX =
Plaly: &) = MDD @ - Y
> k() e() | .
! argmin ¢ — Z Z P (a:|u s )()) m(y) ln ¢ (z)
where aCCO) | 4oy zex,(0)
C(x) = Cq (.’L’ . 9) + Cb(-’f)- (9) + Z HO(.’L')C(,(.’L')} + Ca(.’L' . 9) (15)
Also, defineH,(x) according to z€X(9)
. The minimization in (15) and, hence, in (12), is over nonnega-
Holw) = yze; Myle). (10) tive functions and can be performed directly to give
The iteration is as follows. ) (4 ) = @SE’“;IFU(a:), x € Xp(9) (16)
' calz 1 0), € Xa(6)
where
Setk = 0, select initial estimate®®, &* € C(6©)), D () = é®)(3) L 3 hylz)m(y) (17)

Ho(zr) R(yla) e (27)
and form the admissible estimate yey ; (") @)

&N 00 = é,(,o)(ar) + ¢ (w : é(o)) , z€X. (11) Evaluation of (16) requires one forward and one backward pro-

- . jection.
Fork =0, 1,2, ... (continuing until done) The minimization in (13) must generally be performed nu-
{ merically. We do this by evaluating the function within braces
(bt 1) on the right in (13) for test values dfon a discrete lattice in the
¢ (w:0)= neighborhood 08*). The lattice step size is initially one pixel
spatially and 1 angularly; if test values for neighbors on a lat-
arg min 4 — Z Z p ($|y : é(k)(_)) m(y) I ez : 6) tice of thi§ step size do not yield a lower value of the function,
c: ey CC(8) VoY scX the step size is reduced by a factor, for example 10, and further

test values are attempted. This process continues until a lower
function value results, with*+1 then taken to be the test value
(12)  of # achieving that lower value. Evaluating (13) requires no for-
ward or backward projections, but the number of test values can
fU+1) _ vary on each iteration because step sizes can change.
- As demonstrated in the Appendix, the sequence of estimates

. k produced by this iteration yields a corresponding sequence of
arg min 4 — >r ($|Zl : &l )(')) I-divergences that is nonincreasing (and generally decreasing)
y€Y reX
() In &V (3 : 6) I > 1) > 1(6@) > - (18)

Since, the I-divergence is bounded below by zero, this implies

+ Z Ho(a:)é(k"'l)(a: ) (13) that the sequence of I-divergences converges toward a (local)
oo X minimum with increasing:.
(@) = e (2 g0, e X (14) IV. APPLICATION TO TOMOGRAPHIC IMAGING
1 Application requires that the input, output, and parameter

spacesX, Y, and®, and the kernef(y|z), in (1) be identified.

Choices that are appropriate for tomographic imaging depend
on the tomograph’s data-acquisition format and the method
For an interpretation of (12)—(14), suppose that an admissilediscretization adopted for the input and output spaces and
estimatez(*)(.) is available at the completion of stépof the the point-spread function. Data can be in a variety of formats
iteration. P(z|y : ¢*)(.)) is evaluated using (8) and used ircorresponding to: parallel-beam, translate-rotate geometry;
(12) and (13). Then, (13) requires a search over pdsgstii  fan-beam, planar geometry; fan-beam, helical-scan geometry
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for single-row or multirow detectors; or cone-beam geometry.
X C R?andY = R! x [0, =) for a parallel-beam geometry, source
with z = (1, z2) € X parameterizing a location in the :
attenuation density to be imaged, ane= (¢, ¢) € Y param- N

eterizing a projection ray by its perpendicular distance from R \

the origin and its angular orientation relative to a coordinate ' "

axis. A planar, fan-beam geometry is shown in Fig. 1. For this,

X C R? andY = [0, 27) X [—V¥m» Vm], Wherety,, is the an- projection ray at (B,y)
gular extent of the beam, with = (33, 7) € Y parameterizing

a projection ray, wherg is the source angley is the angle

of the ray in the fan, and is the radial distance of the X-ray
source from the axis of rotation. For a helical-scan, fan-beam
geometry,X C R®andY = [0, 27n] X [, Ym], Wheren  gig 1. CT fan-beam geometry.
is the number of source revolutions,= (z1, x2, z3) € X,

and a projection ray is parameterized py= (3, v) € Y.

The ideal, continuous-domain, point-spread functions for these
three geometries are

detector array

h(ylz) =h(t, pla1, z2)
=6(t — 1 cos — xasinp) (19)
h(ylz) = (B, v|z1, 22)
=6[Dsiny — x1 cos(8+7) WAL .-:".:'.p
ez sin(f + )] (20) Bl
s - 'eL 1.
and .
h(ylz) =h(8, v|z1, 2, x3) Fig. 2. Fletcher—Suit-Delclos intracavitary applicators. Three ceramic
cylinders of length 20 mm containing Cs-137 are loaded end-to-end in the
= 6[D siny — 1 Cos(ﬁ + ry) — 9 sin(ﬁ + ry)] tandem, and one such source is loaded along each ovoid axis. (a) Handles. (b)
Colpostat. (c) Intrauterine tandem. The length of the applicator is approximately
X 5(333 — p/3) (21) 20cm from handle to ovoid tips.

respectively, wherg is the helical pitch. These idealized pointare required in forming reconstructions using our method, and
spread functions can be modified readily to account for the finifRese must be repeated at each stage of the iterations.

sizes of an X-ray source and detector. The discrete model (1) is

derived from this continuous model by discretizing the spaces, V. APPLICATION TO BRACHYTHERAPY

X andY’, and then approximating line integrals along projection _ _ _ _
rays in the discrete spaces by linear, bilinear, or other choi e?rachytherapy is used for a variety of surgically accessible

of interpolation. Suitable choices for the parameter sgheee 03"?" me}llgnanmes. It consllsts of pIa_cmg one or 'r‘?]orr(]e sealed
described above in Section II. radioactive sources very close to or in contact with the target

The summation tissue, allowing large doses of r_adiation to_be safely d_elivered
to the target volume [29]. A variety of devices or applicators

Z h(y|$/)é(k)($/) (22) are used to contain the radioactive source, including seeds, nee-

" dles, and intracavitary colpostats. Shown in Fig. 2 is an example

of an intracavitary system used to treat locally advanced cer-
vical cancer. This particular applicator is specially constructed
%our research program. As described by Weeks and Montana

f ) fth hF 17) th i0 of th AU ], the colpostat’s body consists of aluminum. This applicator
unction oft etomograp ' rom_( .)’t _erat|oo_t € Projectiofyntains retractable tungsten-alloy shields, whose purpose is to
data,m(-), and this forward projection is then linearly trans-

/ . o ; reduce the dose delivered to bladder and rectal tissue. During
formgd viaa ker-nel thatis the adjoint of the model pomt-spre%q] intracavitary procedure, the applicators in Fig. 2 without ra-
function according to dioactive sources or tungsten shields are surgically positioned in
the patient. The intrauterine tandem is inserted through the cer-
vical os into the uterine canal. The colpostats are placed in the
Z h(ylz) NAK) (7 lateral vaginal fornices just below the cervical os. After imaging
yey Z hiyla")et® (@) the applicator system, the radioactive sources along with tung-
* sten shields are afterloaded into the applicator via channels in
This can be interpreted as the image formed by back projectiting colpostat and tandem handles. The loaded applicator system
the ratio function. Thus, both forward and backward projectiotis left in place, usually for 24—72 h, until the prescribed dose

appearing in (17) is the forward projection of the stagecon-
struction &%) (.), of the attenuation coefficient distributios; ),
where the forward projection is through the model point-spre

m(y) . 23)
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is delivered. Since the experimental applicators shown in Fig.
consist only of aluminum components in their unloaded config
uration, relatively artifact-free CT images showing the implan
location relative to the pelvic soft-tissue structures can be ot
tained. However, commercially available intrauterine tandem
and vaginal colpostats are fabricated from stainless steel al
have tungsten shielding and other heavy metal components p
manently fixed in the colpostats. CT imaging performed with
such applicators in place yields very poor quality images witt
significant artifacts masking soft-tissue regions.

Locally advanced cervical cancer is treated with a combi
nation of external radiation delivered by high-energy X-ray
beams and by brachytherapy [15]. The five-year survival rat
for women with stage Il disease is approximately 50%, whict
motivates seeking ways for improvement. The brachytherag
portion of the treatment is performed by highly skilled radiation
oncologists but remains an art. One limitation to improving
this form of treatment is that artifact-free, volumetric images
showing patient anatomy in relation to the implanted applicatc
are not presently available to the oncologist via compute
tomography based on conventional FBP for most types ot
applicators because of strong artifacts. The location of tRg. 3. Synthetic phantom showing applicator in water and two circular
applicator relative to the malignancy and nearby sensitive strijgdions having attenuation values-610% and+10% that of water.
tures is usually surmised from orthogonal X-ray projections. As

aresult, accurate estimates of the radiation dose delivered to788 detectors and 1408 source angles/rotation. These values
target volume and sensitive structures, such as the bladder angixelization and data-acquisition sampling are consistent
rectum, are difficult to make with a high degree of confidenceyith those of commercial CT scanners, so aliasing artifacts that
With this as motivation, we have initiated a project to makgssult are comparable to those present in images reconstructed
such images available, with the goal being to achieve accurat€ commercial scanners.
dose predictions and an improved survival rate. Shown in Fig. 3 is the phantom used to produce synthetic
Applicators are man-made, so engineering drawings apebjection data for the experiments. It consists of a circular re-
specifications for them are available (see [28] for example), agibn of water (0.025 mm') in which a planar section through
this information is what we seek to exploit while reconstructinghe colpostats and tandem shown in Fig. 2 and two circular re-
tomographic images. Lefc,(z), z € X} be a function gions with attenuatior-10% and—10% that of water are em-
describing the applicator’s attenuation coefficient in a refebedded. The applicator section includes aluminum, tungsten,
ence pose. This function encapsulates the known geometii¢amic, and air parts. Synthetic fan-beam sinogram data were
and X-ray attenuation characteristics of the applicator at tiigen produced by performing forward projections numerically
scanner’s energy. We assume that a representation of thisthese phantoms, assuming monoenergetic X-ray radiation.
function is stored in computer memory for use in the imagehe methods we use for producing these forward projections
formation method we have described. The applicator functi@md for the backprojections required in the reconstructions are
is moved via rotation and translation to its estimated positiatescribed by Politte and Whiting [16]. These synthetic data were
in the cervix, where it is described with a rotation matrix anthen processed in a variety of ways.
translation vector = (R, xo), as{c,(Rz + o), € X }. Experiment 1: (FBP): Synthetic sinogram data derived from
The attenuation functiorc(z), + € X}, of the pelvic re- the phantom of Fig. 3 were processed using FBP, which ignores
gion with the applicator in place is modeled as in (3), witthe presence of the applicator or knowledge of any of its prop-
{a(x), x € X} representing the attenuation map of the pelvierties, yielding the result in Fig. 4. Streaking artifacts due to the
tissues and structures that surround the applicator. high-density applicator are evident. These artifacts are substan-
We have performed preliminary experiments to test the effially less severe than those produced by actual CT scanners in
cacy of OCCT for improving tomographic images to be useatie presence of high-density metal. We conjecture that this is
in the brachytherapy treatment of advanced cervical cancer. @0e to beam hardening, photon-scatter, and noise effects that
images in the several figures that follow have the same viewiage ignored in our linear model and the assumption made here
window (i.e., gray-scale thresholds), with white areas showirng noise-free monoenergetic projections. Aliasing due to finite
attenuation coefficient of 0.035 mm or higher, corresponding pixelization and data-acquisition sampling also contribute to the
to +400 Hounsfield units, and black areas showing regiomstifacts seen. As mentioned before, artifacts due to aliasing are
with attenuation of 0.015 mm' or less, corresponding te400 comparable to those encountered with commerical CT scanners.
Hounsfield units. The dimension of these images in pixels Experiment 2: (OCCT With Known Applicator Pose€)jhe
is 512x512, with each pixel being a square of 1 mm/sidesynthetic sinogram data derived from the phantoms of Fig. 3
Projection sinograms are in a planar, fan-beam geometry witlere processed by iterating (16) for 300 steps but with the appli-
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Fig. 4. Reconstructed image for the phantom of Fig. 3 using FBP. Fig. 6. Reconstructed image using OCCT with applicator pose estimated
concurrently with the image reconstruction for the phantom of Fig. 3.

tial condition of the pose (11) was determined via ten steps of
a gradient search to solve the minimization in (13) with the es-
timate of the body attenuation coefficient,” (), held uni-
formly constant The result, shown in Fig. 6, is quite close but
not identical to that of Experiment 2 in Fig. 5. This is explained
by the estimated pose parameters resulting from the iterations
leading to Fig. 6 being close to the true pose parameters used
in reaching Fig. 5: the estimated parameterséate (—5.183

mm, —38.6403 mm, 100.7056 degrees), and the true parame-
ters arefue = (—5.178 mm,—38.635 mm, 100.72 degrees)
Another comparison of the results of these experiments is shown
in Fig. 7, where a profile through the reconstruction is given at
a location slightly outside the applicator where a malignancy
might be encountered, as shown in Fig. 8. The true attenuation
coefficients used in the simulation are shown along with their
estimated values obtained in this experiment.

The results of these experiments are encouraging to us, but
it is difficult at this time to predict what will be obtained when
the full 3-D implementation of our approach is completed and
tested. This full implementation is presently being developed
Fig. 5. Reconstructed image using OCCT with applicator fixed at true poggnd will accommodate objects that have a nonuniform attenu-
for the phantom of Fig. 3. ation characteristic and are not in a known pose. Also, volu-

] ) ] - ] _metric, spiral CT data will be included.
cator held fixed precisely at its correct position and orientation

(that is, withé = 6;,,.). The result is in Fig. 5. The streaking
artifacts evident in Fig. 4 are seen to be suppressed, showin%v ) o

that accounting for the applicator can lead to significant im- Ve have described a new approach for solving linear deblur-
provement in the quality of the reconstructed image. This restifd Problems when the function sought has a component that
is similar to but extends that reported in [17], [22], and [26]S known to within a set of parameters. When applied to tomo-
wherein a uniformly opaque, convex applicator model was us8fPhic imaging, this approach leads to a method for accom-
and assumed to be in a known pose, to include a n(--)m“miformAn alternative method for determining an initial estimate of the pose is to
applicator with parts having finite attenuation coefficients.  use the method described by Weeks [27] wherein a scan-set of CT images is

Experiment 3: (OCCT With Unknown Applicator POSQDI segmented to estimate the pose of an applicator. We have not attempted this
hi . h hetic si d for both bh alternative in favor of an approach in which the applicator pose and body recon-
this experiment, the synthetic sinogram data for both phanto@i$ction are performed automatically in the coordinated framework we have

were processed by iterating (12)—(14) for 300 steps. The imkscribed.

VI. CONCLUSION
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0.03 ipate that ongoing experiments will confirm that this improve-
ment is maintained in more realistic situations where applicators
are 3-D and data are acquired in volumetric spiral-CT scans. If
so, we expect that our method will be of benefit to other appli-
cations besides brachytherapy where man-made foreign objects
DLz are present in the body, including orthopedic implants, surgical
clips, spinal braces, dental restorations, and cochlear implants.
Although the modeling of X-ray tomographic imaging as a

kO15
deterministic, linear deblurring problem is a common choice, it
has limitations. Real projection data acquired with an X-ray to-

0. mograph exhibit both photon-fluctuation noise and beam hard-

ening effects and can be modeled more accurately, but still with

0005 limitations, as a Poisson process with a mean-value function of
the form

0 w200 300 400 500 > Io(y, E)exp <— > hlyla)e(x : E)) (24)
E X

Fig. 7. Profiles through the true image (dashed) of Fig. 3 and tl

reconstructions (solid) of Fig. 6. rU?/herelo(y, L) is the energy-dependent intensity of the X-ray

source, and(z : E) is the energy-dependent attenuation func-
tion. For a monoenergetic, unit-intensity source, the negative
logarithm of this mean-value function yields the linear model
in (1). In developing the OCCT approach, we have as a first
approximation assumed a monoenergetic source and ignored
noise to facilitate addressing how to accommodate known char-
acteristics of objects in the field of view. We have, therefore,
assumed that real projection data equal their mean-value func-
tion, taken the negative logarithm, and minimized I-divergence
for the linear model (1). The effects of noise and beam hard-
ening on the linear-based OCCT approach are presently under
study and will be reported when complete. The I-divergence
(7) is, to within a constant, the negative loglikelihood func-
tional for Poisson-distributed data with a mean-value function
equal toy . v A(yl|z)c(x), and (17) is the expectation-max-
imization (EM) algorithm for such data encountered in emis-
sion tomography, as given by Shepp and Vardi [20]; that this re-
sult is obtained is a consequence of using the linear model (1).
We are also developing an extended OCCT approach that ac-
counts fundamentally for photon-fluctuation noise, beam hard-
ening present with a polyenergetic source, and photon scatter
[14]. This is based on maximizing the Poisson loglikelihood for
transmission tomography as given by Lange and Carson [9] but
extended to include beam hardening and scatter effects.

Fig. 8. Image of Fig. 6 with the location of the profiles of Fig. 7 indicated.

modating all that is known about man-made foreign objects that APPENDIX
may be inside the body, resulting in improved images with fewer DERIVATION OF (12)~(14)
artifacts than those obtained with FBP.

This image formation method we have described extends thd=rom the definition in (8)
work of Wanget al.[26] in two directions. The first is the inclu- .
sion of parameters in the object model, which for tomographic Z Plaly:e() =1,
imaging permits an unknown location and orientation of the ob- rex
jectto be considered. Second, the object can have an arbitranjtdiellows from this that:
tenuation characteristic, so it does not need to be totally opaque
as in [26]. In the case of a totally opaque object with a known In lz h(y|x)c(:p)]
location and orientation, the method we have described for Ex- reX
periment 2 and that in [26] are identical. R

We have described a preliminary experiment that suggests = Z P (aly: &)
that the artifacts seen in tomographic images when high-density zeX
metal objects are present can be greatly decreased. We antic- X {Ine(z) + Inh(y|z) —In Plz|ly - c(-)}.  (26)

forally € Y. (25)
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Substitution of this expression into (7) and rearranging termsancels in the difference in (28). The contribution of the last
yields term on the right in (27) to the difference in (28) is

Z Z (zly :e(-)) Inc(x) Z m(y) Z P (a:|y : é(k)(-)) In

P (z]y : e®()
P (aly - 0()) |

y€Y z€X yey rcX
(30)
That this difference is nonnegative follows from (25) and the in-
+ I
Jz&; L;{ Holw)e(®) = m(y)] equalityln(1/¢) > 1—&. Thus, the difference in (28) is nonneg-

ative, so the sequence of image estimates produced by (12)—(14)
ields a nonincreasing sequence of I-divergences.
+Z [lnm ZP x|y é( )1nh(y|aﬁ)] y gseq g

yeY zCX
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