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ABSTRACT

Objective: In biomedicine, there is a wealth of information hidden in unstructured narratives such as research

articles and clinical reports. To exploit these data properly, a word sense disambiguation (WSD) algorithm pre-

vents downstream difficulties in the natural language processing applications pipeline. Supervised WSD algo-

rithms largely outperform un- or semisupervised and knowledge-based methods; however, they train 1 sepa-

rate classifier for each ambiguous term, necessitating a large number of expert-labeled training data, an

unattainable goal in medical informatics. To alleviate this need, a single model that shares statistical strength

across all instances and scales well with the vocabulary size is desirable.

Materials and Methods: Built on recent advances in deep learning, our deepBioWSD model leverages 1 single

bidirectional long short-term memory network that makes sense prediction for any ambiguous term. In the

model, first, the Unified Medical Language System sense embeddings will be computed using their text defini-

tions; and then, after initializing the network with these embeddings, it will be trained on all (available) training

data collectively. This method also considers a novel technique for automatic collection of training data from

PubMed to (pre)train the network in an unsupervised manner.

Results: We use the MSH WSD dataset to compare WSD algorithms, with macro and micro accuracies

employed as evaluation metrics. deepBioWSD outperforms existing models in biomedical text WSD by achiev-

ing the state-of-the-art performance of 96.82% for macro accuracy.

Conclusions: Apart from the disambiguation improvement and unsupervised training, deepBioWSD depends

on considerably less number of expert-labeled data as it learns the target and the context terms jointly. These

merit deepBioWSD to be conveniently deployable in real-time biomedical applications.

Key words: word sense disambiguation, biomedical text mining, deep neural networks, bidirectional long short-term memory

network, zero-shot learning

INTRODUCTION

With recent advances in biomedicine, we see a massive amount of

biomedical text data being generated every day. To gain knowledge

from these data, developing natural language processing (NLP) tools

that mine them accurately within a reasonable time is crucially im-

portant. NLP components that include named entity recognition

programs,1 syntactic parsers,2 and relation extractors3,4 build the

foundation of many high-level biomedical information extraction

and knowledge discovery applications.5–8 Also, it is shown that the

biomedical text data such as scientific articles,9 clinical narratives,10

and health-related social media posts,11 abound with ambiguous

terms (hereafter, instead of saying ambiguous word we use
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ambiguous term because a [biomedical] conceptual unit that we try

to disambiguate can be represented by a series of words; as in malig-

nant B-cell lymphoma or benign B-cell lymphoma for the target am-

biguous term B-cell lymphoma). In the lowest level, surrounded by

this innate ambiguity, all other components and the full biomedical

application will suffer if it is not resolved properly.

A word sense disambiguation (WSD) algorithm attempts to pre-

dict the correct sense of a term within a context given a set of candi-

dates. For example, in the sentence “Ca intakes in the United States

and Canada appear satisfactory among young adults,” the sense set

for Ca consists of Canada (s1), California (s2), calcium (s3), and

cornu ammonis (s4) and the goal is to predict the correct sense s3 for

this specific occurrence of Ca. It is shown that this automatically

identifying the intended sense of ambiguous words improves the per-

formance of clinical and biomedical applications such as medical

coding and indexing,12,13 detection of adverse drug event,14 auto-

matic medical reporting,15,16 and other secondary uses of data such

as information retrieval and extraction,17 and question-answering

systems.18 These capabilities are becoming essential tasks due to the

growing amount of information available to researchers, the transi-

tion of healthcare documentation and patient-practitioner interac-

tion toward electronic health records and automatic expert systems,

and the push for quality and efficiency in health care.

Supervised machine learning WSD algorithms typically build 1

separate classifier for each ambiguous term, which will be trained

solely on the instances of that term. That is, to train an accurate

WSD model, a large amount of annotated instances are needed, the

curation of which will be expensive and labor-intensive particularly

in health informatics.19,20 Recent studies in the biomedical domain

incorporate expert-involved active learning techniques to accelerate

the labeling process of this training data.21,22 Nevertheless, consider-

ing the multiclassifier design of the traditional supervised WSD

models, the real-world implementation of them in the domain is still

impracticable.

We introduce a 1-size-fits-all deepBioWSD architecture for dis-

ambiguation of biomedical text data, a deep learning–based model

that unifies all disambiguation classifiers into 1 single network. In a

supervised manner, this network will be trained on all existing

instances of the ambiguous terms as 1 group of training data in

which sense-context pair and sief1:0; 0:0g constitute the input and

the output, respectively. While the network encodes the shared in-

formation among all instances, for a given training-instance, it

learns the senses of the unlabeled terms in the context and the sense

of the labeled center term at the same time. To this end, our archi-

tecture employs a bidirectional long short-term memory network

(BLSTM), and works with neural sense embeddings, which can be

pretrained.

Supervised WSD in biomedicine
Jimeno-Yepes et al23 prepared the National Library of Medicine’s

MSH WSD dataset in 2011 with naive Bayes accuracy of 93.84%

(NB [these abbreviations are used during evaluation of the WSD

algorithms]). Later, traditional discriminative models with rigorous

linguistic and biomedical specific features were used for WSD evalu-

ation.24,25 To avoid an intense feature engineering, recently, the

state-of-the-art accuracy of 95.97% was achieved by Jimeno-

Yepes26 using unigrams and word embeddings with support vector

machines (SVMYepes); they also reported the accuracy of 94.87% for

their long short-term memory networks (LSTMs). In another super-

vised model, Antunes and Matos27 used bag-of-words as local

features and word embeddings as global features and reported accu-

racy of 95.6% when SVM classifiers were employed (SVMAnt-Mat).

To eliminate an extreme need for extensive amount of annotated

data to train classifier of each term, Sabbir et al28 recently developed

a knowledge-based model at the cost of accuracy (92.24%, KN). In

another recent knowledge-based study, Duque et al29 reported accu-

racy of 71.52% on MSH WSD for their system called Bio-Graph

that employs a PageRank algorithm to work with occurrence graphs

built from Medline abstract to address WSD (Bio-Graph).

Neural embeddings for WSD
With recent interests in training neural word embeddings from large

raw corpora,30–32 several studies included pretrained word embed-

dings in their WSD models, some of which were concerned with bio-

medical text.33–36 Lately, computation of sense embeddings has

gained the attention of researchers as well where their importance in

the WSD tasks has been investigated;37–40 however, the mapping of

these hardly interpretable inducted sense embeddings to a sense in-

ventory (eg, the Unified Medical Language System [UMLS]) has

been the main bottleneck for their wider employment in WSD sys-

tems.41 In the deepBioWSD model, first, we build our sense embed-

dings using the UMLS text definition of senses; then, these

embeddings initialize our BLSTM network before training.

Bidirectional LSTM
LSTMs address the vanishing gradient problem in RNNs by incorpo-

rating gating functions into their state dynamics (see Supplementary

Appendix).42 Standard Recurrent Neural Networks (RNNs) and

LSTMs, however, have restrictions as the future input information

cannot be reached from the current state, so, a Bidirectional LSTM

fuses 1 forward and 1 backward LSTM.43 In WSD, this means we are

able to encode the information of both preceding and succeeding

words with respect to a pivotal ambiguous term. Kågeb€ack and Salo-

monsson35 proposed a partially shared multiclassifier WSD model

with BLSTMs that employed word embeddings (BLSTMKåg-Sal). In

our previous work, we developed a single-classifier WSD model with

just 1 BLSTM network (BLSTMPes-etal);
36 this model, however, uses 2

separate word and sense spaces for the context and center words,

which caused inconsistency and worse performance. As we will see,

the deepBioWSD network is only dependent on sense space for both

center and context terms, an architectural improvement over

BLSTMPes-etal network for better sense prediction, faster training, and

less dependency on expert-labeled data. Other existing BLSTM-based

WSD algorithms are Seq2Seq-inspired models, which typically under-

perform conventional supervised WSD models.44–46

Zero-shot learning
Zero-shot learning (ZSL) aims at predicting labels for instances that

belong to classes that were not directly seen during training.47,48

The underlying secret ensuring the success of ZSL is to find an inter-

mediate semantic representation to transfer the knowledge learned

from seen classes to unseen ones.49 The scalability of the model is of

utmost importance since a large amount of unlabeled data is gener-

ally present and can be received by interaction with the environ-

ment,50 which is the case in medical informatics. We show

deepBioWSD with a unitary and uniform network architecture that

it offers benefits from ZSL; that also, in turn, prevents the “cold

start” problem (ie, when a model cannot draw any inferences as it

has not yet gathered sufficient information related to a subject mat-

ter or application; hence, training of the model from scratch with
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sufficient amount of labeled data seems inevitable) that exists in

other supervised WSD algorithms.

Experimental data
Unified Medical Language System

The UMLS (https://www.nlm.nih.gov/research/umls/) is a termi-

nology integration system that contains Metathesaurus and SPE-

CIALIST Lexicon. The Metathesaurus holds �3.4 million

biomedical and clinical concepts (hereafter, we use concept and

sense [of a term] interchangeably) by maintaining their hierarchi-

cal relationships. Each concept has a unique identifier called CUI

(Concept Unique Identifier), a set of representative terms, and a

text definition. The Metathesaurus provided us with the sense sets

of the ambiguous terms. The SPECIALIST Lexicon resource con-

tains information about common English vocabulary and biomedi-

cal terms by offering tools for language processing. We used its

programs to demarcate terms in the contexts; in our early example,

the United States is an unambiguous term (CUI: C0041703) con-

sisting of 3 words, and satisfactory is a single-word ambiguous

term (C0205410, C1547307). The latest UMLS release 2018AA

was used in the study. This release covers >83 000 ambiguous

representative terms.

Medline abstracts

Medline includes over 20 million citations of life sciences and

biomedical articles from 1966 to the present. Combined with the

UMLS concept definitions, we employed Medline 2013 bigram-list

(https://mbr.nlm.nih.gov/Download/) to create our sense embeddings.

Validation datasets

We employed the MSH WSD dataset (https://wsd.nlm.nih.gov/col-

laboration.shtml) for the evaluation of WSD algorithms.23 This

dataset provides 37 888 instances for 203 ambiguous terms (includ-

ing abbreviations) that take 2–5 senses (�100 instances per each

sense are provided). Prepared from Medline, every instance of a tar-

get ambiguous term is manually annotated with a CUI within the

sense set of that term. For example, an instance of Ca is labeled with

either C0006823 (Canada), C0006675 (California), C0006754 (cal-

cium), or C3887642 (cornu ammonis); while every instance of the

target term lymphogranulomatosis takes the sense C0036202

(benign lymphogranulomatosis) or C0019829 (malignant

lymphogranulomatosis).

MATERIALS AND METHODS

Pretraining of sense embeddings
Inspired by studies for (high-dimensional) distributed representation

of biomedical concepts,51–53 and low-dimensional vector representa-

tion of words,54,55 we pretrained UMLS sense embeddings in 6 steps

as depicted in Figure 1. In essence, the second-order computation of

vector representation of concepts prevents the issue of sparsity (of

word features) in the first-order vector representation of their defini-

tions, pointwise mutual information statistically defines the degree

of relevance between each biomedical concept and its (second-order)

word features, and latent semantic analysis aims at condensing the

final high-dimensional vectors to a size proper for a deep neural net-

work. These steps briefly explained below are executed in advance

to compute sense embeddings of the UMLS concepts before training

our deepBioWSD network which they initialize (see Supplementary

Appendix for further details).

Step 1—Bigrams and Medline words co-occurrence matrix.

We built a co-occurrence matrix from the bigram-list of Medline

abstract. This matrix is symmetric and sparse, and represents the

contextual information of the Medline words.

Step 2—UMLS concept definition extension and definition ma-

trix. The definition extension of concepts by their immediate con-

cepts’ in an ontology/thesaurus enriches their semantic.51,56 When

applied to the UMLS concepts, words in the extended definitions

have associated co-occurrence vectors from Medline computed in

step 1. For every (extended) definition, the definition matrix stores

the frequency of these word features.

Step 3—Second-order co-occurrence (SOC) matrix. To build a

SOC vector of a concept, we first summed the Medline co-

occurrence vectors of the content words in that concept’s extended

definition, and then normalized the result vector by the number of

words in the definition. In other words, we took the centroid of the

vectors associated with each word in the definition, and then nor-

malized the result to uniformly treat the different size definitions.

Step 4—Pointwise mutual information (PMI) on SOC matrix.

Not all word features associated with a concept are equally impor-

tant. PMI, as in equation 1, statistically measures the level of associ-

ation between the concepts (their associated words; ie, wordi) and

the word features (ie, wordj), instead of naive consideration of word

feature frequency cutoff threshold.57,58 Once PMI values are

calculated—with respect to the (frequency) probabilities of

(co-)occurrences of these words, our validation set helps to set a low

cutoff threshold for the removal of irrelevant features. We applied

the add-1 smoothing technique to the SOC matrix in advance to

avoid bias toward infrequent occurrences.52

PMIsenseðwordi;wordjÞ ¼ log
pðwordi;wordjÞ

pðwordiÞ � pðwordjÞ
(1)

Step 5—Latent semantic analysis (LSA) on PMI-on-SOC ma-

trix—LSA, given by equation 2, uses a singular value decomposition

algorithm that resulted 2 square and unitary matrices U an VT , and

a non-negative diagonal matrix R that held singular values on its di-

agonal in a nonincreasing order.59

PMI on SOC ¼ RVT (2)

Step 6—Reducing the rank of singular values—Having equation

3, we truncated the singular value decomposition to 100 for low-

dimensional representation of UMLS concepts. Determined by our

validation set, smaller embedding sizes yielded worse WSD results,

and higher dimensions did not improve the accuracy and just in-

creased the training time.

sense embeddings ¼ UR100 (3)

deepBioWSD network definition
In contrast to other supervised WSD networks, in which a softmax

layer with a cross-entropy or hinge loss is often parametrized to se-

lect the corresponding weight matrix and bias vector for every sense

of an ambiguous term, our network shares parameters over all

senses. Given an instance and the position of a target term, the deep-

BioWSD network computes a probability distribution over candi-

date senses of that term.

The architecture of our network consists of 7 layers (Figure 2).

Due to the replacement of the conventional softmax layer with a lin-

ear (regression) layer, we imposed a modification to the input. That

is, apart from the contextual features, the sense for which we want
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to discover whether the given context is meaningful will be provided

as input. For an ambiguous term with the sense set fs1; . . . ; sng,
the network runs n times (for every sense) and the highest-

confidence sense would be selected. In lower layers, to determine

proximity of the senses and the given context, after computing co-

sine similarities of each candidate sense (embedding) with the senses

of the context terms, the sequential result of the cosine similarities

between the correct sense and the surrounding context communicate

a pattern-like information that our BLSTM layer encodes—which

consequently yields higher confidence in the upper regression layer;

however, for the incorrect senses, this premise of homogeneity and

proximity does not hold (ie, negative samples). Several studies

already incorporated the idea of sense-context cosine similarities in

their WSD models.36,60–62 Nevertheless, the context terms, which

are determined by the SPECIALIST Lexicon during the disambigua-

tion process, can be ambiguous themselves. To deal with their ambi-

guity, just before the cosine layer, a pooling layer is devised, the

result of which learns the senses of the ambiguous terms appeared in

the context. This means the network takes gradients with respect to

(shared) sense embeddings of both the target term and the context

terms at the same time.

UMLS Concept Embedding Layer. For one instance, the input of

the network consists of a sense and a list of (left and right) context

terms, which paired together form a list of context components. For

context D, which encompasses an ambiguous term with the sense

set of fs1; . . . ; sng, the embedding layer weights for the examined

Figure 1. The figure represents different steps in our unsupervised method to generate low-dimensional sense embeddings for the Unified Medical Language

System (UMLS) concepts. These embeddings initialize of disambiguation deep neural network. C: concept; f: new feature; LSA: latent semantic analysis; PMI:

pointwise mutual information; S: salient feature; SOC: second-order co-occurrence; W: word feature.

Figure 2. The figure illustrates our 1-size-fits-all deepBioWSD network which treats all center ambiguous terms (and their instances) uniformly. The emb repre-

sents embedding size; li is the current candidate sense (or label) under investigation, and Xj is the jth term in the context (left or right). Besides training on the

center terms, the embeddings of the context terms would be updated and learned (ie, disambiguated) during training. LSTM: long short-term memory network;

UMLS: Unified Medical Language System.
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input sense si, is determined by equation 4. Then, this input is copied

to jDj positions of the context to form the first pair of the context-

components and set the same embedding weights in the layer.

li ¼Wl
s:vsðsiÞ; i 2 f1; . . . ; ng (4)

where, li 2 R
100 and vsðsiÞ is the 1-hot representation of the sense.

A 1-hot representation is a vector with the dimension Vs consisting

of jVsj � 1 zeros and a single one that indicates the index of a sense

in a look-up table; the Vs size is equal to the number of CUIs in the

UMLS. The Wl
s is the shared look-up table for the center terms and

context terms; it is initialized with the sense embeddings that we

computed in advance. Equation 4 have the effect of picking the col-

umn (ie, a sense embedding) from Wl
s corresponding to that sense.

Regarding a context term input, which form the second pair of a

context component, at position k in the same context D the embed-

ding weights are determined by

xk ¼½l1; . . . ; ln� � R
100�m;

k 2 � jDj
2
; . . . ;�2;�1; 1; 2; . . . ;

jDj
2

� �
(5)

where, li is set by equation 4, and k is the position of the term in the

context (left or right) while jDj/2¼125 is a hyperparameter of the net-

work (padding or truncating was applied wherever needed). m is an-

other hyperparameter that typically should be equal to the size of the

largest sense set; however, in the experiments of the study we observed

an inverse relationship between the sense set size and the occurrence fre-

quency of the terms, therefore we limited m to be 5. This means only

those terms in the context were inputted to the network that had the

sense set of size 5 or less (ie, some infrequent terms were ignored). This

resulted a faster convergence with no accuracy loss. For those terms

with the sense set size of <5, a generic embedding vector of very large

negative numbers was employed to fill in the void senses; this helped

maxpooling consider only the sense embeddings of a context term.

Pooling and Flattening Layer. Here, max operation is applied

over all rows per each context term’s sense embeddings, denoted as

maxpool(5) in Figure 2. After maxpooling, each context term is rep-

resented with a 100-dimensional global feature vector. We also flat-

tened the result column vector into a row vector as an integrated

part of the maxpooling layer; that is, at position k in the context,

the pooling and flattening layer gives l
k 2 R

1� 100 for a target term

sense and xk 2 R
1�100 for the predicted context term sense. De-

spite the intuitive use case of maxpooling to deduce the proper

sense of a context term, experimentally it worked better than aver-

agepooling.

Cosine Layer. In jDj positions of context components, the cosine

similarities between the embedding vector of the examined sense and

the maxpooled of the context terms are calculated. Computed by

equation 6, the results are 2 row-vectors of size jDj/2 each containing

the cosine similarities of the context components of their side:

cleft ¼ ½ck
l ; . . . ; c�1

l � 2 R
1�jDj=2; k 2

(
� jDj

2
; . . . ;�2;�1

)

cright ¼ ½c1
r ; . . . ; ck

r � 2 R
1�jDj=2; k 2

(
1; 2; . . . ;

jDj
2

)

ci ¼ cosineðl i
;x iÞ ¼

X
l
i�x i

kl ik � kxik
; k 2

(
1; . . . ; k

)

(6)

Bidirectional LSTM Layer. With 1 forward and 1 backward

LSTM networks, we have a left context–dedicated LSTM network

that receives the cosine similarities from left to right, and right

context–dedicated LSTM network that receives the cosine similari-

ties from right to left. cleft and cright are the inputs of these net-

works; their outputs are the vectors hleft 2 R
1�50 and

hright 2 R
1�50, each encoding the received information from one

side of the target ambiguous term (50 is another hyperparameter).

Concatenation Layer. This layer concatenates the output row

vectors of the BLSTM layer:

hmerge ¼ ½hleft ;hright � 2 R
1�100 (7)

Fully Connected Layer. Further, for a better representation, a

hidden fully connected layer hfc is devised which is:

hfc ¼ ReLUðhmerge : Wh þ bhÞ 2 R
1�50 (8)

where, ReLU is rectified linear unit function;63 Wh 2 R
100�50 and

bh 2 R
1�50are the weights and bias for the hidden layer. The result

of this layer embeds the input sequence into a vector of size 50.

Regression for Classification Layer. This layer outputs a single

value that is computed by:

ŷsi
¼ hfc:Wout þ bout ; si 2 fs1; . . . ; sng (9)

where, hfc comes from the previous layer, and Wout and bout are

the weights and bias of this linear layer.

During network training, for an instance with its given context

and the correct sense as inputs, ŷsi
is set to be 1.0, whereas for the

same context with the incorrect senses it is set to be 0.0. During test-

ing, however, among all the senses, the output of the network for a

sense that gives the highest value of ŷsi
is considered as the true sense

of the ambiguous term. In other words, the correct sense is:

argmax
si

fŷs1
; . . . ; ŷsn

g; si 2 fs1; . . . ; sng (10)

By applying softmax to the results of the estimated values

fŷs1
; . . . ; ŷsn

g, we can represent them as probabilities. This facilitates

interpretation of them especially when deepBioWSD is benefiting

from an active learning setting where intricacy and importance of 1

instance are measured.

The final recommended hyperparameters of the network which

were determined during the validations are provided in Supplemen-

tary Appendix.

Unsupervised collection of training data
Considering the uniform structure of deepBioWSD, we also aimed

at collecting more training data on which deepBioWSD could be

pretrained. For this purpose, we employed Entrez Direct (https://

www.ncbi.nlm.nih.gov/books/NBK179288/) to automatically

gather data from PubMed. So, we devised a query management

scheme that benefited from the notion of polyonymy of a concept

(polyonomy is the employment of multiple names for the same con-

cept): besides ambiguous representative terms, usually, one concept

has other representative terms that are unambiguous (eg, lympho-

granulomatosis vs malignant lymphogranulomatosis). By sending

queries to PubMed for these unambiguous terms, we obtain

abstracts for which we already know the true sense. It allowed us to

create samples of unsupervised instances in a large quantity (see Sup-

plementary Appendix). For each (unambiguous) sense query, we

only considered the first 500 instances retrieved from PubMed (ex-

cluding the MSH WSD instances). A total of 180 175 instances were

automatically prepared as PubMed returned <500 abstracts for

some sense queries.
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RESULTS

Sense similarity of pretrained embeddings
We will represent our method for pretraining of sense embeddings

(see subsection Pre-training of sense-embeddings) plays an impor-

tant role in sense prediction. This method organized the concepts

based on their semantics (a physical library would be an appropriate

analogy for this attempt), which will be later on introduced to the

deepBioWSD network for a better and faster training. Table 1 repre-

sents a (cosine) sense similarity example for the ambiguous term CP

(computed over the pretrained sense embeddings; ie, books in the li-

brary). Each column header represents one sense of CP, and the

listed terms below are the closest UMLS concepts to that meaning of

CP. In the table, instead of unfamiliar sense CUIs, the selected repre-

sentative terms of the concepts are shown. Providing just 1 example

here, we observed other senses followed the same sense similarity or-

ganization in the sense embedding space as well (see Supplementary

Appendix for more examples).

First WSD experiment: direct learning from center

terms
Between-all-models comparisons: Table 2 compares the deep-

BioWSD with the other WSD algorithms. Despite those for which

we already had the accuracy results on MSH WSD dataset,

BLSTMKåg-Sal and BLSTMPes-etal were reimplemented with their best

hyperparameters chosen, a few of which were slightly different from

their original papers (eg, different context size). What we report

here for deepBioWSD is based on 10-fold validation experiments we

conducted after considering training, validation, and test splits;

other models might not necessarily follow this strategy.

Supervised. Instances of every 203 term in MSH WSD data were

divided into 10 nonoverlapping folds in which 1 fold was put aside

for a final testing in a 10-time validation. Training on the rest of the

9 folds, we first randomly selected 5% as a validation set to tune

hyperparameters and to find the proper number of epoch the net-

work needed to train. After hyperparameters were chosen, the final

model was trained on the whole training set (including the valida-

tion set), and then was evaluated on the 203 test data folds taken

out already. In the experiments, macro and micro accuracies were

considered for hyperparameter tuning as well as for the final evalua-

tion of the test data (see Supplementary Appendix). After computing

the test results of the all 10 times of validation, their average was

considered as the results of the models.

Unsupervised. After finding the proper structure of the network,

we experimented with 2 scenarios. First, the network was trained on

the automatically collected data where the MSH WSD instances

made the test data. Second, the network was pretrained on these

unsupervised data and then it was retrained and evaluated according

to the supervised layout described previously.

These results indicate the importance of pretrained sense embed-

dings initializing the network. Their influence, however, is inconsid-

erable when the network is pretrained on the unsupervised training

data. In that case, the network produces sense embeddings from

scratch, and the final updated embeddings are the byproduct of the

network. Overall, deepBioWSD’s single network architecture out-

performs unsupervised KB and (multiclassifier) supervised WSD

algorithms in the biomedical WSD task. Regarding training time,

deepBioWSD also showed better efficiency (see Supplementary

Appendix).

Within-our-model comparisons: We also studied if the flow of

cosine similarities between a true sense and its preceding and suc-

ceeding terms (their senses) carried a sequential information that 1

BLSTM could encode and learn from. Therefore, according to what

Table 3 represents, we introduced some changes in the input or in

the structure of the network to verify that. We observed if we reverse

the sequential flow of information into our BLSTM, we shuffle the

order of the context terms, or replace our LSTMs with 2 fully con-

nected networks of the same size 50, the achieved results were nota-

bly less than our original structure. Expectedly, due to a variable

size of the original contexts (which forced padding/truncation), re-

placement of LSTMs with BLSTMs had negative effects.

Second WSD experiment: indirect learning from

context terms
Considering ZSL, we also experimented if training on 1 target term’s

instances led to indirect insights into other terms. As an example, as-

sume we are training the ventricles instance, “Coronal measure-

ments of both ventricles were similar when obtained by US and MRI

Table 1. Sense similarity for candidate senses of the ambiguous

term CP

Cerebral Palsy Propionibacterium acnes Cleft Palate

Convulsion Staphylococcus Glossoptosis

Spastic syndrome Propionibacterium Cleft Lip

Muscle Dystonia Stomatococcus Omodysplasia

Dysdiadochokinesis Micrococcus Congenital Megacolon

Choreoathetosis Flavobacterium Ectromelia

Quadriplegia Neisseriaceae Polydactylism

Trismus Acidovorax Teething

Hemiplegia Abiotrophia Congenital Aniridia

Muscle Hypertonia Paenibacillaceae Omphalocele

Muscle Spasticity Helicobacter Syndactyly

Table 2. Accuracy results for MSH WSD dataset

Method Algorithm

Macro

Accuracy

(%)

Micro

Accuracy

(%)

Unsupervised Bio-Graph 71.52 –

KB 92.24 –

deepBio

WSDwith random embeddings

92.16 91.93

deepBio

WSDwith pretrained embeddings

92.67a 92.51a

Supervised NB 93.84 –

SVMAnt-Mat 95.60 –

LSTM 94.87 94.78

SVMYepes 95.97 95.81

BLSTMKåg-Sal 95.64 95.47

BLSTMPes-etal 95.53 95.39

deepBio

WSDwith random embeddings

93.88 93.71

deepBio

WSDwith pretrained embeddings

96.14 95.96

deepBio

WSDpretrained unsupervised

w/o sense embdgs

96.64 96.47

deepBio

WSDpretrained unsupervised

w/ sense embdgs

96.82a 96.64a

aWe observe deepBioWSD outperforms other measures in both supervised

and unsupervised WSD settings.
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images”; having ventricles (meaning cerebral ventricles here) as the

target ambiguous term, we gain knowledge about the context terms

as well, including US and MRI. In a new US instance, this insight

helps the network to predict if US means United States or ultraso-

nography.

To investigate indirect learning, we randomly divided 203 num-

ber of MSH WSD terms into 10 nonoverlapping folds, and then held

(instances of) 1 of the folds for testing (as unseen data) and the rest

for training (10-time validation). We selected 5% of the training set

as a validation set to tune hyperparameters. The final network was

trained on the whole training set and then was evaluated on the test

set (averaged the individual test results on the unseen target terms).

Table 4 represents the average of the 10 times of validation. These

results clearly represent the influence of pretrained sense embed-

dings on the predictions. More importantly, we observe, when deep-

BioWSD is not directly trained on 1 term’s instances, the preserved

statistical information learned from the context (and its maxpooled

embeddings) guides the network for more accurate sense prediction

of that term when located at the center. Furthermore, with the cur-

rent state of the network, the model will not suffer from the cold

start problem because the model has been gaining the momentum,

and with less number of training data needed, it will be fully trained

on unseen terms in short order as well.

Except for BLSTMPes-etal, for which the results of this experiment

were completely random (in all cases), we could not envision and

conduct the experiment for the other supervised algorithms due to

their multiclassifier design.

DISCUSSION

The deepBioWSD introduces an unorthodox WSD network in which

all conceptual pieces of the biomedical domain (ie, pivotal and con-

textual terms) are designed to be interconnected—pieces that con-

stantly communicate information to solve the jigsaw puzzle of

WSD. The network, however, found 2 types of instances challeng-

ing. First, when the syntactic structure—with similar semantic

theme—surrounding the candidate senses were very similar (eg, vet-

erinary assistant and veterinary medicine for the ambiguous term

veterinary). Second, when the senses are semantically so close that

they share the same immediate parent in the UMLS, or 1 term di-

rectly subsumes the other sense (as in senses for borrelia, heregulin,

and HGF) (see Supplementary Appendix).

We let MeSH and SNOMED CT demarcate the context terms

(following the previous studies).60,64 We found however by adding

more vocabularies from the UMLS, fewer context terms will be ig-

nored during prediction as the model will be inclusive of more bio-

medical terms or senses. For example, the term 12-step program

appeared frequently in the context of AA when it meant Alcoholics

Anonymous (another meaning is amino acid); however, 12-step pro-

gram belongs to neither MeSH nor SNOMED CT, whereas the Na-

tional Cancer Institute ontology (NCI) covers it. This consideration

of more vocabularies was helpful, as it slightly improved the results

with a smaller context size needed. Nonetheless, with more vocabu-

laries, the possible number of senses one term can take grows, which

to some extent offsets the advantage of a smaller context size.

CONCLUSIONS

One future work direction can be consideration of other unsuper-

vised biomedical sense embedding methods in the model. Adding an

attention mechanism to the network architecture might further im-

prove the disambiguation results as well.65 Also, more comprehen-

sive and systematic study for the collection of unsupervised training

data is needed. The model can also be evaluated on an extrinsic task

with real-world applications (eg, Clinical Information Extraction).17
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