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Graph products have been extensively applied to model complex networks with
striking properties observed in real-world complex systems. In this paper, we
study the hitting times for random walks on a class of graphs generated iteratively
by edge corona product. We first derive recursive solutions to the eigenvalues and
eigenvectors of the normalized adjacency matrix associated with the graphs. Based
on these results, we further obtain interesting quantities about hitting times of
random walks, providing iterative formulas for two-node hitting time, as well as
closed-form expressions for the Kemeny’s constant defined as a weighted average
of hitting times over all node pairs, as well as the arithmetic mean of hitting times

of all pairs of nodes.
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1. INTRODUCTION

Graph operations and products play an important role
in network science, which have been used to model
complex networks with the prominent scale-free [1] and
small-world [2] properties as observed in various real-
life networks [3]. Since diverse realistic large-scale
networks consist of smaller pieces or patterns, such
as communities [4], motifs [5], and cliques [6], graph
operations and products are a natural way to generate
a massive graph out of smaller ones. Furthermore, there
are many advantages to using graph operations and
products to create complex networks. For example,
it allows analytical treatment for structural and
dynamical aspects of the resulting networks. Thus far,
a variety of graph operations and products have been
introduced or proposed to construct models of complex
networks, including triangulation [7, 8, 9, 10, 11],
Kronecker product [12, 13, 14], hierarchical product [15,
16, 17, 18, 19], as well as corona product [20, 21, 22].

Recently, a class of iteratively growing network
model was introduced, leveraging an edge operation
on graphs [23]. This family of graphs exhibit the
striking scale-free small-world properties as observed
in diverse real systems. The degree distribution P (d)
of the graphs follows a power-law form P (d) ∼ d−γq

with the exponent γq lying in the interval (2, 3). Their

diameter scales logarithmically with the number of
nodes. Moreover, their clustering coefficient is high.
However, except some structural and combinatorial
properties, the dynamical aspects on these networks
are not well understood, for example, hitting times of
random walks on this network family.

In this paper, we present an in-depth study on hitting
time— a most relevant quantity about random walks
on the iteratively growing networks [23]. We first
give iterative formulas for eigenvalues and eigenvectors
of normalized adjacency (or Laplacian) matrix for
the networks, based on which we determine two-node
hitting time and the Kemeny’s constant for random
walks. Also, we derive closed-form expressions for the
sum of hitting times, additive-degree sum of hitting
times, multiplicative-degree sum of hitting times over
all pairs of nodes, as well as the arithmetic mean of
hitting times of all node pairs.

2. PRELIMINARIES

In this section, we introduce some basic concepts for
graphs and random walks on graphs.
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2.1. Graph and Matrix Notation

Let G(V,E) denote a simple connected graph with n
nodes/vertices and m edges. Let V (G) = {1, 2, . . . , n}
be the set of n nodes, and let E(G) = {e1, e2, . . . , em}
be set of m edges.

Let A denote the adjacency matrix of G, the (i, j)th
entry A(i, j) of which is 1 (or 0) if nodes i and j are (not)
adjacent in G. Let Ψ(i) denote the set of neighbors
for node i in graph G. Then the degree of node i is
di =

∑
j∈Φ(i)A(i, j), which forms the ith diagonal entry

of the diagonal degree matrix D for G. The incidence
matrix B of G is an n × m, where the (i, j)th entry
B(i, j) = 1 (or 0) if node i is (not) incident with ej .

Lemma 2.1. [24] Let G be a simple connected
unbipartite graph with n nodes. Then the rank of its
incidence matrix B is rank(B) = n.

Lemma 2.2. [24] Let G be a simple connected graph.
Then its incidence matrix B, adjacency matrix A and
diagonal degree matrix D satisfy

BB> = A+D.

2.2. Random Walks on Graphs

For a graph G, one can define a discrete-time unbiased
random walk running on it. At every time step,
the walker jumps from its current location, node i,
to an adjacent node j with probability A(i, j)/di.
Such a random walk on G is a Markov chain [25]
characterized by the transition probability matrix T =
D−1A, with its (i, j)th entry T (i, j) being A(i, j)/di.
For an unbiased random walk on unbipartite graph G
with n nodes and m edges, its stationary distribution
is an n-dimension vector π = (π1, π2, . . . , πn)> =
(d1/2m, d2/2m, . . . , dn/2m)>.

In general, the transition probability matrix T of
graph G is asymmetric. However, T is similar to a
symmetric matrix P defined as

P = D−
1
2AD−

1
2 = D

1
2TD−

1
2 ,

which is often called the normalized adjacency matrix
of G. By definition, the (i, j)th entry of P is P (i, j) =
A(i,j)√
didj

. Then, it is obvious that P (i, j) = P (j, i). Let

I be the identity matrix of approximate dimensions.
Then, I − P is the normalized Laplacian matrix [26] of
graph G.

Let λ1, λ2, . . ., λn be the n eigenvalues of matrix P .
Then, these n eigenvalues can be listed in decreasing
order as 1 = λ1 > λ2 ≥ . . . ≥ λn ≥ −1, with
λn = −1 if and only if G is a bipartite graph.
Let v1, v2, . . ., vn be the orthonormal eigenvectors
corresponding to the n eigenvalues λ1, λ2,. . ., λn, where
vi = (vi1, vi2, . . . , vin)>, i = 1, 2, . . . , n. Then,

v1 =
(√

d1/2m,
√
d2/2m, ...,

√
dn/2m

)>
(1)

and

n∑
k=1

vikvjk =

n∑
k=1

vkivkj =

{
1, if i = j,
0, otherwise.

(2)

A key quantity associated with random walks is
hitting time. The hitting time Tij from one node i to
another node j is defined as the expected number of
jumps needed for a walker starting from node i to reach
node j for the first time. The hitting time Tij is encoded
in the eigenvalues and eigenvectors of the normalized
adjacency (or Laplacian) matrix P for graph G.

Lemma 2.3. [27] For random walks on a simple
connected graph G with n nodes and m edges, the
hitting time Tij from one node i to another node j
can be expressed in terms of the eigenvalues and their
orthonormal eigenvectors for the normalized adjacency
matrix P as

Tij = 2m

n∑
k=2

1

1− λk

(
v2
kj

dj
− vkivkj√

didj

)
.

The hitting time is relevant in various scenarios [28].
For example, it has been used to design clustering
algorithm [29, 30], to measure the transmission costs
in wireless networks [31, 32], as well as to evaluate the
centrality of nodes in complex networks [33, 34].

For a graph G, Tij is usually not equal to Tji.
However, the commute time between a pair of nodes
can make up for this shortcoming. For two nodes i and
j, their commute time Cij is defined as the sum of Tij
and Tji, namely, Cij = Tij + Tji. Thus, the relation
Cij = Cji always holds for any pair of nodes nodes i
and j.

Lemma 2.4. [35] Let G be a simple connected graph
with n nodes and m edges. Then the sum of commute
times Cij between all the m pairs of adjacent nodes in
G is equivalent to 2m(n− 1), i.e.∑

(i,j)∈E

Cij = 2m(n− 1).

The symmetry of commute time makes it have
many applications in different areas, such as link
prediction [36] and graph embedding [37]. In addition
to commute time, many other interesting quantities of
graph G can be defined or derived from hitting times.
For example, the mean hitting time H̄(G) of a graph
G with n nodes is the average of hitting times over all
n(n− 1) node pairs:

H̄(G) =
1

n(n− 1)

n∑
i=1

n∑
j=1

Tij . (3)

The quantity of mean hitting time has been utilized as
an indicator of mean cost of search in networks [38, 39]
and global utility of social recommender networks [40].
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⇒

q = 1 q = 2

q = 3

FIGURE 1. Network construction method. The next-
iteration network is obtained from the current network by
performing the operation on the right-hand side of the arrow
for each existing edge.

Another quantity defined according to hitting times
is the Kemeny’s constant. For a graph G, its Kemeny’s
constant K(G) is defined as the expected number of
steps required for a walker starting from a node i
to a destination node chosen randomly according to
a stationary distribution of random walks on G [41],
that is K(G) =

∑n
j=1 πjTij . The Kemeny constant

K(G) is independent of the selection of starting node
i [42], which means

∑n
j=1 πjTij =

∑n
j=1 πjTkj holds

for an arbitrary pair of node i and k. Interesting, the
Kemeny’s constant of graph G is only dependent on the
eigenvalues of matrix P .

Lemma 2.5. [43] Let G be a simple connected graph
with n nodes. Then, the Kemeny’s constant K(G) of G
can be represented as

K(G) =

n∑
j=1

πjTij =

n∑
k=2

1

1− λk
.. (4)

The Kemeny constant has also found applications
in diverse areas [41]. It has been widely used to
characterize the criticality [44, 45] or connectivity [46]
for a graph. Moreover, it can be applied to measure
the efficiency of user navigation through the World
Wide Web [42]. Finally, it was also exploited to
quantify the performance of a class of noisy formation
control protocols [47], and to gauge the efficiency
of robotic surveillance in network environments [48].
Very recently, some properties and nearly linear time
algorithms for computing the Kemeny’s constant have
been studied or developed [34, 49].

3. NETWORK CONSTRUCTION, PROPER-
TIES, AND IMPORTANT MATRICES

In this section, we introduce the construction and
properties for the studied networks, and provide some
relations among matrices related to the networks, which
are very useful for deriving the properties of eigenvalues
and eigenvectors of the normalized adjacency matrix, as
well as the hitting times.

3.1. Network Construction and Properties

The network family studied here is proposed in [23]
and constructed in an iterative way. It is controlled
by two parameters q and g with q ≥ 1 and g ≥ 0. Let

FIGURE 2. The networks of the first three iterations for
q = 1.

FIGURE 3. The networks of the first two iterations for
q = 2.

Kq (q ≥ 1) denote the complete graph with q nodes.
For q = 1, suppose that K1 is a graph with an isolate
node. Let Gq(g) be the network after g iterations. Then,
Gq(g) is constructed as follows. For g = 0, Gq(0) is the
complete graph Kq+2. For g > 0, Gq(g + 1) is obtained
from Gq(g) by performing the operation shown in Fig. 1:
for every existing edge of Gq(g), a complete graph Kq
is introduced, every node of which is connected to both
end nodes of the edge. Figures 2 and 3 illustrate the
networks corresponding to two particular cases of q = 1
and q = 2.

For network Gq(g), let Vg and Eg denote its node set
and edge set, respectively. And let Ng = |Vg| and
Mg = |Eg| denote, respectively, the number of nodes
and the number of edges in graph Gq(g). Then, for all
g > 0,

Mg =

(
(q + 1)(q + 2)

2

)g+1

, (5)

Ng =
2

q + 3

(
(q + 1)(q + 2)

2

)g+1

+
2(q + 2)

q + 3
. (6)

The node set Vg+1 of Gq(g + 1) can be classified into
two disjoint parts Vg and Wg+1, where Vg is the set
of old nodes belonging to Gq(g), while Wg+1 is the set
of new nodes generated in the process of performing
aforementioned operation on Gq(g). Moreover, Wg+1

can be further divided into q disjoint subsets V(1)
g+1,

V(2)
g+1, . . ., V(i)

g+1 satisfying Wg+1 = V(1)
g+1 ∪ V

(2)
g+1 ∪ · · · ∪

V(q)
g+1, with each V(i)

g+1 (i = 1, 2,. . ., q) including Mg new
nodes produced by Mg different edges in Gq(g). Hence,
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one has

Vg+1 = Vg∪V(1)
g+1∪V

(2)
g+1∪...∪V

(q)
g+1. (7)

For any new node x ∈ Wg+1, there are two old
neighboring nodes in Vg, the set of which is denoted
by Γ(x). By construction, for each old edge uv ∈ Eg,
there exists one and only one node x in each V(i)

g+1

(i = 1, 2, . . ., q), satisfying Γ(x) = {u, v}. Therefore,

for two different sets V(i)
g+1 and V(j)

g+1, their nodes have
equivalent structural and dynamical properties.

Let Wg+1 = |Wg+1| represent the number of those
newly nodes generated at iteration g + 1. Then,

Wg+1 = q

(
(q + 1)(q + 2)

2

)g+1

. (8)

Let d
(g)
v denote the degree of a node v in graph Gq(g),

which was generated at iteration gv. Then,

d(g)
v = (q + 1)g−gv+1. (9)

In graph Gq(g), all simultaneously emerging nodes
has the same degree. Thus, the number of nodes
with degree (q + 1)g−gv+1 is equal to q + 2 and

q
(

(q+1)(q+2)
2

)gv
for gv = 0 and gv > 0, respectively.

The resulting family of networks is consist of cliques
Kq+2 or smaller cliques, and are thus called simplicial
networks, characterized by a parameter q. These
networks display some remarkable properties that are
observed in most real networks [3]. They are scale-free,
since their node degrees obey a power-law distribution

P (d) ∼ d−γq with γq = 2 + ln(q+2)
ln(q+1) −

ln 2
ln(q+1) [23].

They are small-world with their diameters increasing
logarithmically with the number of nodes and their
mean clustering coefficients converging to a large

constant q2+3q+3
q2+3q+5 [23]. In addition, they have a finite

spectral dimension 2(ln(q2+3q+3)−ln 2)
ln(q+1) .

3.2. Relations among Various Matrices

Let Ag denote the adjacency matrix of graph Gq(g).
The element Ag(i, j) at row i and column j of Ag is
defined as follows: Ag(i, j) = 1 if nodes i and j are
directly connected by an edge in Gq(g), Ag(i, j) = 0
otherwise. Let Bg denote the incidence matrix of graph
Gq(g). The element Bg(i, j) at row i and column j
of Bg is: Bg(i, j) = 1 if node i is incident with edge
ej in Gq(g), Bg(i, j) = 0 otherwise. Let Dg denote
the diagonal degree matrix of matrix graph Gq(g), with

the ith diagonal element being the degree d
(g)
i of node

i. And let Pg = D
− 1

2
g AgD

− 1
2

g denote the normalized
adjacency matrix of graph Gq(g). Then for Gq(g + 1),
its adjacency matrix Ag+1, diagonal degree matrix
Dg+1 and normalized adjacency matrix Pg+1, can be

expressed in terms of related matrices of Gq(g) as

Ag+1 =


Ag Bg Bg · · · Bg
B>g O I · · · I
B>g I O · · · I
...

...
...

. . .
...

B>g I I · · · O

 ,

Dg+1 = diag{(q + 1)Dg, (q + 1)I, ..., (q + 1)I︸ ︷︷ ︸
q

},

and

Pg+1 = D
− 1

2
g+1Ag+1D

− 1
2

g+1 (10)

=
1

q + 1



Pg D
− 1

2
g Bg D

− 1
2

g Bg · · · D
− 1

2
g Bg

B>g D
− 1

2
g O I · · · I

B>g D
− 1

2
g I O · · · I

...
...

...
. . . I

B>g D
− 1

2
g I I · · · O


.

4. EIGENVALUES AND EIGENVECTORS
OF NORMALIZED ADJACENCY MA-
TRIX

In this section, we study the eigenvalues and
eigenvectors of normalized adjacency matrix Pg+1 for
graph Gq(g + 1), expressing both eigenvalues and
eigenvectors for Pg+1 in terms of those associated with
graph Gq(g). Then we use these results to obtain the
Kemeny’s constant of graph Gq(g).

For the purpose of analyzing the eigenvalues and
eigenvectors of matrix Pg+1 precisely, we first study the
orthonormal basis Yg of the kernel space of the following
matrix

Cg :=
(
Bg Bg · · · Bg

)︸ ︷︷ ︸
q

.

Since Gq(g) is non-bipartite, by Lemma 2.1 one has
rank(Bg) = Ng Thus, dim(Ker(Bg)) = Mg − Ng,
rank(Cg) = Ng, and dim(Ker(Cg)) = qMg − Ng.
Then, Yg can be classified into two non-overlapping

parts Y(1)
g and Y(2)

g obeying Yg = Y(1)
g ∪ Y(2)

g , where

Y(1)
g has Mg − Ng vectors, while Y(2)

g has (q − 1)Mg

vectors. Moreover, as will shown below, Y(1)
g and Y2

g can
be constructed, respectively, by using the orthonormal
basis vectors of the kernel space of matrix Bg and the
column vectors of the Mg ×Mg identity matrix I.

Let Xg = {X1(g), X2(g), . . . , XMg−Ng
(g)} denote the

orthonormal basis of the kernel space of matrix Bg, and
let Zi(g) denote the ith column vector of the Mg ×Mg

identity matrix I. Then the vectors in Y(1)
g are

1
√
q


X>1 (g)

X>1 (g)
...

X>1 (g)

 ,
1
√
q


X>2 (g)

X>2 (g)
...

X>2 (g)

 , · · · 1
√
q


X>Mg−Ng

(g)

X>Mg−Ng
(g)

...,

X>Mg−Ng
(g)

 ,

The Computer Journal, Vol. ??, No. ??, ????



Hitting Times of Random Walks on Edge Corona Product Graphs 5

and the vectors in Y(2)
g are



1√
2
Zi(g)

− 1√
2
Zi(g)

0
0
...
0


,



1√
6
Zi(g)

1√
6
Zi(g)

− 1√
3
Zi(g)

0
...
0


, · · · ,



1√
q(q−1)

Zi(g)

1√
q(q−1)

Zi(g)

1√
q(q−1)

Zi(g)

...
1√

q(q−1)
Zi(g)

−
√

q−1
q
Zi(g)


,

where i = 1, 2, . . . ,Mg.
Considering the process of network construction, we

have the following lemmas.

Lemma 4.1. For any vector

Y
(2)
i (g) =


Y

(2)
i1 (g)

Y
(2)
i2 (g)

...

Y
(2)
iq (g)

 , i = 1, 2, . . . , (q − 1)Mg,

in Y(2)
g , its components obey the following relation

Y
(2)
i1 (g) + Y

(2)
i2 (g) + · · ·+ Y

(2)
iq (g) = 0. (11)

Lemma 4.2. For any integer j ∈ {1, 2, . . . , qMg} and

Y(2)
g = {Y (2)

1 (g), Y
(2)
2 (g), . . . , Y

(2)
(q−1)Mg

(g)}, we have

(q−1)Mg∑
i=1

(
Y

(2)
ij (g)

)2

= 1− 1

q
. (12)

Lemma 4.3. Let 1 = λ1(g) > λ2(g) ≥ ... ≥
λNg

(g) > −1 be the eigenvalues of matrix Pg,
and let v1(g), v2(g), ..., vNg

(g) be their corresponding

orthonormal eigenvectors. Then λi(g)+q
q+1 , i = 1,

2,. . ., Ng, are eigenvalues of matrix Pg+1, and their
corresponding orthonormal eigenvectors are

√
λi(g) + 1

q + λi(g) + 1


vi(g)

1
λi(g)+1B

>
g D
− 1

2
g vi(g)

...
1

λi(g)+1B
>
g D
− 1

2
g vi(g)

 ; (13)

− 1
q+1 ’s are eigenvalues of matrix Pg+1 with multiplicity

(q − 1)Mg + Ng, and the corresponding orthonormal
eigenvectors are

√
q

q + λi(g) + 1


vi(g)

− 1
qB
>
g D
− 1

2
g vi(g)

...

− 1
qB
>
g D
− 1

2
g vi(g)

 , (14)

i = 1, 2,. . ., Ng, and(
0

Y
(2)
z (g)

)
, z = 1, 2, . . . , (q − 1)Mg, (15)

where Y
(2)
z (g) ∈ Y(2)

g ; and q−1
q+1 ’s are eigenvalues of Pg+1

having multiplicity Mg − Ng, with the corresponding
orthonormal eigenvectors being(

0

Y
(1)
z (g)

)
, z = 1, 2, . . . , Mg −Ng, (16)

where Y
(1)
z (g) ∈ Y(1)

g .

Proof. For any eigenpair λi(g) and vi(g), Pgvi(g) =
λi(g)vi(g) holds. Then, by Lemma 2.2 and Eq. (10),
one has

Pg+1


vi(g)

1
λi(g)+1

B>g D
− 1

2
g vi(g)

...
1

λi(g)+1
B>g D

− 1
2

g vi(g)

=
1

q+1


λi(g)vi(g) + qvi(g)
λi(g)+q
λi(g)+1

B>g D
− 1

2
g vi(g)

...
λi(g)+q
λi(g)+1

B>gD
− 1

2
g vi(g)



=
λi(g) + q

q + 1


vi(g)

1
λi(g)+1

B>g D
− 1

2
g vi(g)

...
1

λi(g)+1
B>g D

− 1
2

g vi(g)


and

Pg+1


vi(g)

− 1
q
B>g D

− 1
2

g vi(g)
...

− 1
q
B>g D

− 1
2

g vi(g)

 =


λi(g)vi(g)−(λi(g)+1)vi(g)

q+1

1
q(q+1)

B>g D
− 1

2
g vi(g)

...
1

q(q+1)
B>g D

− 1
2

g vi(g)



=− 1

q + 1


vi(g)

− 1
q
B>g D

− 1
2

g vi(g)
...

− 1
q
B>g D

− 1
2

g vi(g)

 ,

both of which lead to (13) and (14) through
normalization.

In addition, according to Lemma 4.1, one has

Pg+1

(
0

Y
(2)
z (g)

)
=

1

q + 1



0

−Y (2)
i1 (g) +

∑q
k=1 Y

(2)
ik (g)

−Y (2)
i2 (g) +

∑q
k=1 Y

(2)
ik (g)

...

−Y (2)
iq (g) +

∑q
k=1 Y

(2)
ik (g)



=
1

q + 1



0

−Y (2)
i1 (g)

−Y (2)
i2 (g)
...

−Y (2)
iq (g)


= − 1

q + 1

(
0

Y
(2)
z (g)

)
,

as claimed by (15).
Finally, for each z = 1, 2, . . . , (q − 1)Mg,

Pg+1

(
0

Y
(1)
z (g)

)
= Pg+1


Xi(g)
Xi(g)

...
Xi(g)
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=
1

q + 1


0

(q − 1)Xi(g)
(q − 1)Xi(g)

...
(q − 1)Xi(g)


=
q − 1

q + 1

(
0

Y
(2)
z (g)

)
.

Thus, we complete the proof.

In fact, the orthonormal eigenvectors of Gq(g+1) can
be expressed in more explicit forms. By Eq. (1) and
Lemma 4.3, one can easily derive the following results.

Corollary 4.1. Let 1 = λ1(g) > λ2(g) ≥
... ≥ λNg (g) > −1 be the eigenvalues of matrix Pg,
and let v1(g), v2(g), ..., vNg (g) be their corresponding
orthonormal eigenvectors. Then,

1. The eigenvectors corresponding to eigenvalues
λ1(g)+q
q+1 = 1, the first − 1

q+1 for matrix Pg+1 are(√
d1(g)

Mg(q + 2)
, · · · ,

√
dNg

(g)

Mg(q + 2)
,

1√
Mg(q + 2)

, · · · , 1√
Mg(q + 2)

)> (17)

and(√
qd1(g)

2Mg(q + 2)
, · · · ,

√
qdNg (g)

2Mg(q + 2)
,

−

√
2

qMg(q + 2)
, · · · ,−

√
2

qMg(q + 2)

)>
,

(18)

respectively.
2. The element of orthonormal eigenvectors for

eigenvalues λi(g)+q
q+1 , i = 2, 3, . . . , Ng, corresponding

to node j is
√

λi(g)+1
λi(g)+q+1vij(g) j ∈ Vg√

1
(λi(g)+1)(λi(g)+q+1)

(
vis(g)√
ds(g)

+ vit(g)√
dt(g)

)
j ∈ Wg+1;

and the element of orthonormal eigenvectors for
eigenvalues − 1

q+1 , i = 2, 3, . . . , Ng, corresponding
to node j is
√

q
λi(g)+q+1vij(g), j ∈ Vg,√

1
q(λi(g)+q+1)

(
vis(g)√
ds(g)

+ vit(g)√
dt(g)

)
, j ∈ Wg+1

where Γ(j) = {s, t};

3. For orthonormal eigenvectors

(
0

Yz(g)

)
, z =

1, 2, . . . , qMg − Ng, of eigenvalues 0′s of matrix
Pg+1, we have

qMg−Ng∑
z=1

Y 2
zj(g) =1− 1

qMg
−

Ng∑
k=2

1

(1 + λk(g))q
(19)

(
vks(g)√
ds(g)

+
vkt(g)√
dt(g)

)2

.

for each j ∈ Wg+1 with Γ(j) = {s, t}.

5. TWO-NODE HITTING TIME AND KE-
MENY’S CONSTANT

Lemma 4.3 and Corollary 4.1 provide complete
information about the eigenvalues and eigenvectors
of matrix Pg+1 in terms of those of matrix Pg of
the previous iteration. In this section, we use this
information to determine two-node hitting time and the
Kemeny’s constant for unbiased random walks on graph
Gq(g + 1).

5.1. Two-Node Hitting Time

We first present our results about hitting times for
random walks on graph Gq(g). Let Tij(g) denote the
hitting time from node i to node j in Gq(g).

Theorem 5.1. For networks Gq(g) and Gq(g + 1),

1. if i, j ∈ Vg, then Tij(g + 1) = (q + 1)Tij(g);
2. if i ∈ Wg+1, j ∈ Vg, Γ(i) = {s, t}, then

Tij(g + 1) =
q + 1

2
+
q + 1

2
(Tsj(g) + Ttj(g)) ,

Tji(g + 1) =
3(q + 1)

2
Mg −

q + 1

2
+
q + 1

4

· (2 (Tjs(g) + Tjt(g))− (Tts(g) + Tst(g))) ;

3. if i, j ∈ Wg+1, (a) i is adjacent to j, then

Tij(g + 1) = (q + 1)Mg,

(b) else if i is not adjacent to j, Γ(i) = {s, t}, and
Γ(j) = {u, v}, then

Tji(g + 1) =
3(q + 1)

2
Mg +

q + 1

4
(Tsu(g) + Ttu(g)

+Tsv(g) + Ttv(g)− (Tuv(g) + Tvu(g))) .

Proof. Note that Mg+1 = (q+1)(q+2)
2 Mg, di(g + 1) =

(q + 1)di(g) for i ∈ Vg, and di(g + 1) = 2 for i ∈ Wg+1.
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We first prove 1). By Lemmas 2.3 and 4.3, one has

Tij(g + 1)

=2Mq(g + 1)

Ng∑
k=2

(
1

1− λk(g)+q
q+1

λk(g) + 1

λk(g) + q + 1

+
1

1 + 1
q+1

q

λk(g) + q + 1

)
(

vkj(g)2

(q + 1)dj(g)
− vki(g)vkj(g)

(q + 1)
√
di(g)dj(g)

)

=2Mg
(q + 1)(q + 2)

2

Ng∑
k=2

2q + 2

q + 2

1

1− λk(g)(
vkj(g)2

(q + 1)dj(g)
− vkj(g)vki(g)

(q + 1)
√
di(g)dj(g)

)

=(q + 1) · 2Mg

Ng∑
k=2

1

1− λk(g)

(
vkj(g)2

dj(g)
− vkj(g)vki(g)√

di(g)dj(g)

)
=(q + 1)Tij(g).

Thus 1) is proved.

We continue to prove 2). Since Γ(i) = {s, t},

Tij(g + 1) =
1

q + 1
(1 + Tsj(g + 1) + 1 + Ttj(g + 1)

+ (q − 1)(1 + Tij(g + 1)))

=
q + 1

2
+

1

2
(Tsj(g + 1) + Ttj(g + 1))

=
q + 1

2
+
q + 1

2
(Tsj(g) + Ttj(g)) .

While for Tji(g + 1), by Lemmas 2.3, 4.2, 4.3 and

Corollary 4.1, one obtains

Tji(g + 1)

=2Mq(g + 1)

(
1

1 + 1
q+1

1

q(q + 1)Mg
+

Ng∑
k=2

1

q + 1(
vks(g)√
ds(g)

+
vkt(g)√
dt(g)

)2((
1

1−λk(g)+q
q+1

1

(λk(g)+1)(λk(g)+q+1)

)

+

(
1

1− 1
q+1

1

q(λk(g) + q + 1)

))
−

Ng∑
k=2

vkj(g)√
(q + 1)2dj(g)(

vks(g)√
ds(g)

+
vkt(g)√
dt(g)

)((
1

1−λk(g)+q
q+1

√
1

(λk(g)+1)(λk(g)+q+1)√
λk(g)+1

λk(g)+q+1

)
−

(
1

1+ 1
q+1

√
1

q(λk(g)+q+1)

√
q

λk(g)+q+1

))

+
3(q + 1)

2(q + 2)
− 1

2qMg
−

Ng∑
k=2

1

2q(1+λk(g))

(
vks(g)√
ds(g)

+
vkt(g)√
dt(g)

)2

=
3(q + 1)

2
Mg −

q + 1

2
+ (q + 1)Mg

Ng∑
k=2

1

1− λk(g)((
vks(g)2

ds(g)
− vks(g)vkj(g)√

ds(g)dj(g)

)
+

(
vkt(g)2

dt(g)
− vkt(g)vkj(g)√

dt(g)dj(g)

)

− 1

2

(
vks(g)√
ds(g)

− vkt(g)√
dt(g)

)2)

=
3(q + 1)

2
Mg −

q + 1

2
+
q + 1

4

(
2 (Tjs(g) + Tjt(g))

− (Tts(g) + Tst(g))
)
.

We finally prove 3). (a) If i is adjacent to j, then
Γ(i) = Γ(j) = {s, t}. In this case, we obtain

Tij(g + 1) =
1

q + 1
(1 + Tsj(g + 1) + 1 + Ttj(g + 1)

+ q − 1 + (q − 2)Tij(g + 1))

=
q + 1

3
+

1

3
(Tsj(g + 1) + Ttj(g + 1))

=
q + 1

6
(Tts(g) + Tst(g)− (Tst(g) + Tts(g)))

+ (q + 1)Mg

=(q + 1)Mg.

(b) If i is not adjacent to j, considering Γ(i) = {s, t},
Γ(j) = {u, v}, we obtain

Tij(g + 1) =
1

q + 1
(1 + Tsj(g + 1) + 1 + Ttj(g + 1)

+ q − 1 + (q − 1)Tij(g + 1))

=
q + 1

2
+

1

2
(Tsj(g + 1) + Ttj(g + 1))

=
q + 1

4
(Tsu(g) + Ttu(g) + Tsv(g) + Ttv(g)

− (Tuv(g) + Tvu(g))) +
3(q + 1)

2
Mg.

This completes the proof.
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5.2. Kemeny’s Constant

With Lemmas 2.5 and 4.3, the Kemeny’s constant of
Gq(g) can be determined explicitly.

Theorem 5.2. Let Kg be the Kemeny’s constant for
random walk in Gq(g). Then, for all g ≥ 0,

Kg =

(
(q + 1)2

q + 2
− 3(q + 1)

2

)
(q + 1)g (20)

+
(q + 1)(3q + 7)

2(q + 3)

(
(q + 1)(q + 2)

2

)g
+
q + 1

q + 3
.

When g →∞,

lim
g→∞

Kg =
3q + 7

2(q + 2)
Ng. (21)

Proof. Suppose that 1 = λ1(g) > λ2(g) ≥ . . . λNg
(g) >

−1 are eigenvalues of the matrix Pg. By Lemmas 2.5
and 4.3, we obtain

Kg+1 =

Ng+1∑
i=2

1

1− λi(g + 1)

=

Ng∑
i=2

1

1− λi(g)+q
q+1

+
(q − 1)Mg +Ng

1 + 1
q+1

+
Mg −Ng
1− q−1

q+1

=(q + 1)

Ng∑
i=2

1

1− λi(g)
+

3q(q + 1)

2(q + 2)
Mg −

q(q + 1)

2(q + 2)

=(q + 1)Kg +
3q(q + 1)

2(q + 2)
Mg −

q(q + 1)

2(q + 2)
(22)

With Mg =
(

(q+1)(q+2)
2

)g+1

and the initial condition

K0 = (q+1)2

q+2 , Eq. (22) is solved to obtain

Kg =

(
(q + 1)2

q + 2
− 3(q + 1)

2

)
(q + 1)g (23)

+
(q + 1)(3q + 7)

2(q + 3)

(
(q + 1)(q + 2)

2

)g
+
q + 1

q + 3
,

which is exactly (20).
We continue to express the Kemeny’s constant

Kg in terms of the number of nodes Ng. From

Ng = 2
q+3

(
(q+1)(q+2)

2

)g+1

+ 2(q+2)
q+3 , we have(

(q+1)(q+2)
2

)g
= q+3

(q+1)(q+2)Ng −
2
q+1 and g =

ln
(

q+3
(q+1)(q+2)Ng −

2
q+1

)
/ ln

(
(q+1)(q+2)

2

)
. Inserting

these two expressions into Eq. (23) results in

Kg =
q + 1

q + 3
+

(
(q + 1)2

q + 2
− 3(q + 1)

2

)
(

q + 3

(q + 1)(q + 2)
Ng −

2

q + 1

) ln(q+1)

ln( (q+1)(q+2)
2 )

+
(q + 1)(3q + 7)

2(q + 3)

(
q + 3

(q + 1)(q + 2)
Ng −

2

q + 1

)
.

Therefore, for g →∞,

lim
g→∞

Kg =
3q + 7

2(q + 2)
Ng.

This finishes the proof.

Theorem 5.2 shows that for the whole family of
networks Gq(g), the Kemeny’s constant Kg grows as
a linear function of Ng, the number of nodes, but the
factor (3q + 7)/(2(q + 2)) is a decreasing function of q.

6. MEAN HITTING TIME

In this section, we study the mean hitting time for the
studied networks with the remarkable scale-free small-
world properties [23]. We will demonstrate that their
mean hitting time also scales linearly with the number
of nodes.

6.1. Some Definitions

Here we give definitions for some quantities related to
network Gq(g).

Definition 6.1. For network Gq(g), the mean hitting
time is

〈Hg〉 =
1

Ng(Ng − 1)

Ng∑
i=1

Ng∑
j=1

Tij(g). (24)

To obtain the explicit expression of the mean hitting
time 〈Hg〉, we first determine three intermediary results
for graph Gq(g), including the sum of hitting times,
the additive-degree sum of hitting times, and the
multiplicative-degree sum of hitting times.

For network Gq(g), the sum of hitting times is

Hg =

Ng∑
i=1

Ng∑
j=1

Tij(g); (25)

the additive-degree sum of hitting times is

H+
g =

Ng∑
i=1

Ng∑
j=1

(di(g) + dj(g))Tij(g); (26)

and the multiplicative-degree sum of hitting times is

H∗g =

Ng∑
i=1

Ng∑
j=1

(di(g) · dj(g))Tij(g). (27)

Lemma 6.1. For any g > 0, the multiplicative-degree
hitting time for graph Gq(g) is

H∗g =− (q + 2)(q + 4)(q + 1)3

2

(
(q + 2)2(q + 1)3

4

)g
+

(q + 2)2(q + 1)3

q + 3

(
(q + 1)(q + 2)

2

)2g

+
(3q + 7)(q + 2)2(q + 1)3

2(q + 3)

(
(q + 1)(q + 2)

2

)3g

.
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Proof. By definition of the multiplicative-degree sum of
hitting times, we have

H∗g+1 =
∑

{i,j}⊆Vg∪Wg+1

(di(g + 1)dj(g + 1))Cij(g + 1)

=4M2
gKg. (28)

Using Theorem 5.2, the result is obtained.

In what follows, we will determine the other two
invariants H+

g and Hg for network Gq(g).

6.2. Some Intermediary Results

Let Cij(g) be the commute time for any pair of nodes i
and j in graph Gq(g). For any two subsets X and Y of
set Vg of nodes in graph Gq(g), define

CX,Y (g) =
∑

i∈X,j∈Y
Cij(g).

Lemma 6.2. For g ≥ 0 and Y ⊆ Vg,∑
i∈Wg+1

CΓ(i),Y (g + 1) =
∑
x∈Vg

qdx(g)Cx,Y (g + 1). (29)

Proof. For any node x ∈ Vg, there are dx(g + 1) −
dx(g) = qdx(g) new nodes in Wg+1 that are adjacent
to i. So Cx,Y (g + 1) is summed qdx(g) times.

Lemma 6.3. For any g > 0,∑
i∈Wg+1

∑
j∈Vg

Cij(g + 1) =
q(q + 1)

4
H+
q (g) +

q(q + 1)

2
Mg

(
3MgNg −N2

g +Ng
)
.

Proof. By Theorem 5.1, one obtains∑
i∈Wg+1

∑
j∈Vg

Cij(g + 1)

=
∑

i∈Wg+1

∑
j∈Vg

(
3(q + 1)

2
Mg

+
q + 1

4
(2 (Csj(g) + Ctjg)− Cst(g))

)
=

3q(q + 1)

2
M2
gNg +

q + 1

2

∑
i∈Wg+1

∑
j∈Vg

(Csj(g) + Ctj(g))

− q + 1

4

∑
i∈Wg+1

∑
j∈Vg

Cst(g). (30)

For the second term on the right-hand side of the second
equal sign in Eq. (30), we have

q + 1

2

∑
i∈Wg+1

∑
j∈Vg

(Csj(g) + Ctj(g))

=
q + 1

2

∑
i,j∈Vg

di(g)Cij(g)

=
q + 1

2

∑
i,j∈Vg di(g)Cij(g) +

∑
i,j∈Vg dj(g)Cij(g)

2

=
q + 1

4

∑
i∈Wg+1

∑
j∈Vg

(di(g) + dj(g))Cij(g)

=
q + 1

4
H+
g . (31)

With respect to the third term in Eq. (30), using
Lemma 2.4, it can be rewritten as

q + 1

4

∑
i∈Wg+1

∑
j∈Vg

Cst(g) =
q(q + 1)

4
Ng

∑
st∈Vg

Cst(g)

=
q(q + 1)

2
MgNg(Ng − 1).

(32)

By plugging Eqs. (31) and (32) into Eq. (30), we obtain
the desired result.

Lemma 6.4. For any g > 0,

∑
i,j∈Wg+1

Cij(g + 1) =
q2(q + 1)

2
H∗g + q(q + 1)M2

g

(3qMg − qNg − 2).

Proof. Suppose that Γ(i) = {s, t} and Γ(j) = {u, v}.
Note that for any two different nodes i and j in Wg+1,
if their old neighbors in Vg are the same, i.e., Γ(i) =
Γ(j) = {s, t}, we use i ∼ j to denote this relation.
Otherwise, if the sets of the old neighbors for i and j
are different, we call i � j. Then, by Theorem 5.1, we
obtain∑
i,j∈Wg+1

Cij(g + 1)

=
∑

i,j∈Wg+1
i6=j,i∼j

Cij(g + 1) +
∑

i,j∈Wg+1
i�j

Cij(g + 1)

=
∑

i,j∈Wg+1
i�j

(
3(q + 1)Mg +

q + 1

4

(
Csu(g) + Ctu(g)

+ Csv(g) + Ctv(g)− (Cuv(g) + Cst(g))
))

+
∑

i,j∈Wg+1
i6=j,i∼j

2(q + 1)Mg

=3q2(q + 1)M2
g (Mg − 1) + 2q(q − 1)(q + 1)M2

g

+
q + 1

4

∑
i,j∈Wg+1

(Csu(g) + Ctu(g) + Csv(g) + Ctv(g))

− q + 1

2

∑
i,j∈Wg+1

i∼j

Cst(g)

− q + 1

4

∑
i,j∈Wg+1

i�j

(Cst(g) + Cuv(g)) . (33)

Below we evaluate the three sum terms on the right-
hand side of the second equal sign in Eq. (33). By
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Lemma 6.2 and Theorem 5.1, the first sum term can be
computed as

q + 1

4

∑
i,j∈Wg+1

(Csu(g) + Ctu(g) + Csv(g) + Ctv(g))

=
q + 1

4

∑
i,j∈Wg+1

CΓ(i),Γ(j)(g)

=
q + 1

4

∑
x,y∈Vg

q2dx(g)dy(g)Cxy(g)

=
q2(q + 1)

2
H∗g . (34)

We next compute the second sum term in Eq. (33). By
Lemma 2.4, we have

q + 1

2

∑
i,j∈Wg+1

i∼j

Cst(g) =
q2(q + 1)

2

∑
st∈Eg

Cst(g)

=q2(q + 1)Mg(Ng − 1). (35)

We proceed to evaluate the third term in Eq. (33).
According to Eq. (7), it follows that

q + 1

4

∑
i,j∈Wg+1

i�j

(Cst(g) + Cuv(g))

=
q + 1

4

q∑
f=1

∑
i∈V(f)

∑
i�j

(Cst(g) + Cuv(g))

=
q + 1

4
q
∑
st∈Eg

q
∑

uv∈Eg
uv 6=st

(
Cst(g) + Cuv(g)

)

=
q2(q + 1)

4

∑
st∈Eg

∑
uv∈Eg
uv 6=st

(Cuv(g) + Cst(g)) . (36)

By Lemma 2.4, Eq. (36) can be recast as

q + 1

4

∑
i,j∈Wg+1

(Cst(g) + Cuv(g))

=
q2(q + 1)

2
(Mg − 1)

∑
st∈Eg

Cst(g)

=q2(q + 1)Mg(Mg − 1)(Ng − 1). (37)

Plugging Eqs. (34), (35), and (37) into Eq. (33) gives
the result.

6.3. Addictive-Degree Sum of Hitting Times

We now determine the additive-degree hitting time for
graph Gq(g).

Lemma 6.5. For any g > 0, the additive-degree

hitting time for graph Gq(g) is

H+
g =

2(q + 2)2(q + 1)3

(q + 3)2

(
(q + 1)(q + 2)

2

)2g

+
(q+2)(3q+7)(q+1)3(q3+8q2+22q+20)

(q+3)2(q2+5q+8)

(
(q+1)(q+2)

2

)3g

− (q + 2)(q + 4)(q + 1)3

(q + 3)

(
(q + 2)2(q + 1)3

4

)g
+

(q + 2)(q2 + 9q + 20)(q + 1)3

(q + 3)(q2 + 5q + 8)

(
(q + 2)(q + 1)2

2

)g
+

(q + 2)(q + 1)3

(q + 3)2

(
(q + 1)(q + 2)

2

)g
.

Proof. By definition of the additive-degree sum of
hitting times, we have

H+
g+1 =

∑
i,j∈Vg∪Wg+1

(di(g + 1) + dj(g + 1))Cij(g + 1)

=
1

2

∑
i,j∈Vg

(di(g + 1) + dj(g + 1))Cij(g + 1) (38)

+
∑

i∈Wg+1

∑
j∈Vg

(di(g + 1) + dj(g + 1))Cij(g + 1)

+
1

2

∑
i,j∈Wg+1

(di(g + 1) + dj(g + 1))Cij(g + 1).

We begin to compute the three sum terms for H+
g+1

one by one.
By Theorem 5.1, the first sum term can be evaluated

as

1

2

∑
i,j∈Vg

(di(g + 1) + dj(g + 1))Cij(g + 1)

=
∑

{i,j}⊆Vg

(q + 1) (di(g) + dj(g)) (q + 1)Cij(g)

=(q + 1)2H+
g . (39)

For the second sum term, it can be computed as∑
i∈Wg+1

∑
j∈Vg

(di(g + 1) + dj(g + 1))Cij(g + 1)

=
∑

i∈Wg+1

∑
j∈Vg

((q + 1) + (q + 1)dj(g))Cij(g + 1)

=(q + 1)
∑

i∈Wg+1

∑
j∈Vg

Cij(g + 1) (40)

+ (q + 1)
∑

i∈Wg+1

∑
j∈Vg

dj(g)Cij(g + 1),

where the two sum terms can be further computed as
follows. First, by Lemma 6.3,

(q + 1)
∑

i∈Wg+1

∑
j∈Vg

Cij(g + 1)

=(q + 1)

(
q(q + 1)

4
H+
g +

q(q + 1)

2
Mg

(
3MgNg −N2

g +Ng
))

(41)
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=
q(q + 1)2

4
H+
g +

q(q + 1)2

2
Mg

(
3MgNg −N2

g +Ng
)
.

On the other hand, by Lemma 2.4 and Theorem 5.1,

(q + 1)
∑

i∈Wg+1

∑
j∈Vg

dj(g)Cij(g + 1)

=(q + 1)2
∑

i∈Wg+1

∑
j∈Vg

dj(g)

(
3

2
Mg +

1

4
(2(Csj(g)

+ Ctj(g))− Cst(g))

)
=(q + 1)2 · qMg · 2Mg ·

3

2
Mg

+
(q + 1)2

2

∑
i∈Wg+1

∑
j∈Vg

dj(g)(Cjs(g) + Ctj(g))

− (q + 1)2

4

∑
j∈Vg

dj(g)Cst(g) (42)

=3q(q + 1)2M3
g

+
(q + 1)2

2

∑
i∈Wg+1

∑
j∈Vg

dj(g)(Cjs(g) + Ctj(g))

− (q + 1)2

4
2Mg · 2Mg(Ng − 1)

=3q(q + 1)2M3
g

+
(q + 1)2

2

∑
i∈Wg+1

∑
j∈Vg

dj(g)(Cjs(g) + Ctj(g))

− q(q + 1)2M2
g (Ng − 1),

while the middle part can be computed to obtain

(q + 1)2

2

∑
i∈Wg+1

∑
j∈Vg

dj(g) (Cjs(g) + Ctj(g))

=
(q + 1)2

2
q
∑
i∈V(1)

∑
j∈Vg

dj(g) (Cjs(g) + Ctj(g))

=
q(q + 1)2

2

∑
j∈Vg

∑
i∈V(1)

dj(g) (Cjs(g) + Ctj(g))

=
q(q + 1)2

2

∑
j∈Vg

∑
k∈Vg

dj(g)dk(g)Ckj(g)

=q(q + 1)2H∗g . (43)

Combining Eqs. (40)-(43) yields∑
i∈Wg+1

∑
j∈Vg

(di(g + 1) + dj(g + 1))Cij(g + 1)

=
q(q + 1)2

4
H+
g + q(q + 1)2H∗g (44)

+
q(q + 1)2

2
Mg

(
6M2

g +MgNg −N2
g + 2Mg +Ng

)
.

With regard to the third sum term in Eq. (38), by
Lemma 6.4, we have∑

i,j∈Wg+1

(di(g + 1) + dj(g + 1))Cij(g + 1)

=2(q + 1)

(
q2(q+1)

2
H∗g + q(q + 1)M2

g

(3qMg − qNg − 2)

)
(45)

=q2(q + 1)2H∗g + 2q(q + 1)2M2
g (3qMg − qNg − 2) .

Substituting Eqs. (39), (44) and (45) back into Eq. (38)
gives

H+
g+1 =

(q + 2)(q + 1)2

2
H+
g +

q(q + 2)(q + 1)2

2
H∗g

+
1

2
q(q + 1)2Mg(Ng + 2Mg) (3Mg −Ng + 1)

+ q(q + 1)2M2
g (3qMg − qNg − 2) .

Considering the initial condition H+
0 = 2(q + 2)(q +

1)3, the above recursive relation is solved to yield the
deriable result.

6.4. Mean Hitting Time

We are now ready to present the result for mean hitting
time of Gq(g), denoted by 〈Hg〉, and its dominant
behavior.

Theorem 6.1. For any g ≥ 0, the mean hitting time
for graph Gq(g) is

〈Hg〉 =

(q+3)2

(q+1)2(q+2)2
((

(q+1)(q+2)
2

)g
+ 2
q+1

)((
(q+1)(q+2)

2

)g
+ 1
q+2

)
(

(q + 1)(q + 2)2(q3 + 8q2 + 15q + 8)

(q + 3)2(q2 + 5q + 8)

(
(q + 1)(q + 2)

2

)2g

+
(q + 4)(3q + 7)(q + 2)2(q + 1)3

2(q + 3)2(q2 + 5q + 8)

(
(q + 1)(q + 2)

2

)3g

− (q + 2)(q + 4)(q + 1)3

2(q + 3)2

(
(q + 2)2(q + 1)3

4

)g
+

(q + 2)(q2 + 9q + 20)(q + 1)3

(q + 3)2(q2 + 5q + 8)

(
(q + 2)(q + 1)2

2

)g
+

2(q + 2)(q + 1)2(q + 4)2

(q + 3)2(q2 + 5q + 8)
(q + 1)g

− (q + 2)(q + 1)2

(q + 3)2

(
(q + 1)(q + 2)

2

)g )
. (46)

When g →∞,

lim
g→∞

〈Hg〉 =
(q + 3)(q + 4)(3q + 7)

2(q + 2)(q2 + 5q + 8)
Ng. (47)

Proof. Since 〈Hg〉 = Hg/(Ng(Ng − 1)), in order to
determine 〈Hg〉, we first determine Hg. For network
Gq(g + 1), we have

Hg+1 =
1

2

∑
i,j∈Vg∪Wg+1

Cij(g + 1)

=
1

2

∑
i,j∈Vg

Cij(g+1)+
∑

i∈Wg+1

∑
j∈Vg

Cij(g+1)
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+
1

2

∑
i,jWg+1

Cij(g + 1). (48)

Below we will compute the three sum terms in Eq. (48).
By Theorem 5.1, the first sum term can be evaluated
as

1

2

∑
i,j∈Vg

Cij(g + 1) =
∑

{i,j}⊆Vg

(q + 1)Cij(g)

=(q + 1)Hg. (49)

Using Lemma 6.3, the second sum term is determined
as∑
i∈Wg+1

∑
j∈Vg

Cij(g + 1) =
q(q + 1)

4
H+
q (g) +

q(q + 1)

2
Mg(

3MgNg −N2
g +Ng

)
.

(50)
Finally, by Lemma 6.4, the third sum term is computed
as ∑

i,j∈Wg+1

Cij(g + 1)

=
q2(q+1)

2
H∗g + q(q + 1)M2

g (3qMg − qNg − 2). (51)

Plugging Eqs. (49)-(51) into Eq. (48) leads to

Hg+1 =(q + 1)Hg+
q(q + 1)

2
H+
q (g)+

q2(q + 1)

4
H∗q (g)

+
1

2
q(q + 1)MgNg(3Mg −Ng + 1)

+
1

2
q(q + 1)M2

g (3qMg − qNg − 2).

Considering the initial condition H0 = (q + 2)(q + 1)2,
the recursive relation is solved to obtain

Hg =
(q + 1)(q + 2)2(q3 + 8q2 + 15q + 8)

(q + 3)2(q2 + 5q + 8)

(
(q + 1)(q + 2)

2

)2g

+
(q + 4)(3q + 7)(q + 2)2(q + 1)3

2(q + 3)2(q2 + 5q + 8)

(
(q + 1)(q + 2)

2

)3g

− (q + 2)(q + 4)(q + 1)3

2(q + 3)2

(
(q + 2)2(q + 1)3

4

)g
+

(q + 2)(q2 + 9q + 20)(q + 1)3

(q + 3)2(q2 + 5q + 8)

(
(q + 2)(q + 1)2

2

)g
+

2(q + 2)(q + 1)2(q + 4)2

(q + 3)2(q2 + 5q + 8)
(q + 1)g

− (q + 2)(q + 1)2

(q + 3)2

(
(q + 1)(q + 2)

2

)g
.

Plugging this result to 〈Hg〉 = Hg/(Ng(Ng − 1))
gives (46).

In a similar way to that of Kemeny’s constant Kg,
we can represent mean hitting time 〈Hg〉 in terms of
the number of nodes Ng, and obtain the leading term
of 〈Hg〉 given by (47).

Theorem 6.1 indicates that mean hitting time 〈Hg〉
of network Gq(g) scales linearly as Ng with the factor
decreasing with q, which is similar to that for the
Kemeny’s constant Kg.

7. CONCLUSION

The edge corona product of a graph is a natural
extension of traditional triangulation operation, which
has been successfully applied to generate complex
networks with prominent properties observed in various
real-life systems. In this paper, we presented an
extensive study of various properties for hitting times of
random walks on a class of graphs, which are iteratively
generated by edge corona product of complete graphs.
We first deduced recursive formulas for the eigenvalues
and eigenvectors of normalized adjacency matrix of the
graphs under consideration. Using these results, we
then determined a recursive expression for two-node
hitting time from an arbitrary node to another. Also,
we obtained exact solution to the Kemeny’s constant,
which is a weighted average of hitting times among all
node pairs. Finally, we provided analytical formulas
for the sum of hitting times, the sum of multiplicative-
degree hitting times, and the sum of additive-degree
hitting times.
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