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Abstract—The reconstruction of tomographic images is often
treated as a linear deblurring problem. When a high-density,
man-made metal object is present somewhere in the image field,
it is a deblurring problem in which the unknown function has a
component that is known except for some location and orientation
parameters. We first address general linear deblurring problems
in which a known function having unknown parameters is present.
We then show how the resulting iterative solution can be applied
to tomographic imaging in the presence of man-made foreign
objects, and we apply the result, in particular, to X-ray computed
tomography imaging used in support of brachytherapy treatment
of advanced cervical cancer.

Index Terms—Brachytherapy, cervical cancer, computerized to-
mography, metal artifacts, tomography.

I. INTRODUCTION

OUR OBJECTIVE is to define and provide a solution
to a linear, deterministic, deblurring problem and then

to indicate how the solution may be used. The results have
a wide range of possible applications. We illustrate one such
application: X-ray tomographic imaging used in support of
brachytherapy treatment of locally advanced cervical cancer. In
doing so, a new image reconstruction method is identified that
we callobject-constrained computerized tomography(OCCT).

Linear deblurring problems arise when measured data are
modeled as a linear transformation of an unknown function,
where the transformation is characterized by a known kernel
(i.e., point-spread function), and the unknown function is
sought. Deconvolution problems are a special case when the
kernel is time or space invariant. Approaches for solving many
types of deblurring problems are widely discussed in the liter-
ature; for example, see the book by Stark [23] and references
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therein. We limit ourselves to deblurring problems in which
the data, kernel, and unknown function are each constrained to
be nonnegative. Solution approaches in the presence of such a
constraint are developed by Youla [30] based on a least-squares
discrepancy-measure and by Snyderet al. [21] based on a
divergence discrepancy-measure (see also [1] and [25]). Using
information-theoretic arguments, O’Sullivan [12] discusses
alternating minimization algorithms that include this problem.
The approach we use here falls within the general framework of
information-theoretic image formation described by O’Sullivan
et al. [13].

The novel aspect of the deblurring problem that we now ad-
dress is that, in addition to the nonnegativity constraint, the un-
known function has a component with a known form but which
contains unknown parameters. We develop a solution based on
a divergence discrepancy-measure.

Our motivation for formulating the deblurring problem in
the context of X-ray tomography is that filtered backprojection
(FBP), which is the almost universally used method of image re-
construction, produces images that are highly artifactual when
high-density objects are inside the body. The artifacts often take
the form of alternating light and dark stripes of high amplitude
in a star-burst pattern extending across the entire image and
masking many details that may be of interest. For this reason,
X-ray tomographic images intended to visualize soft tissues in
the vicinity of prosthetic implants, surgical clips, spinal rods,
cochlear implants, brachytherapy applicators, etc., are of greatly
diminished or no clinical value when formed from projection
data by FBP. This difficulty is discussed by Fialaet al. [4],
Kalenderet al. [7], DeManet al. [3], Marks and Callen [11],
Robertsonet al. [18], Strumaset al. [24], and by many others.

Image reconstruction methods designed to reduce artifacts
when high-density metallic objects are present have been
described by Glover and Pelc [6], Kalenderet al. [7], Lonn
and Crawford [10], Klotz and Kalender [8], Rohlfinget al.
[19], Weeks [27], Wanget al. [26], and Gebaraet al. [5]. In
Kalender’s method, portions of projection data that are missing
or highly attenuated, presumably due to attenuation by a very
high-density metal object, are estimated by linear interpolation
across missing portions of each projection. Images are then
formed from the modified projection data via FBP. While these
methods may work adequately in some circumstances, our
preliminary evaluations of the new method we shall describe
indicate that valuable improvements are possible. A precursor
[26] of the new approach we will describe does not use FBP;
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rather, it is iterative, requiring more computations. This method
enforces nonnegativity of the reconstructed attenuation func-
tion. It also permits information about an embedded object to
be used. However, such objects must be completely opaque
and contained within a convex region at a known location
within the body. We remove these limitations by adopting a
more model-based approach that permits all that is known
about a man-made foreign object in the body to be exploited
during the formation of images, including its complicated
shape and nonuniform attenuation characteristics. The location
and orientation of the object in the body is not presupposed
but is determined as an integral and concurrent part of the
image-formation process.

II. THE DEBLURRING PROBLEM: DEFINITION

We address the following constrained, linear, deterministic,
deblurring problem. A nonnegative function
and a nonnegative kernel are given,
and a nonnegative function , satisfying the ad-
missibility constraint defined below, is sought such that the ap-
proximation

(1)

is “good.” The left-hand side of (1) denotes measured and loga-
rithmically transformed transmission profiles (orsinogram data
in CT terminology), while the right side models these data with
varying degrees of accuracy. We term the domainsand the
input (image) and output (sinogram) spaces, respectively; these
are discrete sets. is a measured function, is a known
kernel or point-spread function, and is a function to be de-
termined by solving the linear inverse problem (1). In [21], the
unknown function is assumed to be nonnegative but oth-
erwise arbitrary. Here, this function is assumed to be a super-
position of an unknown, nonnegative function
and a nonnegative function that
describes the shape and composition of a man-made object but
contains parameters, represented byand having values in a
compact parameter set, that are unknown. To define admis-
sible solutions, we introduce the following subsets of the input
space . Let be the elements of that support the func-
tion for parameters, and let be
the complementary set in the input space. Also, let be the
set of functions that are zero in ; that is

(2)

An admissible solution for parametersthen has the form

(3)

The known function can be parameterized in var-
ious ways that can be selected appropriately to accommodate
a given application. For the tomographic-imaging problem we
consider, represents body tissues, and represents a

foreign object of known form in a reference coordinate-system,
and rotations and translations of it are of interest. Then, we may
select , where is a rotation-matrix, transla-
tion-vector pair that describes the object in its unknown position
according to . In two dimensions, we define the ro-
tation matrix by

(4)

so it is parameterized by a single rotation angle. The trans-
lation vector, , is two-dimensional, for a total of three un-
known parameters characterizing the position and orientation
of the object. In three dimensions, we specifyby three angles

, respectively called yaw, pitch, and roll, according to

(5)

and the position vector is three-dimensional (3-D), for a total of
six unknown parameters characterizing the position and orienta-
tion. Objects having articulating parts or multiple, independent
parts can be accommodated but require additional parameters to
characterize their position and orientation.

For the reasons outlined in [21], we use Csiszár’s I-diver-
gence [2] as a discrepancy measure to identify an admissible
function that approximately satisfies (1).1 Thus, we seek an
admissible estimate de-
fined for by

(6)

where is given in (3), and

(7)

For brevity, we denote by . This
cost function is unavoidably nonconvex in the quantities to be
estimated.

1Csiszár addresses the problem of selecting discrepancy measures for com-
paring two functions. He does this by postulating desirable characteristics such
measures should have and then identifies measures having such characteristics.
For real-valued functions (i.e., positive and negative), he shows that the only
measure consistent with his postulates is squared error. For nonnegative func-
tions, the only such measure is the I-divergence.
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III. T HE DEBLURRING PROBLEM: SOLUTION

Our solution to (6) is in the form of a sequence of admis-
sible estimates , produced
recursively. To state the iteration concisely, define the function

as follows:

(8)

where

(9)

Also, define according to

(10)

The iteration is as follows.

Set , select initial estimates ,

and form the admissible estimate

(11)

For (continuing until done)

(12)

(13)

(14)

For an interpretation of (12)–(14), suppose that an admissible
estimate is available at the completion of stepof the
iteration. is evaluated using (8) and used in
(12) and (13). Then, (13) requires a search over posesuntil

a minimum is achieved; this determines . For each test
value of in this search for a minimum, is required;
this is determined using (12). Then, an admissible image for step

of the iteration is determined using (14).
An alternative expression for in (12) is

(15)

The minimization in (15) and, hence, in (12), is over nonnega-
tive functions and can be performed directly to give

(16)

where

(17)

Evaluation of (16) requires one forward and one backward pro-
jection.

The minimization in (13) must generally be performed nu-
merically. We do this by evaluating the function within braces
on the right in (13) for test values ofon a discrete lattice in the
neighborhood of . The lattice step size is initially one pixel
spatially and 1 angularly; if test values for neighbors on a lat-
tice of this step size do not yield a lower value of the function,
the step size is reduced by a factor, for example 10, and further
test values are attempted. This process continues until a lower
function value results, with then taken to be the test value
of achieving that lower value. Evaluating (13) requires no for-
ward or backward projections, but the number of test values can
vary on each iteration because step sizes can change.

As demonstrated in the Appendix, the sequence of estimates
produced by this iteration yields a corresponding sequence of
I-divergences that is nonincreasing (and generally decreasing)

(18)

Since, the I-divergence is bounded below by zero, this implies
that the sequence of I-divergences converges toward a (local)
minimum with increasing .

IV. A PPLICATION TOTOMOGRAPHICIMAGING

Application requires that the input, output, and parameter
spaces, , , and , and the kernel, , in (1) be identified.
Choices that are appropriate for tomographic imaging depend
on the tomograph’s data-acquisition format and the method
of discretization adopted for the input and output spaces and
the point-spread function. Data can be in a variety of formats
corresponding to: parallel-beam, translate-rotate geometry;
fan-beam, planar geometry; fan-beam, helical-scan geometry
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for single-row or multirow detectors; or cone-beam geometry.
and for a parallel-beam geometry,

with parameterizing a location in the
attenuation density to be imaged, and param-
eterizing a projection ray by its perpendicular distance from
the origin and its angular orientation relative to a coordinate
axis. A planar, fan-beam geometry is shown in Fig. 1. For this,

and , where is the an-
gular extent of the beam, with parameterizing
a projection ray, where is the source angle, is the angle
of the ray in the fan, and is the radial distance of the X-ray
source from the axis of rotation. For a helical-scan, fan-beam
geometry, and , where
is the number of source revolutions, ,
and a projection ray is parameterized by .
The ideal, continuous-domain, point-spread functions for these
three geometries are

(19)

(20)

and

(21)

respectively, where is the helical pitch. These idealized point-
spread functions can be modified readily to account for the finite
sizes of an X-ray source and detector. The discrete model (1) is
derived from this continuous model by discretizing the spaces,

and , and then approximating line integrals along projection
rays in the discrete spaces by linear, bilinear, or other choices
of interpolation. Suitable choices for the parameter spaceare
described above in Section II.

The summation

(22)

appearing in (17) is the forward projection of the stagerecon-
struction, , of the attenuation coefficient distribution, ,
where the forward projection is through the model point-spread
function of the tomograph. From (17), the ratio of the projection
data, , and this forward projection is then linearly trans-
formed via a kernel that is the adjoint of the model point-spread
function according to

(23)

This can be interpreted as the image formed by back projecting
the ratio function. Thus, both forward and backward projections

Fig. 1. CT fan-beam geometry.

Fig. 2. Fletcher–Suit–Delclos intracavitary applicators. Three ceramic
cylinders of length 20 mm containing Cs-137 are loaded end-to-end in the
tandem, and one such source is loaded along each ovoid axis. (a) Handles. (b)
Colpostat. (c) Intrauterine tandem. The length of the applicator is approximately
20 cm from handle to ovoid tips.

are required in forming reconstructions using our method, and
these must be repeated at each stage of the iterations.

V. APPLICATION TO BRACHYTHERAPY

Brachytherapy is used for a variety of surgically accessible
local malignancies. It consists of placing one or more sealed
radioactive sources very close to or in contact with the target
tissue, allowing large doses of radiation to be safely delivered
to the target volume [29]. A variety of devices or applicators
are used to contain the radioactive source, including seeds, nee-
dles, and intracavitary colpostats. Shown in Fig. 2 is an example
of an intracavitary system used to treat locally advanced cer-
vical cancer. This particular applicator is specially constructed
for our research program. As described by Weeks and Montana
[28], the colpostat’s body consists of aluminum. This applicator
contains retractable tungsten-alloy shields, whose purpose is to
reduce the dose delivered to bladder and rectal tissue. During
an intracavitary procedure, the applicators in Fig. 2 without ra-
dioactive sources or tungsten shields are surgically positioned in
the patient. The intrauterine tandem is inserted through the cer-
vical os into the uterine canal. The colpostats are placed in the
lateral vaginal fornices just below the cervical os. After imaging
the applicator system, the radioactive sources along with tung-
sten shields are afterloaded into the applicator via channels in
the colpostat and tandem handles. The loaded applicator system
is left in place, usually for 24–72 h, until the prescribed dose
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is delivered. Since the experimental applicators shown in Fig. 2
consist only of aluminum components in their unloaded config-
uration, relatively artifact-free CT images showing the implant
location relative to the pelvic soft-tissue structures can be ob-
tained. However, commercially available intrauterine tandems
and vaginal colpostats are fabricated from stainless steel and
have tungsten shielding and other heavy metal components per-
manently fixed in the colpostats. CT imaging performed with
such applicators in place yields very poor quality images with
significant artifacts masking soft-tissue regions.

Locally advanced cervical cancer is treated with a combi-
nation of external radiation delivered by high-energy X-ray
beams and by brachytherapy [15]. The five-year survival rate
for women with stage III disease is approximately 50%, which
motivates seeking ways for improvement. The brachytherapy
portion of the treatment is performed by highly skilled radiation
oncologists but remains an art. One limitation to improving
this form of treatment is that artifact-free, volumetric images
showing patient anatomy in relation to the implanted applicator
are not presently available to the oncologist via computed
tomography based on conventional FBP for most types of
applicators because of strong artifacts. The location of the
applicator relative to the malignancy and nearby sensitive struc-
tures is usually surmised from orthogonal X-ray projections. As
a result, accurate estimates of the radiation dose delivered to the
target volume and sensitive structures, such as the bladder and
rectum, are difficult to make with a high degree of confidence.
With this as motivation, we have initiated a project to make
such images available, with the goal being to achieve accurate
dose predictions and an improved survival rate.

Applicators are man-made, so engineering drawings and
specifications for them are available (see [28] for example), and
this information is what we seek to exploit while reconstructing
tomographic images. Let be a function
describing the applicator’s attenuation coefficient in a refer-
ence pose. This function encapsulates the known geometric
and X-ray attenuation characteristics of the applicator at the
scanner’s energy. We assume that a representation of this
function is stored in computer memory for use in the image
formation method we have described. The applicator function
is moved via rotation and translation to its estimated position
in the cervix, where it is described with a rotation matrix and
translation vector, , as .

The attenuation function, , of the pelvic re-
gion with the applicator in place is modeled as in (3), with

representing the attenuation map of the pelvic
tissues and structures that surround the applicator.

We have performed preliminary experiments to test the effi-
cacy of OCCT for improving tomographic images to be used
in the brachytherapy treatment of advanced cervical cancer. CT
images in the several figures that follow have the same viewing
window (i.e., gray-scale thresholds), with white areas showing
attenuation coefficient of 0.035 mm or higher, corresponding
to 400 Hounsfield units, and black areas showing regions
with attenuation of 0.015 mm or less, corresponding to400
Hounsfield units. The dimension of these images in pixels
is 512 512, with each pixel being a square of 1 mm/side.
Projection sinograms are in a planar, fan-beam geometry with

Fig. 3. Synthetic phantom showing applicator in water and two circular
regions having attenuation values of�10% and+10% that of water.

768 detectors and 1408 source angles/rotation. These values
of pixelization and data-acquisition sampling are consistent
with those of commercial CT scanners, so aliasing artifacts that
result are comparable to those present in images reconstructed
on commercial scanners.

Shown in Fig. 3 is the phantom used to produce synthetic
projection data for the experiments. It consists of a circular re-
gion of water (0.025 mm ) in which a planar section through
the colpostats and tandem shown in Fig. 2 and two circular re-
gions with attenuation 10% and 10% that of water are em-
bedded. The applicator section includes aluminum, tungsten,
ceramic, and air parts. Synthetic fan-beam sinogram data were
then produced by performing forward projections numerically
on these phantoms, assuming monoenergetic X-ray radiation.
The methods we use for producing these forward projections
and for the backprojections required in the reconstructions are
described by Politte and Whiting [16]. These synthetic data were
then processed in a variety of ways.

Experiment 1: (FBP):Synthetic sinogram data derived from
the phantom of Fig. 3 were processed using FBP, which ignores
the presence of the applicator or knowledge of any of its prop-
erties, yielding the result in Fig. 4. Streaking artifacts due to the
high-density applicator are evident. These artifacts are substan-
tially less severe than those produced by actual CT scanners in
the presence of high-density metal. We conjecture that this is
due to beam hardening, photon-scatter, and noise effects that
are ignored in our linear model and the assumption made here
of noise-free monoenergetic projections. Aliasing due to finite
pixelization and data-acquisition sampling also contribute to the
artifacts seen. As mentioned before, artifacts due to aliasing are
comparable to those encountered with commerical CT scanners.

Experiment 2: (OCCT With Known Applicator Pose):The
synthetic sinogram data derived from the phantoms of Fig. 3
were processed by iterating (16) for 300 steps but with the appli-
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Fig. 4. Reconstructed image for the phantom of Fig. 3 using FBP.

Fig. 5. Reconstructed image using OCCT with applicator fixed at true pose
for the phantom of Fig. 3.

cator held fixed precisely at its correct position and orientation
(that is, with ). The result is in Fig. 5. The streaking
artifacts evident in Fig. 4 are seen to be suppressed, showing
that accounting for the applicator can lead to significant im-
provement in the quality of the reconstructed image. This result
is similar to but extends that reported in [17], [22], and [26],
wherein a uniformly opaque, convex applicator model was used
and assumed to be in a known pose, to include a nonuniform
applicator with parts having finite attenuation coefficients.

Experiment 3: (OCCT With Unknown Applicator Pose):In
this experiment, the synthetic sinogram data for both phantoms
were processed by iterating (12)–(14) for 300 steps. The ini-

Fig. 6. Reconstructed image using OCCT with applicator pose estimated
concurrently with the image reconstruction for the phantom of Fig. 3.

tial condition of the pose (11) was determined via ten steps of
a gradient search to solve the minimization in (13) with the es-
timate of the body attenuation coefficient, , held uni-
formly constant.2 The result, shown in Fig. 6, is quite close but
not identical to that of Experiment 2 in Fig. 5. This is explained
by the estimated pose parameters resulting from the iterations
leading to Fig. 6 being close to the true pose parameters used
in reaching Fig. 5: the estimated parameters are ( 5.183
mm, 38.6403 mm, 100.7056 degrees), and the true parame-
ters are ( 5.178 mm, 38.635 mm, 100.72 degrees)
Another comparison of the results of these experiments is shown
in Fig. 7, where a profile through the reconstruction is given at
a location slightly outside the applicator where a malignancy
might be encountered, as shown in Fig. 8. The true attenuation
coefficients used in the simulation are shown along with their
estimated values obtained in this experiment.

The results of these experiments are encouraging to us, but
it is difficult at this time to predict what will be obtained when
the full 3-D implementation of our approach is completed and
tested. This full implementation is presently being developed
and will accommodate objects that have a nonuniform attenu-
ation characteristic and are not in a known pose. Also, volu-
metric, spiral CT data will be included.

VI. CONCLUSION

We have described a new approach for solving linear deblur-
ring problems when the function sought has a component that
is known to within a set of parameters. When applied to tomo-
graphic imaging, this approach leads to a method for accom-

2An alternative method for determining an initial estimate of the pose is to
use the method described by Weeks [27] wherein a scan-set of CT images is
segmented to estimate the pose of an applicator. We have not attempted this
alternative in favor of an approach in which the applicator pose and body recon-
struction are performed automatically in the coordinated framework we have
described.
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Fig. 7. Profiles through the true image (dashed) of Fig. 3 and the
reconstructions (solid) of Fig. 6.

Fig. 8. Image of Fig. 6 with the location of the profiles of Fig. 7 indicated.

modating all that is known about man-made foreign objects that
may be inside the body, resulting in improved images with fewer
artifacts than those obtained with FBP.

This image formation method we have described extends the
work of Wanget al.[26] in two directions. The first is the inclu-
sion of parameters in the object model, which for tomographic
imaging permits an unknown location and orientation of the ob-
ject to be considered. Second, the object can have an arbitrary at-
tenuation characteristic, so it does not need to be totally opaque
as in [26]. In the case of a totally opaque object with a known
location and orientation, the method we have described for Ex-
periment 2 and that in [26] are identical.

We have described a preliminary experiment that suggests
that the artifacts seen in tomographic images when high-density
metal objects are present can be greatly decreased. We antic-

ipate that ongoing experiments will confirm that this improve-
ment is maintained in more realistic situations where applicators
are 3-D and data are acquired in volumetric spiral-CT scans. If
so, we expect that our method will be of benefit to other appli-
cations besides brachytherapy where man-made foreign objects
are present in the body, including orthopedic implants, surgical
clips, spinal braces, dental restorations, and cochlear implants.

Although the modeling of X-ray tomographic imaging as a
deterministic, linear deblurring problem is a common choice, it
has limitations. Real projection data acquired with an X-ray to-
mograph exhibit both photon-fluctuation noise and beam hard-
ening effects and can be modeled more accurately, but still with
limitations, as a Poisson process with a mean-value function of
the form

(24)

where is the energy-dependent intensity of the X-ray
source, and is the energy-dependent attenuation func-
tion. For a monoenergetic, unit-intensity source, the negative
logarithm of this mean-value function yields the linear model
in (1). In developing the OCCT approach, we have as a first
approximation assumed a monoenergetic source and ignored
noise to facilitate addressing how to accommodate known char-
acteristics of objects in the field of view. We have, therefore,
assumed that real projection data equal their mean-value func-
tion, taken the negative logarithm, and minimized I-divergence
for the linear model (1). The effects of noise and beam hard-
ening on the linear-based OCCT approach are presently under
study and will be reported when complete. The I-divergence
(7) is, to within a constant, the negative loglikelihood func-
tional for Poisson-distributed data with a mean-value function
equal to , and (17) is the expectation-max-
imization (EM) algorithm for such data encountered in emis-
sion tomography, as given by Shepp and Vardi [20]; that this re-
sult is obtained is a consequence of using the linear model (1).
We are also developing an extended OCCT approach that ac-
counts fundamentally for photon-fluctuation noise, beam hard-
ening present with a polyenergetic source, and photon scatter
[14]. This is based on maximizing the Poisson loglikelihood for
transmission tomography as given by Lange and Carson [9] but
extended to include beam hardening and scatter effects.

APPENDIX

DERIVATION OF (12)–(14)

From the definition in (8)

for all (25)

It follows from this that:

(26)
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Substitution of this expression into (7) and rearranging terms
yields

(27)

where and are admissible images for posesand ,
respectively.

We need to demonstrate that the iteration defined in (12)–(14)
produces a nonincreasing sequence of I-divergences. Con-
sider the difference

(28)

Set , , in (27), and use
from (14). The contribution of the first two terms on the

right—hand side of (27) to the difference in (28) is

(29)

where the first inequality follows from the definition of
in (13) as a minimizer, and the second inequality follows from
the definition of in (12) as a minimizer for any
choice of including . The third term on the right in (27)

cancels in the difference in (28). The contribution of the last
term on the right in (27) to the difference in (28) is

(30)
That this difference is nonnegative follows from (25) and the in-
equality . Thus, the difference in (28) is nonneg-
ative, so the sequence of image estimates produced by (12)–(14)
yields a nonincreasing sequence of I-divergences.
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