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Abstract
Motivation—The rate at which gene-related findings appear in the scientific literature makes it
difficult if not impossible for biomedical scientists to keep fully informed and up to date. The
importance of these findings argues for the development of automated methods that can find,
extract and summarize this information. This article reports on methods for determining the
molecular function claims that are being made in a scientific article, specifically those that are
backed by experimental evidence.

Results—The most significant result is that for molecular function claims based on direct assays,
our methods achieved recall of 70.7% and precision of 65.7%. Furthermore, our methods correctly
identified in the text 44.6% of the specific molecular function claims backed up by direct assays,
but with a precision of only 0.92%, a disappointing outcome that led to an examination of the
different kinds of errors. These results were based on an analysis of 1823 articles from the
literature of Saccharomyces cerevisiae (budding yeast).

Availability—The annotation files for S.cerevisiae are available from ftp://genome-
ftp.stanford.edu/pub/yeast/data_download/literature_curation/gene_association.sgd.gz. The draft
protocol vocabulary is available by request from the first author.

Contact—crangle@converspeech.com

1 INTRODUCTION
As gene-related information continues to appear in the scientific literature, the need for
efficient procedures to extract information from text grows more urgent. What is needed in
addition to information extraction, however, is a way for extracted information to be
compiled and interpreted. The work we present here addresses the problem of determining
what molecular function claims are being made in a scientific article and what type of
experimental evidence the article presents for those claims. To come to a conclusion of this
kind requires more than information extraction. The relevant information is scattered
throughout the document and the context of the information is as important as its content.

For example, the article by Sedman et al. (2000) presents experimental evidence for the
claim that the Hmi1 protein exhibits ATP-dependent DNA helicase activity. Several
passages in the text establish these claims. The following sentence in the Abstract section
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suggests in its use of the phrase ‘purified recombinant protein’ that a direct assay was
performed: ‘The purified recombinant protein can unwind duplex DNA molecules in an
ATP-dependent manner’. The title of Figure 3 in the paper—‘The recombinant Hmi1 protein
is a DNA helicase’—has the protein name occurring in the same context as the phrase ‘DNA
helicase’. Finally, conclusive evidence is given in the paragraph that begins with ‘We
overexpressed and purified the Hmi1 protein in Escherichia coli by using the pGEX41-
based expression system ...’ and continues with ‘The recombinant Hmi1 protein is an
ATPase that is stimulated by single-stranded DNA ... The helicase activity of the Hmi1
protein was analyzed by using a partially double-stranded DNA substrate ...’.

This task of identifying gene-related claims and the evidence for those claims in scientific
articles is one that curators of model organism databases perform every day. To foster
consistent descriptions by curators of gene products across organisms and databases, the
Gene Ontology (GO) project developed three structured controlled vocabularies. These
describe gene products in terms of their associated biological processes, cellular components
and molecular functions (Gene Ontology, 2000). These vocabularies are hierarchical,
allowing a gene product to be associated with a high-level description such as signal
transduction or lower-level descriptions involving specific receptor tyrosine kinases, for
example. The entry in a model organism database that associates a GO term with a gene
product is known as an annotation and it includes the source of the information along with
an indication of the kind of evidence there is in the source for the association. Each entry in
GO includes an identifier, the name of the GO term, a definition and a position within the
hierarchy. In making an annotation, the curator takes into account not just the GO term name
but also the definition of the GO term. Different kinds of evidence may be available within
the same article to support annotating a gene product to different GO terms at different
levels. For example, there might be a direct assay showing that a protein localizes to the
mitochondrion, and a physical interaction suggesting localization to the mitochondrial
matrix. A given experimental procedure may provide one kind of evidence in one context
and another in another context. Curators can annotate a gene to both a parent and a child
term in the hierarchy, and cite the same or different kinds of evidence for the annotations as
appropriate. When curators use GO to annotate a gene product, they are not only extracting
relevant pieces of information and assembling them to reach a conclusion, in choosing a GO
term, they are performing an act of interpretation that links text in the source article to the
language of the GO term and its definition.

Our approach to the problem of identifying gene-related findings in the scientific literature
draws on the experience of model-organism database curators. We used the literature of the
budding yeast Saccharomyces cerevisiae and annotations in the Saccharomyces Genome
Database (SGD; www.yeast genome.org) to develop and test our approach (Issel-Tarver et
al., 2000). In this article, we present the results of our analysis of 1823 articles in which over
2500 experimentally based claims were made, more than 840 of which concerned molecular
function. These results are compared with results from other work on automated database
curation—in particular, the Knowledge Discovery and Data Mining (KDD) challenge (Yeh
et al., 2003) and the BioCreAtIvE challenge (Critical Assessment of Information Extraction
Systems in Biology) (Blaschke et al., 2005; Camon et al., 2005; Hirschman et al., 2005).
Although our focus was on molecular function claims and the experimental evidence
backing up those claims, the approach we present applies to other kinds of gene-related
information and other kinds of evidence.
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2 SYSTEM AND METHODS
2.1 Data

A gene-association file containing 32 708 S.cerevisiae annotations was provided by the SGD
group (version dated 12 November 2006 of the gene_association.sgd file). These annotations
were abstracted by the SGD curators from published articles, which had been selected as
being of possible interest for yeast annotation based on a weekly-automated search of
MEDLINE citations in the Entrez PubMed database. The annotation file listed 5919
documents in total. Of these, 2193 were available in full-text form, converted automatically
from portable document format (pdf) files available from the publishers. In the end, we
further restricted ourselves to documents that had both a Results and a Methods section that
could be identified using automated heuristics. In total, there were 1834 such full-text
documents. Eleven were used as training documents along with three additional papers on
yeast, two on Arabidopsis, two on Caenorhabditis elegans, two on mice and two on humans.
The remaining 1823 full-text documents gave rise to 3830 annotations based on evidence
from the primary literature (the article itself) as opposed to other secondary sources. Of
these 3830 annotations, 2117 were inferred from direct assays, a very reliable form of
experimental evidence. Of these 2117 annotations, 607 were for molecular function. These
607 molecular-function direct-assay annotations were produced from 1250 papers. We
compiled a list of candidate genes for each of the 1823 full-text articles by identifying in the
SGD annotations all genes that had been annotated using evidence from these articles,
whatever the kind of evidence or sub-ontology, whether biological process, cellular location
or molecular function. These SGD annotations were used as the gold standard against which
we measured our system's results.

2.2 Document representation
A careful analysis of the 22 papers used for training led us to represent documents as sets of
triples <s, g, w>, where s is the name of the section of the article within which word or
phrase w appears, g is a gene or gene product name that appears within the same sentence or
sentence fragment as w and w is a member of the set of biologically meaningful words and
phrases that appear in the document. The section names are specified as follows: s ε {T, A,
N, R, C, D, M}, where T denotes Title, A Abstract, N Introduction, R Results, C Conclusion,
D Discussion and M Methods (or sections with similar labels). A word or phrase w is
considered biologically meaningful if it can be matched, with some degree of flexibility,
against the terms in either a federated biomedical language resource that we have used in
prior work or a draft protocol vocabulary designed to capture the words and phrases
commonly used to describe relevant experimental procedures (Crangle, 2002; Crangle and
Zbyslaw, 2004). The federated biomedical language resource has been used to improve text
information access (Biomedical Information Science and Technology Initiative 2003
Symposium, http://www.bisti.nih.gov/2003meeting/abstracts/; GO Users Meeting, Stanford
University, January 2004,
http://www.geneontology.org/meeting/Stanford_GO_Program2004.html#6) and for concept
extraction and synonymy management in biomedical information retrieval (TREC2004
Meeting, November 2004, NIST,
http://trec.nist.gov/pubs/trec13/papers/converspeech.geo.pdf). This document representation
takes into account the contribution of a given word or phrase, not simply on its own, but in
the context of a specific section. We had initially thought that the Methods section would be
the source of the most useful information on experimental evidence. Our preliminary
investigations, however, suggested that, on the contrary, it is the appearance of a protocol
vocabulary term in the Results section that tells us the most about what kind of evidence
there is for a molecular function claim.
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2.3 Biomedical language resources
Our biomedical language resources (known collectively as BioMedPlus) are modeled on
WordNet, a general lexical resource for the English language (Miller et al., 1990).
BioMedPlus contains over one million unique entries (words or phrases) and is built from
publicly available biomedical resources, including the S.cerevisiae database of gene and
gene product names, LocusLink (now superseded by the Entrez Gene database) and MeSH,
the medical subject headings used to index MEDLINE records. A word or sequence of
words from an article (loosely called a phrase) is matched to entries in BioMedPlus using a
normalizing matching process. The matching process has the following features: word order
is ignored; words such as articles and prepositions that are not significant in this context are
ignored; hyphens and other non-alphabetic characters such as commas and digits break
words up into subordinate words for matching; words are stemmed using a modified Porter
stemmer (Porter, 1980) and case is taken into account as follows: a word in BioMedPlus that
has any uppercase letters (e.g. the partial gene name ‘ACT’) will only match words in the
text that also contain some uppercase letters (e.g. ‘Act’ or ‘ACT’ but not ‘act’). This
matching strategy is not flawless (it will fail to identify ‘act1’ as a reference to a recessive
mutant to the ACT1 gene, for example) but it does eliminate many false matches to ordinary
English words. For the task reported in this article, we did not use the MeSH or LocusLink
derived portions of BioMedPlus.

We compiled a protocol vocabulary, currently in draft form, to capture the language that
scientific curators look for in an article to determine that there is experimental evidence for a
molecular function claim. We focused on direct assay experiments, using several primary
sources from which we manually selected vocabulary items. The presence of any of the
selected words or phrases in an article suggests that a direct assay has been performed. The
sources were as follows: the children of the GO term ‘protein complex’ in the cellular
component sub-ontology; the GO definition of the GO term ‘protein complex’ and the
definitions of all its children; enzyme names, including recommended name, systematic
name and synonyms (Bairoch, 2000; Barthelmes et al., 2007); the GO definition of the GO
term ‘enzyme’ and headings and subheadings for selected chapters in Current Protocols in
Molecular Biology, specifically chapters 9, 10, 12, 14, 16, 17, 18, 20, 21 and 27 (Ausubel et
al., 2007). There are approximately 550 general entries (words or phrases) in the draft
protocol vocabulary Terms from this vocabulary were matched against document text using
the same matching process described above. Further work on this vocabulary will draw on
the Ontology for Biomedical Investigations (OBI) effort, which seeks to model the design,
protocols, instrumentation, material, data and analysis of biomedical investigations (Whetzel
et al., 2006). Correctly identifying references to genes and gene products is crucial. We were
aided in this by the well-regulated gene naming guidelines adopted by the yeast community
and maintained by SGD. Gene products are named by capitalizing only the initial letter of
the gene name and either appending the letter ‘p’ or following the gene name with the word
‘protein’. For example, the gene SEC11 has gene product Sec11p or Sec11 protein. Standard
gene names and aliases are available in the SGD annotations file. To identify a gene or gene
product name in the document text, we used the same matching process previously
described.

2.4 GO term representation
Identifying GO descriptions of molecular function in text depends crucially on how GO
terms are represented. It is this representation that determines what automated methods look
for when they are trying to find a GO description of a molecular function in an article. A
basic representation takes the individual words that make up a GO term, along with the
individual words that make up its synonyms, and puts them together to form an unordered
list. We extend this basic representation by additionally including in the list biologically
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related words and phrases of the GO term that are provided by a number of so-called ‘GO
mappings’. These mappings, available at http://www.geneontology.org/external2go/, list
terms that, in some context or another, are used in a roughly synonymous way with their
associated GO term. Because these terms are not part of the controlled vocabulary of GO,
they are not given as synonyms in GO. The following mappings were used: Swiss-Prot
keywords; InterPro; MultiFun Classifications; EGAD and COG Functional Categories. GO
terms were found in text using the normalizing matching process described earlier, in which
word order is not significant, words are stemmed before matching, case is significant but
does not require exact matching and hyphens and other non-alphabetic characters demarcate
the most basic units for matching. In addition, several words such as ‘activity’ were
considered optional in that they were not required in the document text for a match to be
made.

2.5 Approach
The problem of finding molecular function claims backed by experimental evidence in a
scientific article was broken down into the following two subtasks:

Subtask I: determine whether or not there is experimental evidence for a molecular
function claim about a given gene, without reference to any specific molecular function.

Subtask II: identify potential molecular function terms in GO that may be associated
with the gene for which experimental evidence has been found.

2.5.1 Subtask I: finding experimental evidence—This analysis was conducted for
each article and for each candidate gene identified in Section 2.1.

Find all occurrences of the given gene or gene product name within the Results
section.

Then find all terms from the draft protocol vocabulary that occur in the same
sentence or sentence fragment as this gene or gene product name within the Results
section.

For each protocol term so found, produce the following 6-tuple, where PMID is the
PubMed identifier of the full-text document being analyzed; Gene is the name of
the gene; P_ID identifies the cooccurring term from the draft protocol vocabulary;
Co_Occur gives the number of times both the gene name and protocol term appear
in the same sentence; Sec_Size gives the number of sentences in the Results
section; and Score is the ratio of Co_Occur to Sec_Size.

As long as there is at least one such 6-tuple for a given gene, it is assumed that there is
experimental evidence for a molecular function claim about that gene in that article.

The information given in these 6-tuples is over-specified. For example, for the gene SEC15
and the paper with PMID 10022848, over a dozen 6-tuples were produced, including these:
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That is, over a dozen different protocol terms occurred in the context of ‘SEC15’ within the
Results section in this article. For the current task, it does not matter which protocol terms
were found. All the 6-tuples for SEC15 and the paper with PMID 10022848 can therefore be
merged, with the values for Co_Occur and Score respectively being added up to produce
totals for one 6-tuple for the given article and gene. Several scoring heuristics were tried.
For example, we experimented to see what would happen if we ignored those 6-tuples
whose score was less than 0.01. It turned out, however, that none of the scoring heuristics
made any appreciable difference and they were discarded for the current task.

2.5.2 Subtask II: finding molecular function GO terms—Our approach to this
second, more difficult, subtask was as follows. Subtask I established that there (purportedly)
was experimental evidence in the given article for a molecular function annotation of some
kind for the given gene. For each 6-tuple generated in subtask I, our system found those GO
terms that occurred in the same sentence or sentence fragment as the gene or gene product
name in the 6-tuple, but only in sections other than Methods and References. That is, for
every 6-tuple,

one or more 4-tuples of the following form were generated for each co-occurring GO term:

where GO_ID is the identifier of the GO term, and Excerpt is the sentence or sentence
fragment in which both the GO term and the gene name occurred. The GO term in every
such 4-tuple counted as a proposed molecular function description for the given gene.

3 IMPLEMENTATION
3.1 System implementation and evaluation

Our methods for the two subtasks were implemented in the Perl programming language,
running on a variety of PCs using both Fedora Linux and FreeBSD. For the biomedical
language resources, we used the open-source Berkeley DB database library.

To evaluate the system, we compared our results against the gold standard provided by the
SGD annotations. We used the standard measures of recall and precision and the harmonic
mean F of recall and precision. Recall is the ratio of the number of correct answers returned
by the system to the actual number of correct answers. Precision is the ratio of the number of
correct answers returned by the system to the total number of answers returned by the
system. The ‘answer’ may be a yes/no decision on the existence of experimental evidence or
it may be a GO term. Recall measures how sensitive a system is in finding what it should
find. Precision measures how specific a system is in finding just what it should find. Recall
and precision are typically given as percentages. The F measure is defined as follows:

The SGD annotations each contain an evidence code, which could be any one of the
following defined by the GO Consortium: Inferred from direct assay (IDA); inferred from
physical interaction (IPI); inferred from expression pattern (IEP); inferred from genetic
interaction (IGI); inferred from mutant phenotype (IMP); inferred from sequence or
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structural similarity (ISS); inferred by curator (IC); inferred from electronic annotation
(IEA); inferred from genomic context (IGC); inferred from reviewed computational analysis
(RCA); traceable author statement (TAS) and non-traceable author statement (NAS). We
had a particular interest in the IDA evidence code because a direct assay is considered a very
reliable form of experimental evidence. However, inferences from expression pattern,
genetic interaction, mutant phenotype and physical interaction are also based on
experimental evidence. Furthermore, inferences from sequence or structural similarity are
made on the basis of information in the primary literature, namely the article itself, as
opposed to information in some secondary source. This kind of evidence was therefore also
of interest to us.

3.2 Results for subtask I
For subtask I, we analyzed each final 6-tuple as follows. If the SGD annotations contained
an entry that had the given gene and PubMed identifier and the appropriate kind of evidence,
then the 6-tuple was counted as a correct answer. So for example, if we were considering the
evidence codes IDA, IEP, IGI, IMP and IPI as representing a claim of experimental
evidence, then any annotation with the given gene name and PubMed identifier and any of
IDA, IEP, IGI, IMP or IPI as evidence code would give rise to a correct answer for our
results. If we restricted our analysis to direct assays (IDA code), then only annotations with
the given gene name and PubMed identifier and an IDA evidence code would give rise to a
correct answer.

Correct answers, also known as true positives, can be compared to incorrect answers of two
different kinds—false positives and false negatives. While a true positive is one for which
the claimed annotation does exist—that is, the given document was used to support a
molecular function annotation for the given gene and it provided experimental evidence of
the relevant kind—a false positive is one in which there was no molecular function
annotation supported by the relevant kind of evidence in the gold-standard annotations. A
false negative is one for which a molecular function annotation for the given gene does exist
and was derived by the curators from the given article, but our system failed to generate a 6-
tuple containing the gene name and the PubMed identifier.

To interpret the results correctly we had to filter the false positives by removing all 6-tuples
for which the given gene did have an experimentally based molecular function annotation,
as confirmed by an entry in the gold-standard annotations, even though that annotation cited
a document with a different PubMed identifier. This filtering was necessary because SGD
provides only one article for an annotation. (Other model organism databases provide all
articles found with information for a given gene.) Consequently, our system's claim may be
correct; this article may simply be one of the papers the curators put aside during triage in
relation to the given gene and GO term because a relevant annotation already existed. The
annotations removed during filtering cannot automatically be counted as true positives,
however. The particular document that we claim supports an experimentally based
annotation for the given gene may or may not actually do so; there is simply no way of
telling without having a scientific curator analyze the paper itself.

We computed recall, precision and F scores for several combinations of GO evidence codes:
IDA (direct assay) only; IDA and IPI (physical interaction) and IDA, IPI, IEP, IGI, IMP and
ISS—that is, any of the six primary literature evidence codes, omitting IC, IEA, IGC, RCA,
TAS and NAS. Results are summarized in Table 1. For the most difficult task—identifying
evidence from direct assays only (IDA evidence code)—our methods achieved recall of
70.7% and precision of 65.7%. When physical interactions (IPI evidence code) were also
included, our methods achieved recall of 70.0% and precision of 77.0%. When all direct
sources of evidence in the text were included, our methods achieved recall of 69.7% and
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precision of 97.7%. Our third set of results included annotations inferred from sequence
similarity (ISS evidence code), a method not always considered experimental. However, in
the complete set of SGD documents, a full 77% of the articles that contributed an ISS
annotation also contributed an experiment-based annotation, and only 11% of those articles
also produced a non-experiment-based annotation. There is thus a high level of agreement
between articles with claims based on sequence similarity and articles with claims based on
more direct experimental evidence.

3.3 Results for subtask II
As we did for subtask I, we calculated filtered results for the molecular function annotations
returned by the system for subtask II. Because SGD provides only one article for an
annotation, when our system proposes a GO annotation for a gene based on a particular
article, it may be correct even if there is no gold-standard annotation for that gene and GO
term that contains the PubMed identifier for that particular article. This article may simply
be one the curators did not include because a relevant annotation had already been
established using another article. It may also be that this article was used by the curators to
assign a molecular function term at a higher or lower level in the GO hierarchy, or with a
non-experimental evidence code, and the GO term or evidence code suggested by our
system is preferable. But these possibilities were simply counted as false positives.

Results for subtask II are summarized in Table 2. A true positive for subtask II is an answer
given by our system that is in alignment with the gold-standard annotations; that is, the
molecular function description (the GO term) that our system identified for the given gene
was derived from the given article by the curators. A false positive for subtask II is an
answer given by our system that proposed a molecular function description (a GO term) for
the given gene that the curators did not derive, at least not using the given article. (For the
filtered results, neither the given article nor any other was used to derive the molecular
function description for the given gene.) A false negative for subtask II is given by a gold-
standard annotation with a molecular function description (GO term) for the given gene that
our system failed to identify. That is, our system failed to generate even one 4-tuple
containing the given gene name and GO term and PubMed identifier found in the gold-
standard annotation.

For direct-assay annotations, our methods correctly identified 44.6% of the molecular
function descriptions associated with a given gene, an encouraging result. However,
precision for this recall result was only 0.92%. When physical interactions (IPI evidence
code) were also counted, recall dropped to 37.9% and precision rose slightly to 1.10%.
When all direct sources of evidence in the text were counted, recall dropped further to
28.1% and precision again rose slightly to 1.49%.

3.4 Comparison with results from other database curation endeavors
Several groups have developed systems to discover gene-related findings in text (Chiang
and Yu, 2003; Couto et al., 2005; Hu et al., 2005; Kim and Park, 2004; Koike et al., 2005;
Pérez et al., 2004; Rebholz-Schuhmann et al., 2006). Most work only on MEDLINE data,
which includes the title and abstract, not full-text articles. There have been two significant
world-wide efforts focused on full-text data mining in biomedicine, both concerned with the
problem of automating human and model-organism database curation: the KDD (Yeh et al.,
2003) and BioCreAtIvE (Blaschke et al., 2005; Camon et al., 2005; Hirschman et al., 2005)
challenges. These provide results for comparison with ours. However, it should be noted that
the KDD corpus and the BioCreAtIvE corpus (for the comparative task) consisted of only
213 and 99 papers, respectively, whereas ours consisted of 1834 papers.
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The KDD challenge sought methods of automating the curation of articles in FlyBase, the
model organism database for Drosophila (Flybase Consortium, 2003). Given a set of full-
text papers on the genetics or molecular biology of Drosophila and, for each paper, a list of
the genes mentioned in that paper, participants were asked to develop a system that
determined whether or not the paper should be curated based on the existence of
experimental evidence in the paper and then, for each of the genes listed for the paper,
whether or not the paper contained experimental evidence for that gene's expression. For
KDD, 18 teams submitted 32 separate results for evaluation. The F measure was used to
evaluate the yes/no curation decisions and the yes/no decisions for specific gene products.
The best and the median F scores in the KDD competition were:

Yes/No experimental evidence in general: Best: 78%; Median: 58%.

Yes/No experimental evidence for gene products: Best: 67%; Median: 35%.

The training corpus made available to participants consisted of 862 articles curated in
FlyBase together with the associated lists of genes and gene products. The supporting text
that FlyBase had extracted from each paper was also provided. It consisted of words and
phrases from the text accompanied by explanations of the evidentiary value of these
extracts. The test corpus consisted of 213 new articles; 91 papers (43%) of the 213 test
papers had results of interest.

There are several points of difference between the KDD effort and ours. Our F scores were
computed on annotations not papers. Had we computed our scores on papers (number of
papers we claimed had experimental evidence versus number of papers with actual
experimental evidence, for example), we could not have made a comparison with KDD
since our test set included only papers that had indeed been curated by SGD, none that had
been put aside in the triage process as being of lower priority, perhaps not offering curatable
material. Of the 213 documents in the KDD test set, 57% had no data of interest. The KDD
task could therefore be seen to have provided more opportunities for false positives.
However, of the 1823 documents in our test set, a full 56% gave rise to non-experimental
annotations, regardless of whether or not they also gave rise to experimental annotations.
Our test documents therefore gave ample and roughly equivalent opportunity for generating
false positives on annotations, the basis of our measurements.

The KDD task comparable to ours determined whether or not specific genes had
experimental data in a given paper. For that task, the best F score was 67%, the median
35%. Our second set of results (for IDA and IPI evidence codes) provides the fairest
comparison. There our F score was 73.3%.

There were several areas of similarity between the successful approaches in KDD and our
approach—for example, the attention paid to document structure, to phrases rather than
individual words, and to figure captions. The most successful approach (Regev et al., 2002)
focused on figure captions, looking for linguistic patterns containing words and phrases
commonly used to describe relevant experimental procedures. This approach also used
specific vocabulary items to rule out unwanted experimental evidence, such as from mutant
phenotypes. We compiled a much richer vocabulary of experimental terms and, although we
did not focus on figure captions, we specifically included them. Many of the sentence or
sentence fragments that gave rise to the 6-tuples were from figure captions. Our protocol
vocabulary seems to have provided considerable leverage in identifying experimental
procedures of interest. A problem cited in the KDD report is that for a procedure such as
immunolocalization, the text may nowhere use that term itself but instead contain a
description of the specific steps taken to perform a particular immunolocalization assay, as
in this figure caption: ‘Whole-mount tissue staining using an affinity-purified anti-Phm
antibody in the CNS and in non-neural tissues. ... The third instar larval CNS exhibits
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distributed cell body and neuropilar staining. This view displays only a portion of the
CNS;...’ Our draft protocol vocabulary includes the term ‘affinity purification’, which also
matches against linguistic variations of the term, such as ‘affinity-purified’ appearing in the
figure caption. We would therefore have identified a relevant experimental procedure from
this piece of text.

BioCreAtIvE focused on the automatic assignment of GO annotations to human proteins
using full-text articles. Task 2.2 of BioCreAtIvE is most relevant to the work reported here.
For this task, the systems were given the number of GO terms there were for a given protein
in a paper. Systems were to identify the correct GO terms assigned to the protein and
provide supporting text passages. There were seven participants with 18 submissions in
total. The training corpus consisted of 803 papers. The test corpus consisted of 99 papers,
which gave rise to 1227 annotations. In terms of identifying the correct GO term, the highest
recall, computed from Table 5 in Blaschke et al. (2005), was 6.4%, with precision of 12%
(reported as 12.30% or 78/634 in Table 5), giving an F score of 8.4%—the highest obtained
overall (Ehrler et al., 2005). The highest precision was reported as 34.62% or 9/26 in Table
5 (but given the size of the numerator and denominator is more precisely stated as 30%)
with recall of 1% (Chiang and Yu, 2004).

The problem we solved was more difficult than that solved by the BioCreAtIvE teams in
two respects. We were not given specific genes for each paper but a set of candidate genes,
some of which did have experimentally based molecular function annotations derived from
the given paper and some not. Second, true positive GO term identifications in BioCreAtIvE
included not only exact matches but also close matches that the human judges considered
acceptable. As reported in Camon et al. (2005), true positive, otherwise known as perfect,
predictions for task 2.2 were those that were evaluated as ‘high’ for both the GO term and
the protein identification. The GO term assignment was deemed to be ‘high’ if it was correct
or close to what a curator would choose given the evidence text. (Other possibilities were
‘general’ if the GO term was in the correct lineage given the evidence text but was at too
high a level or was too specific, and ‘low’ if it was simply wrong.)

Our task was made somewhat easier, however, by the well-regulated gene naming
guidelines for yeast, which simplified the task of identifying references to yeast genes and
proteins in text. For task 1B of BioCreAtIvE, for example, the top score for identifying yeast
names in abstracts was over 90%, while for fly (Drosophila) and mouse it was around 80%.
Our results clearly favored recall over precision. However, the precision we obtained
undeniably needs improvement. One general explanation for the relatively poor results
achieved to date in GO term identification is that the information to be extracted is complex,
spread over several sentences or located in different places altogether in the text. What is
noteworthy, however, is that of the participating groups in BioCreAtIvE, only two made use
of the external knowledge resources of MeSH and the HUGO database of human gene
names and symbols, and these groups obtained the highest F scores of 8.4% (Ehrler et al.,
2005) and 7.0% (Ray and Craven, 2005). Similarly, as pointed out in the comparison of our
results with KDD, we made extensive use of external knowledge resources, which appears
to have contributed to our high recall results.

4 DISCUSSION
Greater insight into the data mining methods might be gained if scientific curators could
render a judgment on each sentence that contributed to the Score in a 6-tuple for subtask I or
appeared in an Excerpt in a 4-tuple for subtask II. If the curators asserted that a sentence
supported the claim of experimental evidence or the proposed GO term for the given gene,
then that sentence would be considered valid. If the curators did not think the sentence
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offered such support, then it would be considered spurious. However, it is difficult and time
consuming to assess the evidentiary value of thousands of pieces of text, as the organizers of
BioCreAtIvE confirmed in their report. In addition, our experience suggests that the
existence of a spurious sentence (or even several) does not invalidate the conclusions drawn
from the 6-tuples and perhaps also from the 4-tuples. However, a more complete evaluation
of the evidentiary passages produced by our system would provide a deeper understanding
of how to improve our results, particularly with respect to precision.

It is unlikely now or in the near future that database curation will be fully automated. What
is needed is a tool scientific curators can use to make their task easier and more efficient.
Even a highlighting tool would make a difference, one that showed all mentions of a gene or
protein and all its synonyms or aliases within an article, and also indicated any terms used to
describe relevant protocols. For example, Table 3 shows several passages from the article
with PubMed ID 10207049 (Lin and Lis, 1999) that provided experimental evidence for the
annotation of the GAC1 gene to the GO term ‘heat shock protein binding’. The passages on
the left were provided by a SGD curator for comparison with the passages identified by our
system, shown on the right. The passages identified by our system seem not only to produce
reasonable results but also to be potentially useful as a screening tool for curators in the
analysis of new papers.

In addition to these passages, our system also picked out a number of irrelevant passages.
Experiments with human subjects are needed to see at what point the distraction of the
irrelevant passages overcomes the usefulness of the relevant passages.

It is instructive to examine the different kinds of errors our system is making. One kind of
error lies in extending an annotation to additional genes in a family when it is not warranted.
For example, a paper that provided experimental evidence for the assignment of the GO
term ‘6-phosphogluconolactonase activity’ to genes SOL3 and SOL4 was thought by our
system also to provide support for assigning this term to SOL1 and SOL2. This kind of error
produces false positives, lowering precision. Conversely, there is the mistake of failing to
apply a particular annotation to additional genes in a family, as when the GO term
‘acetyltransferase activity’ was correctly assigned by our system to SAS2 and SAS3 but not
to SAS4 and SAS5, when it should have been. This kind of error produces false negatives,
lowering recall and precision.

One kind of error in particular produces thousands of false positives in our runs. This error
occurs when a paper is correctly identified as providing experimental evidence for the
assignment of a given GO term to a specific gene, but then many other unrelated GO terms
are also thought to apply to the gene. For example, the paper with PMID 15889139 (Chang
et al., 2005) mentions 20 different genes. But, based on direct assays described in the paper,
it supports the assignment of only the following GO terms to the genes RMI1, SGS1 and
TOP3:

GO term ‘four-way junction DNA binding’ assigned to RMI1.

GO term ‘single-stranded DNA binding’ assigned to RMI1.

GO term ‘ATP-dependent DNA helicase activity’ assigned to SGS1.

GO term ‘DNA topoisomerase type I activity’ assigned to TOP3.

Our system correctly identified only RMI1, SGS1 and TOP3 as having molecular function
claims supported by direct-assay evidence in the paper, and it correctly assigned the above
three GO terms to the correct genes. However, our system also incorrectly assigned nine
other GO terms to RMI1, eight to SGS1 and seven to TOP3. Of these 24 additional GO
assignments, 6 have terms that are in the same lineage as the correct GO terms, just higher in
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the GO hierarchy. For RMI1, our system proposed the two GO terms of ‘DNA binding’ and
‘nucleic acid binding’. Although ‘nucleic acid binding’ may be too far up in the hierarchy to
be useful, ‘DNA binding’, an ancestor of both ‘four-way junction DNA binding’ and
‘single-stranded DNA binding’ may be judged useful in directing curator attention to a
particular part of the GO hierarchy. Similarly, for SGS1, our system proposed ‘DNA
helicase activity’, ‘catalytic activity’ and ‘helicase activity’, and for TOP3 our system
proposed ‘DNA topoisomerase activity’, all of which are more general than the correct GO
terms but in the correct lineage. A systematic study of incorrect additional GO assignments
could provide dramatic improvement in precision.

One straightforward way to increase the number of true positives is to pick up acronyms and
abbreviations given within the article itself. For example, the article featured in Table 3
defined ‘HSF’ as an acronym for ‘heat shock factor’, but our system does not yet pick up
definitions given in the text. Consequently, out methods failed to select the title as a text
passage of interest even though the phrase ‘heat shock factor’ appears in it. Methods such as
those presented by Okazaki and Ananiadou (2006) and Yu et al. (2007) could be used. The
title of the article in Table 3 also does not contain any reference to an appropriate
experimental method or any recognizable reference to the GAC1 gene. The linguistic
relation between ‘glycogen synthase phosphatase’ in the title and the gene name ‘GAC1’ is
not straightforward. Although our language resources know that ‘GLyCogen’ is the
description for the standard name ‘GLC7’, the fact that Gac1 is a regulatory subunit of Glc7
phosphatase is not known to our system. This fact is stated simply and clearly in the text,
however, which suggests that it could be productive to find ways to mine such linguistic
information from the text itself.

Our biggest challenge is to improve precision by reducing the number of false positives, but
without significantly harming recall. An analysis of the 29 363 false positives and the 271
true positives for GO annotations based on direct assays reveals a useful screening tool that
does just that. This analysis shows that we can find the GO term, using our normalized
matching procedure, in the title and abstract of 90% of the true positives but only 40% of the
false positives. Thus, while a normalized match to the GO term in the title and abstract is
neither a necessary nor sufficient condition for a correct molecular function annotation, it
can serve as a useful screen. If we eliminate all the annotations that fail to produce this kind
of normalized match, for direct assay-based annotations we eliminate 17 617 false positives
but just 27 true positives, lowering recall just a little to 40.2% and raising precision to
2.08%. While the increase in precision may seem small, the practical benefit of a curator's
not having to check 17 617 false positives is huge.

Our approach to finding molecular function claims backed by experimental evidence in text
can be characterized by two features that distinguish it from other large-scale efforts. First,
we made extensive use of external knowledge, specifically a federated biomedical language
resource, publicly available GO mappings and a vocabulary of protocol terms. Second, we
relied on any one of multiple text passages generated in support of a claim of experimental
evidence or a specific molecular function description. The relatively poor results from all
efforts to identify GO terms in text testify to the difficulty of matching a given molecular
function description with text that in some complex way expresses ‘the same notion’. While
our recall results are very encouraging, there is clearly room for improvement, particularly
with regard to precision.
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Table 1

Results for determining whether or not there is experimental evidence of the given type for a given gene in a
given article, without reference to any specific molecular function

Evidence code IDA Evidence codes IDA and IPI Evidence codes IDA, IEP, IGI, IMP, ISS,
IPI

Experiment-based annotations 2117 2592 3830

Filtered annotations returned by system 2280 2355 2734

True positives (correct answers) 1497 1814 2671

False positives 784 542 64

False negatives 614 772 1153

Recall 70.7% 70.0% 69.7%

Precision 65.7% 77.0% 97.7%

F score 68.1% 73.3% 81.4%
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Table 2

Results for determining the specific molecular function (GO term) associated with a given gene for which
there is experimental or primary source evidence

Evidence code IDA Evidence codes IDA and IPI Evidence codes IDA, IEP, IGI, IMP, ISS,
IPI

Molecular function annotations 607 846 1560

Filtered annotations returned by system 29 363 29 292 29 380

True positives (correct answers) 271 321 438

False positives 29 111 28 990 28 960

False negatives 317 506 1103

Recall 44.6% 37.9% 28.1%

Precision 0.92% 1.10% 1.49%

F score 1.80% 2.14% 2.83%
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Table 3

Supporting text passages from article with PubMed ID 10207049 for the annotation of the GAC1 gene to the
GO term ‘heat shock protein binding’ based on experimental evidence

Text passages identified by curators Text passages identified by system

In Title or introductory section without section heading . . .

Lin JT, Lis JT (1999) Glycogen synthase phosphatase interacts with heat shock factor
to activate CUP1 gene transcription in Saccharomyces cerevisiae. Mol Cell Biol
19(5):3237-45

Here, we used the phage display system to isolate
proteins that interact with HSFrr.

In this article, we describe the use of the phage display system to identify an HSFrr-
interacting protein, Gac1.

Second, the targeted modification of HSF appears to
play * [truncated sentence]

The phage display system allows the rapid selection
and cloning of specific proteins that interact directly
with a target

In Results section . . .

HSFrr and Gac1 proteins can physically interact. A simple pull-down binding assay
confirmed the direct physical interaction between HSFrr and Gac1 proteins in vitro.

Purified MBP-HSFrr was mixed with either GST or GST-Gac1(162n406), both of
which were bound to glutathione-agarose resin.

FIG. 3. Physical interaction between HSFrr and Gac1

We also used an immunoprecipitation analysis to demonstrate that Gac1 and HSFrr
interact in a yeast extract.

We also used an immunoprecipitation analysis to
demonstrate that Gac1 and HSFrr interact in a yeast
extract

In summary, these results demonstrate that Gac1 protein interacts with HSFrr both as
purified recombinant proteins and as proteins in crude yeast extracts.

FIG. 4. Physical interaction between HSFrr and Gac1(130n502) in an
immunoprecipitation assay.

Physical interaction between HSFrr and Gac1(130–
502) in an immunoprecipitation assay.
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