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ABSTRACT

Motivation: Genomic instability is one of the fundamental factors
in tumorigenesis and tumor progression. Many studies have shown
that copy-number abnormalities at the DNA level are important in
the pathogenesis of cancer. Array comparative genomic hybridization
(aCGH), developed based on expression microarray technology, can
reveal the chromosomal aberrations in segmental copies at a high
resolution. However, due to the nature of aCGH, many standard
expression data processing tools, such as data normalization, often
fail to yield satisfactory results.

Results: We demonstrated a novel aCGH normalization algorithm,
which provides an accurate aCGH data normalization by utilizing
the dependency of neighboring probe measurements in aCGH
experiments. To facilitate the study, we have developed a hidden
Markov model (HMM) to simulate a series of aCGH experiments
with random DNA copy number alterations that are used to validate
the performance of our normalization. In addition, we applied the
proposed normalization algorithm to an aCGH study of lung cancer
cell lines. By using the proposed algorithm, data quality and the
reliability of experimental results are significantly improved, and the
distinct patterns of DNA copy number alternations are observed
among those lung cancer cell lines.

Contact: chuangey@ntu.edu.tw

Supplementary information: Source codes and figures may be
found at http://ntumaps.cgm.ntu.edu.tw/aCGH_supplementary

1 INTRODUCTION

Genomic alterations that exhibit DNA copy number changes are
indicative of numerous diseases including cancer (Lengauer et al.,
1998; Schrock et al., 1996). Many studies have demonstrated that
locating chromosomal aberrations in genomic DNA samples is an

*To whom the correspondence should be addressed.

important step in understanding the pathogenesis of many diseases,
especially in cancer. Array comparative genomic hybridization
(aCGH), developed based on microarray technology (Pinkel et al.,
1998; Pollack et al., 1999), is a technique for measuring copy
number changes at high-resolution (Bartos et al., 2007; Carrasco
et al., 2006; Chin et al., 2006; Katoh et al., 2006; Lai et al., 2005;
Neve et al., 2006).

Similar to gene expression profiling, DNA copy number profiling
experiment requires a normalization step. With the maturity of
microarray technology, various normalization methods that were
designed for single or two-dye microarray protocols, such as
linear offset, non-linear Lowess/Loess and quantile normalization,
have been proposed for analyzing expression-profiling experiments
(Quackenbush et al., 2002). Many aCGH experiments conveniently
applied these gene expression normalization algorithms for data
analysis without careful considerations. It is important to note
that the fundamental difference of data characteristics between
gene expression profiling and DNA copy number profiling is the
dependency of aCGH probes according to their genomic position.

In other words, probes in expression arrays measure are most
likely independent activities of target transcripts, whether or not they
represent genes that have approximate genomic positions. However,
probes in aCGH arrays measure segmental DNA copy number status,
which indicates that the measurements of neighboring probes should
reflect the same DNA copy number state.

Other problems, such as low intensities at loss regions and the
asymmetric nature of copy number alteration (DNA gain states
occur with higher frequency than loss states), also cause expression
normalization methods to fail when applied to aCGH data. Clearly,
the currently available normalization methods for gene expression
analysis do not meet these unique characteristics of aCGH.

While most of state-of-the-art aCGH analysis methods
concentrated in segmentation algorithms (Marioni et al., 2006;
Picard et al., 2007; van de Wiel er al., 2007; Venkatraman and
Olshen, 2007; Willenbrock and Fridlyand, 2005), very little attention
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has been paid to the problem of aCGH data normalization (Khojasteh
etal.,2005; Neuvial et al., 2006), where normalization of aCGH data
were merely aimed at correcting spatial non-uniformity of the arrays,
rather than the intensity-related non-linearity. Recently, Staaf et al.
(2007) proposed an aCGH normalization method in which Loess
algorithm was applied to probes from normal regions extracted
from simple segmentation and k-means clustering. However, the
problem of extrapolating smaller dynamic range of normal probes
to entire probe intensity range, and impreciseness of k-means
algorithm for probe separation may still persist for certain arrays
with large number of gain/loss states. Notice that if we generate
2D probe density (see Fig. 3), and then simply follow the highest
ridgeline, we avoid the requirement of symmetrical distribution
for Loess normalization and avoid data partition algorithm due to
possible gain/loss imbalance. This is the motivation of the proposed
normalization algorithm. To demonstrate the algorithm, we adopt
a two-dye aCGH protocol, where a normal genomic DNA sample
(male or female) is used as the common reference sample (reference
channel), while the other is used for the test sample (sample
channel). To normalize aCGH data, we first perform quantile
normalization (Bolstad er al., 2003) to all reference channels from
all arrays; then, we generate probe density based on their calibrated
intensities from two channels (maintaining same ratio quantity);
and regress the highest ridgeline to provide rough normalization.
After the rough normalization that corrects dye bias defects, we
apply the expectation maximization (EM) algorithm (Dempster
et al., 1977) to centralize the copy number ratio. The key points
of the proposed normalization method are the regression method for
ridgeline regression from 2D probe intensity distribution, and the
copy number centralization.

To facilitate the study, we have modified the microarray
simulation algorithm originally proposed in Balagurunathan et al.
(2002) and Attoor et al. (2004). To apply the algorithm for aCGH
arrays, we introduced the hidden Markov model (HMM) to simulate
a series of aCGH experiment with random DNA copy number
alterations. By using the simulated data, we selected the best
normalization algorithm and optimal parameters for different types
of biological problems. To demonstrate the algorithm with real
aCGH data, we have generated a set of aCGH data from three lung
cancer cell lines using two different types of array platforms: the
home-made oligonucleotide array designed for expression study and
the commercially available Agilent human whole-genome array. The
normalization results were reported in the Sections 4 and 5, as well
as on the Supplementary Material website. Normalization results
obtained from some public datasets from GEO were also reported
on the Supplementary material web site.

2 METHODS

A section of aCGH data is illustrated in Figure 1 where the raw probe ratios
(log2-transformed) along with their genomic positions on the chromosome
are plotted with dots, and their moving-averaged log2-ratios are plotted with
gray-bar, positive ratio upward and negative ratio downward. Data were
further segmented (black-lines) to reflect their segmental gain, loss or no-
change status. As stated before, we adopt the two-dye aCGH protocol in
Figure 1. In aCGH analysis, normalization process is commonly referred
as the correction method of data non-linearity or other array hybridization
artifacts; where a separate step, centralization, is designed specifically for
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Fig. 1. aCGH data and visualization, where the dots are raw ratios, and the
black bars are moving-average ratios (log2 transformed).
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Fig. 2. Block diagram of the normalization algorithm.

base-line determination due to the imbalance of gain/loss region (Bilke et al.,
2005; Lipson et al., 2007).

The main objective of the article is to study the normalization
methods specifically for aCGH, considering its nature of highly correlated
adjacent data points and much higher probe-density than expression arrays.
The proposed normalization algorithm is divided into two parts: 2D intensity
distribution profile and ridge-tracing normalization, which provides a rough
normalization over the whole array (normalization step); and the peak
detection algorithm to locate the highest peak from intensity density, which
provides the refined estimation of chromosome baseline relative to its
normal reference sample (centralization step). To facilitate the algorithm
development and to illustrate the utilities of the algorithm, we also introduced
a simulation procedure based on a HMM combined with the array simulation
method proposed in Attoor et al. (2004). By using the simulated data,
we compared the proposed normalization method to other commonly used
normalization algorithms for expression profiling studies, such as linear
regression and Lowess non-linear normalization method (Quackenbush,
2002).

3 ALGORITHM

Figure 2 provides a concise view of the proposed normalization
algorithm and aCGH simulation that was used in this study
for evaluation of the normalization algorithm. The normalization
algorithm is built on a 2D intensity distribution, and the regression
is performed along its highest ridgeline, which we assumed to be the
concentration of probes with no DNA alteration. Data centralization
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is achieved via smoothing and then mixture-model estimation in
order to precisely locate the peak (or peaks when no dominant peak
can be determined) where the data will be shifted to set the highest
peak to zero. Sections 3.1 and 3.2 will discuss the normalization and
centralization steps in depth.

The simulation algorithm is adapted from Attoor er al. (2004)
with HMM for aCGH segmental data simulation (instead of the
exponential distribution for gene expression). Datasets containing
100x replications under various conditions were simulated, and
then applied with the proposed normalization methods with different
regression algorithms. Detailed descriptions were provided in
Sections 3.3 and 3.4.

3.1 Ridge-tracing normalization algorithm

Many factors unique to aCGH data exist which cause the failure of
applying the typical normalization algorithms for gene expression
data to aCGH: (1) relatively low intensities and smaller dynamic
range in normal state; (2) typically more amplification regions than
deletion regions (mean/median shift may not work); (3) multiple
gain/loss states causing the Lowess non-linear normalization to
yield incorrect regression at lower or higher intensity ends; and
last but not least, (4) the dependency of adjacent probes reflecting
the segmental states, as illustrated in Figure S7. We proposed a
novel normalization method by regressing the highest ridgeline
of the 2D probe intensity distribution, rather than performing
regression based on the whole dataset. By tracing the ridgeline,
we took the full advantage probe dependency on it segmental
state (each ridge-line represents a segmental state), while avoiding
directly separating probe via clustering algorithm as suggested by
Staaf (2007). Key points of the proposed normalization method
are the construction of 2D density with kernel smoothing and the
regression methods for ridgeline from the 2D probe density. The
ridge-tracing normalization algorithm is as follows,

Algorithm 3.1 Ridge-tracing Normalization.

1. Perform quantile normalization to all reference channels
of all arrays (Bolstad er al., 2003), if multiple arrays are
presented,

2. Generate 2D probe density via 2D kernel smoothing with
normalized reference intensity and transformed sample intensity
by maintaining the same log-ratio for each probe,

3. Trace the ridgeline from 2D density by first determining the
highest peak and then walking along the ridgeline, and

4. Regress the ridgeline to provide normalization standard.

The construction of a 2D probe density is the key to the
preciseness of ridge-line determination. In some situations, due to
insufficient probe numbers, the density will be too coarse to be
useful. To avoid this potential problem, we extended the 1D kernel
smoothing technique (Hastie and Tibshirani, 1990; Wand and Jones,
1995) to construct a smooth 2D distribution, utilizing equality under
the condition of independence, or ®(x,y)=P(x)P(y) where P(-)
is the smoothing kernel. Assuming there are n probes in an array,
with red and green channel intensities to be R = (r{,...,r;) and
G =(g1, ..., gn), and the support of the 2D density to be rGrid and
gGrid with each contains m intensity bins, a probe-binning-based

implementation of kernel smoothing algorithm is described as
follows:

Algorithm 3.2 2D Kernel smoothing (R, G, rGrid, gGrid).

1. Binning intensity r; (k =1, ..., n) into m, bins specified by
rGrid.

2. For each bin rGrid(i), i =1, ..., m,

2.1. If there exists sufficient probes, find all probes with
rr € rGrid(i), and then bin these probes’ green channel
intensities, g, into mg bins specified by gGrid.

2.2. Compute kernel density f(x,y; i, j) = n; j®(x, o) P(y,
og), where x and y are red and green channel intensity
values, oy and o are Gaussian kernel bandwidth for red-
and green-channel, respectively, and #; ; is the number
of probes in jth bin of gGrid,

3. 2D probe distribution is f(x,y) = ii,jf(x,y; i,])

Upon obtaining the 2D intensity density, ridgeline is traced
from the peak and then the algorithm ‘walk’ along the ridge
toward the lower intensity or higher intensity direction, utilizing
the fact that the ridgeline is generally diagonal, since most of
the probes in aCGH data maintain in normal state and in good
agreement with the reference sample. The 3D ridgeline is then
mapped back to 2D and a regression method is selected and
performed to extract the normalization reference line. In this study,
we implemented four regression methods: linear regression (as an
example of traditional normalization method), quadratic regression,
logistic regression and cubic spline curve. Linear normalization is
the simplest form of normalization while cubic-spline fitting that
provides most flexibility in non-linear form. We briefly discussed
these normalization methods in the following.

3.1.1 Linear and quadratic regression For a given set of data
points that demarcate the ridgelines, as shown in Figure 3a (black +),
we used a polynomial curve fitting method to perform both linear
(first-order) and quadratic (second-order) regression. With regressed
polynomial parameters, the normalization was then applied to entire
dataset. The algorithm was implemented with MATLAB (Natik,
MA, USA) built-in function polyfit().

3.1.2 Logistic regression The logistic function models the
S-curve transition, which is commonly observed in M-A plot of
microarray data prior to any normalization (Bolstad et al., 2003).
The implementation utilized MATLAB built-in function, nlinfit(),
to perform a non-linear curve fitting in the least-square sense. See
Supplementary website for detailed implementations.

3.1.3 Spline curve fitting The spline fit is based on the least-
squares method with the cubic spline function, constructed of
piecewise third-order polynomials which pass through a set of
control points. The cubic spline curve fitting was implemented
using MATLAB’s internal function spline(), and data points along
ridgeline were used as control points. The advantages of cubic spline
function were obvious: piecewise continuous up to second derivative
to avoid the distortion, particular at the beginning and the end of the
ridgeline.
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Fig. 3. (a) 2D density plot with ridgeline in black ‘+’, and, (b) Regression results. Note that expected normalization reference line (in red) from simulation
coincide with ridge-tracing (green line), logistic regression (black line) and cubic-spline fit (light blue line).

3.2 Mode detection and centralization

Differing from the normalization procedure, which aimed at
correcting the linear and/or non-linear characteristics because of the
two-dye labeling protocol, the objective of aCGH data centralization
is to calibrate ‘normal DNA copy number’ to a standard value
(0 as the most common choice for log-ratio), assuming the reference
channel is a normal DNA sample. As we indicated before, different
from expression data (Zien et al., 2001), aCGH data commonly
are not symmetrically distributed due to the gain/loss imbalance.
Furthermore, many cancer samples contain frequent DNA breakages
and aberrations. Thus, the centralization procedure is not a trivial
task. There are many different aCGH data centralization methods
proposed in Lipson et al. (2007). Many of them are derived from
different hypotheses: the minimal aberration location, the longest
run-length or the highest mode of probe intensity distribution.
The first two methods require segmentation algorithms to be
performed before centralization, while the last criterion does not
require segmentation. The highest probe intensity mode indicates
the majority state in the tissue, which we assumed to be normal, or
if f(x) is the probe density with respect to the intensity measurement
from probes, the centralization procedure is to find, xmax, such
that, xmax = argmax,(f(x)). To utilize the property of neighboring
probe dependency, we applied moving-median filter to the aCGH
data (in genomic order) to suppress impulse noises while preserving
segmental break-points before applying centralization. We then used
yet again the kernel smoothing technique to approximate the probe
log-ratio distribution, and then employed the EM algorithm to
determine the best mixture Gaussian model (up to 6 components) of
ratio distribution. The centralization factor was determined either at
the dominant peak, or at the left-most peak that is not smaller than
M % (90% in this study) of the highest peak, based on the assumption
that copy number loss is less common than copy number gain. The
centralization factor was then applied to the normalized aCGH data
with a simple linear shift by the amount of xpax. The EM algorithm
is supported by the MATLAB Statistical Pattern Recognition toolbox
(Franc and Hlavac, 2004).

3.3 Microarray data simulation

Many microarray simulation methods were developed in order to
study the process of microarray fabrication and data processing.

The purpose of estimating parameters from real aCGH data for
microarray simulation, rather than the random number generation as
proposed in many studies, is to incorporate common noise models
and systematic biases (dye bias, etc.) for evaluation of the proposed
normalization algorithm. We adopted a microarray model proposed
by Balagurunathan ez al. (2002) and Attoor et al. (2004) as follows,

.. .]sam sam sam sam
rijd;l; uj; +nij +bij

(O]

tij=

T ard el
where #;; is the ratio of each probe (for sample i, and probe j), d;
the DNA/oligo deposition variation, /; the labeling variation, n;; the
additive measurement noise, b;; the background noise and u;; is
the actual amount of DNA/RNA to be measured. r;; is the actual
copy number at probe j of i-th sample, which will be simulated by
HMM (see next section). The superscripts sam and ref indicate that
variables must be drawn independently for the sample and reference
channels, respectively. All these random variables take on different
distributions (see Attoor et al., 2004 for details).

3.4 HMM of aCGH simulation

Different from the expression profile, in which the gene expression
ratio, u;; in Equation (1), of a tissue is commonly assumed to
possess an independent exponential distribution, genomic DNA
data are measurements of segmental copy numbers, and thus,
neighboring probes are highly correlated. HMM, widely used in
speech recognition (Rabiner et al., 1989) and genomic sequence
analysis (Durbin et al., 1999), was employed to simulate segmental
changes along the genomic position, where states —1, 1 and 0
represent DNA loss, gain and no-change state, respectively, with
the transition probability matrix as 7' = {p;; }, as illustrated in Figure
S2. A set of parameters for discrete copy number changes along
with a known variance were chosen to represent the actual copy
number according to the HMM state {0, 1, —1} (Shah ef al., 2006).
Implementation of HMM is in MATLAB Bioinformatics toolbox.
To illustrate the model parameter estimation from microarray data,
we chose a set of publicly available aCGH data (GSE 3264, GEO,
NCBI/NIH) derived from a breast cancer study to estimate HMM
parameters. As an example, we chose GSM 75166 (a DNA profile
of breast cancer cell-line BT474) that has many previously known
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Table 1. Transition matrix trained from GSM 75166, chr20

Current state

Normal Gain Loss
Next state Normal 0.7143 0.1429 0.1429
Gain 0.0071 0.9929 0
Loss 0.0204 0.0102 0.9694
chrl
ch
chr.
chrd
ch
ch
cpr?
peiy T

Fig. 4. aCGH simulation result under normal noise condition, where red and
green color indicates copy number gain and loss, respectively. X-axis is the
probe index in their genomic order. Other noise conditions were given in
supplementary Fig. S3.

gain or loss regions (e.g. chromosomes 8, 17 and 20). The transition
matrix for each chromosome, trained by HMM, reflected the nature
of the DNA copy number gain and loss status. Table 1 provided the
transition matrix for chromosome 20, where high probabilities at
gain and loss states, rather than at normal state were observed, just
as we expected.

For each trained HMM parameter set, we chose three different
conditions of noise and/or linearity: (1) normal: least noise and linear
bias, (2) noisy: higher level of noise; and (3) Non-linear: non-linear
dye-bias presented in lower intensity level and with normal noise
level. In order to study the algorithm applicability, we also generated
simulated aCGH microarray data with two printing densities: 40 000
probes and 300 000 probes to represent homemade arrays and state-
of-the-art high-density commercial arrays. One hundred replicates
were generated for each simulation condition and printing density.
An example of an array with 300 000 probes in normal condition with
HMM parameters derived from GSM 75166 is shown in Figure 4.

4 RESULTS

To demonstrate the capability of the proposed normalization
algorithm, we employed the simulation algorithm with HMM for
aCGH data, trained with GSM75166 data (in fact, the training
can be done with any microarray data), and then performed the
normalization algorithm on these simulated data. We used all three
simulated noise conditions to evaluate our normalization methods.
Sections 4.1 and 4.2 presented the strength and weakness of the
proposed normalization under various simulated noisy and dye-bias
conditions.

Applications to aCGH data derived from a set of lung cancer cell-
lines were presented in Section 4.3. The lung cancer cell line, CL1-0,

was created with a poorly differentiated pulmonary adenocarcinoma.
CL1-1, CL1-2, CL1-3 CL1-4, and CL1-5 cells, five sublines with
progressive invasiveness (Ho et al., 2002), were selected with 4- to
6-fold increased invasive potential as compared with the parental
cells, CL1-0, by in vitro measurement with the membrane invasion
culture system (Chu et al., 1997). We conducted microarray analysis
on CL1-0, CL1-1 and CL1-5 cells using two versions of microarrays:
45K HEEBO oligo (Invitrogen Corp, Carlsbad, CA, USA) arrays
fabricated at NHGRI microarry core facility (National Human
Genome Research Institute, Bethesda, MD, USA) and Agilent
Human Genome CGH 105K oligo array (Agilent Technologies,
Santa Clara, CA, USA). Results of the normalizations from both
array formats were reported in Section 4.3.

4.1 Performance of ridge-tracing algorithm

Figure 3a showed one of the 2D density plot derived from simulated
data, with 300000 data points and intensity dependent dye-bias.
The ridgeline, obtained by Algorithm 3.1, was marked by the black
‘+’ in the figure, which clearly showed a non-linear portion at
the low-intensity range (also shown in Fig. 3b). As illustrated in
Figure 3b, the normalization curve regression was performed against
the ridgeline (or data points marked as ‘+’), rather than being
performed against the entire dataset. Finding the center is a difficult
task in aCGH data since secondary peaks are often not apparent
(e.g. Fig. 3a), nor symmetric. Figure 3b demonstrated all of the four
curve-fitting results, along with the actual non-linear dye-bias effect
(the expected curve in red color).

4.2 Comparison of four regression methods

To determine which regression methods is the best, we used the
rooted mean squared error (RMSE) to quantify the deviation from
the expected curve, y = gr(x) where k is the index to regression
methods. For any point from the ridge-tracing algorithm, (x;, y;),
its nearest point on the expected curve to be {a;,b;|b; =gy (a;), and
a; = argming (distance((x;, y;), (2, g§x(2)))}, the RMSE is defined as,

€k=\/$zznzl ((ai_xi)2+(bi_)’i)2) 2

where ¢ is the measurement of fitting error for k-th curve fitting
method, obtained from 100 simulated arrays of the same noise
condition. Figure 5 depicted the results of four regression methods
along with three simulated noise conditions, with 40 000 and 300 000
probes, respectively. We observed that when the noise was low, all
these methods generated relatively equivalent performance. With
40000 data points (Fig. 5a left-hand side), the cubic-spline method
performed marginally better, with smaller mean and SD (about 50%
reduction of SD) of RMSE. On the contrary, with 300 000 data points
(Fig. 5b left-hand side), due to a better 2D density reconstruction
and consequently the accurate ridge tracing, the average RMSE for
all four methods were strikingly low, with linear regression method
to be the best. This result was expected since the low-noise condition
was designed to be linear, and thus the linear method provided the
most robust result (smallest variation). This result also suggested that
when a careful hybridization protocol was carried out, the simplest
normalization should be used.

Under other simulated conditions, noisy and dye-bias, the cubic-
spline curve fitting method out-performed regression methods, with
a lower average RMSE and a smaller SD, as shown in Figure 5.
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Fig. 5. The error bar of rooted mean square error of the simulated data. Tabulated result is also provided in Supplementary Table 1. (a) 40k datasets. (b) 300k

datasets.

The logistic method, though expected to perform well, suffered from
the well-known least-square convergence problems under some
extreme conditions, thus resulted in a large variation. We also noted
that normalization results from 300K arrays showed larger variation
in dye-bias case under linear and quadratic regressions, because of
the larger range covered by ridgeline from the better construction
of 2D probe density. Based on these results, we chose the spline
curve fitting as our final regression method for the real aCGH data
normalization.

4.3 The aCGH data centralization

Figure 6 is the illustration of the probe ratio densities at each
processing stage. In this illustration, the moving-median window
size is fixed to 10 probes. Figure 6a is the histogram of the input
raw ratio from one simulated array. Figure 6b to d showed the
normalized ratio histogram after cubic spline, after moving-average,
and the density plot after EM algorithm, respectively. Similar results
for linear, quadratic and logistic regression normalization were
provided in Supplementary Figure S4. In Figure 6d, the red line
is the actual distribution of the median smoothed ratio; the solid
blue line is the mixture model distribution; and dashed-blue lines
are Gaussian model components. As we discussed in Section 4.2,
the cubic-spline method provided the most distinct peaks (copy
number gain or loss states), indicating better normalization results.
As expected, the cubic-spline method provided the most distinct
peaks, indicating better normalization results. The illustration of data
in their genomic positions through various states of processing was
provided in supplementary Figure S5.

Observed from Figure S4, linear and quadratic regressions failed
to correct the non-linear distortion, producing inaccurate results
that needed further compensation by centralization with large shift.
Contrary to linear and quadratic regression, logistic regression and
spline curve fitting accurately matched the highest ridgeline; the
moving median method yielded distinct peaks; and the EM algorithm
resulted in minor centralization offset. This observation was further
strengthened by Figure 7, in which a segment (from chromosome 16)
of simulated data was shown and noted in the deletion region (in
green color), Figure 7b showed the clearest deletion states after
normalization and centralization.

Fig. 6. The illustration of the simulated data. (Centralization factor =
—0.0521 in (d).

(a) (b)

SRR AR e PR i o

0 1000 2000 3000 4000 500 G0 7000 O 0

100 2000 300 400 500 600 700 00

Fig. 7. The results of chromosome 16 after implementing aCGH
normalization. X-axis is the probe’s index on this chromosome. Y-axis is
the signal ratio of the probe, exactly the same unit in both axes. (a) Result
of linear regression. (b) Result of spline curve fitting.

4.4 Applications of normalization algorithm

We conducted microarray analysis in CL1-0, CL1-1 and CL1-5
cells using two types of microarrays: home-made HEEBO oligo
microarray and Agilent human whole-genome 105K microarray.
Figure S6, which contained the 2D probe density plots and
regression results, showed that data derived from the home-made
spotted microarray only had moderate quality, whereas the result of
the Agilent array had a consistent high quality. We used an additional
median filtering before the 2D density construction for better
ridgeline tracing for Agilent array because its careful selection of the
oligo probes resulted in a relatively small intensity dynamic range.
The cubic-spline method was chosen for the reason aforementioned,
and the EM algorithm was performed for centralization.
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Normalized results were shown in Supplementary Figures. S7 and
S8 for HEEBO microarray and Agilent aCGH arrays, respectively.
Apparently, the Agilent aCGH data, due to its high resolution and
better oligo design, provided a superior copy number data in terms
of the preciseness of gain/loss status and the consistency over
entire genome. On the contrary, the home-made array, based on
its gene-centric HEEBO oligo design, produced comparable result,
but it obviously lacked the dynamic range and consistency. Other
supplementary Figures S9 and S10 provided detailed views of those
normalized data in genomic position from both platforms, further
enhancing our conclusion.

We have also downloaded more than 30 arrays with 244k
spots (Agilent Human Genome CGH Microarray 244A) from GEO
database to test the performance of our normalization algorithm. The
results of these published data can be found on our Supplementary
webpage.

5 DISCUSSION

Unlike the algorithms for gene expression that only have
the normalization step; our proposed normalization algorithm
combined two steps for aCGH data analysis: a ridge-tracing
normalization and an EM algorithm based centralization. The ridge-
tracing normalization corrects data non-linearity and other array
hybridization artifacts. The EM algorithm detects the dominant
mode, as well as secondary modes, for data centralization. The
centralization step is unique to aCGH data normalization due to the
imbalance of gain/loss regions, whereas most of the gene expression
data is assumed symmetrical because of the independence of each
gene’s expression level.

While the linear regression normalization fails to normalize aCGH
data in non-linear conditions, can we, as the typical situation in
gene expression data analysis, apply Lowess method directly to
correct aCGH data? The answer is NO in most situations. This can
be further illustrated by Figure S11, where Lowess may regress
incorrectly at lower intensity (circled by green line) and/or at
higher intensity (circled by red line). To confirm this statement,
we took the simulated data under dye-bias condition, and directly
applied Lowess normalization to 100 replicates. The RMSE is
0.325 (o = 0.066), much worse than one might achieve with ridge-
tracing/cubic-spline curve fitting (Table S1). Therefore, without
careful removal of gain and loss regions, Lowess algorithm will
regress to the wrong center at lower/high-intensity ends.

Tracing the highest ridgeline avoided the aforementioned
weaknesses of direct applying of Lowess and of separating
population. However, the Lowess method does not work with data
points only from the highest ridgeline (around 300 points for 105K
Agilent data), which is the reason that we chose a set of different
regression methods to fit the highest ridgeline. In the ridge-tracing
normalization, we have presented four regression methods for fitting
the highest ridgeline and compared these methods to the simulated
data in different conditions. According to the RMSE results, we
concluded that cubic-spline curve fitting performed consistently and
accurately for all simulated data. However, it is worth noting that
when array hybridization/scanning environment and protocols are
well designed, one shall choose the linear regression method since it
provides the least model constraint with better normalization result
(Fig. 5b). Although the logistic regression method was expected
to perform well, it was a torment to estimate the parameters via

the least-square method, particularly when data are quite linear, or
non-linear at both intensity ends.

Whether to apply the moving-median filtering before ridge-
tracing normalization or not depends on the data quality. For
microarrays with good quality such as Agilent aCGH arrays,
signal intensities aggregate together and cause the highest ridgeline
difficult to be traced, we chose to apply the moving-median method
in order to generate better ridgeline estimation. For microarrays
with wider intensity ranges such as home-made microarrays, the
highest ridgeline is much easier to be traced. While the moving-
median suppresses noise, it would further distort the signal when
the intensity-dependent dye-bias condition was presented.

Compared to the raw data of the home-made and the Agilent
aCGH microarrays, the normalized data clearly showed that
removal of noises achieved more accurate results. The results
of the home-made oligo array and the Agilent aCGH array for
CL1-0, CL1-1 and CL1-5 were quite similar, as shown in Figures
S6 and S7. The results from each chromosome demonstrate
similar genetic profiles between different platforms. This newly
developed normalization method enables us to remove experimental
biases between aCGH microarrays so that other aCGH analysis
algorithms, such as segmentation algorithms and aberration region
determination algorithms, can achieve much accurate results.

6 CONCLUSION

In this study, we demonstrated a novel method for analyzing aCGH
data and for profiling abrupt changes in the relative copy number
ratios between test and reference DNA samples. The ridge-tracing
normalization algorithm can accurately fit the highest ridgeline
in various noisy and non-linear conditions. Data centralization
employed the EM algorithm for accurately locating the dominant
mode and secondary modes. EM algorithm was performed against
the copy number ratio distribution derived from the moving-median
filtering by utilizing the dependency of neighboring probes.

By estimating the HMM parameters from published aCGH data,
we can simulate aCGH data in different conditions. Furthermore,
by using various simulated conditions, our results indicated that
cubic-spline curve fit provided the best normalization result. The
application of the proposed normalization algorithm to a set of
cancer cell line aCGH profiling provided excellent results for
the genome-wide copy number change visualization, and enabled
accurate segmentation and other downstream analysis.
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