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Partial Cox Regression Analysis for
High-Dimensional Microarray Gene Expression
Data

Hongzhe Li and Jiang Gui

Rowe Program in Human Genetics and Department of Statistics, University of
California, Davis, CA 95616,USA

ABSTRACT
Motivation: An important application of microarray technology
is to predict various clinical phenotypes based on the gene
expression profile. Success has been demonstrated in mole-
cular classification of cancer in which different types of cancer
serve as categorical outcome variable. However, there has
been less research in linking gene expression profile to cen-
sored survival outcome such as patients’ overall survival time
or time to cancer relapse. In this paper, we develop a partial
Cox regression method for constructing mutually uncorrelated
components based on microarray gene expression data for
predicting the survival of future patients.
Results: The proposed partial Cox regression method invol-
ves constructing predictive components by repeated least
square fitting of residuals and Cox regression fitting. The
key difference from the standard principal components Cox
regression analysis is that in constructing the predictive com-
ponents, our method utilizes the observed survival/censoring
information. We also propose to apply the time dependent
receiver operating characteristic curve analysis to evaluate the
results. We applied our methods to a publicly available data
set of diffuse large B-cell lymphoma. The results indicated
that combining the partial Cox regression method with prin-
cipal components analysis results in parsimonious model with
fewer components and better predictive performance. We con-
clude that the proposed partial Cox regression method can be
very useful in building a parsimonious predictive model that
can accurately predict the survival of future patients based
on the gene expression profile and survival times of previous
patients.
Availability: R codes are available upon request.
Contact: hli@ucdavis.edu

INTRODUCTION
DNA microarray technology permits simultaneous measure-
ments of expression levels for thousands of genes, which
offers the possibility of a powerful, genome-wide approach

to the genetic basis of different types of tumors. The genome-
wide expression profiles can be used for molecular classifica-
tion of cancers, for studying varying levels of drug responses
in the area of pharmacogenomics and for predicting diffe-
rent patients’ clinical outcomes. The problem of cancer class
prediction using the gene expression data, which can be for-
mulated as predicting binary or multi-category outcomes, has
been studied extensively and has been demonstrated great pro-
mise in recent years (Golubet al., 1999; Alonet al., 1999;
Garberet al., 2001; Rosenwaldet al., 2002). However, there
has been less development in relating gene expression profiles
to censored survival phenotypes such as time to cancer recur-
rence or death due to cancer. Due to large variability in time to
cancer recurrence among cancer patients, studying possibly
censored survival phenotypes can be more informative than
treating the phenotypes as binary or categorical variables.

From a statistical perspective, one challenge to studying
time to event outcome results from right censoring during
patient followup, since some patients may still be event-
free. These patients are termed right-censored, and for these
patients, we only know that the time to event is greater
than the time of last followup. An additional challenge is in
the microarray gene expression data itself. Microarray gene
expression data is often measured with great deal of back-
ground, irrelevant readings, and the sample size of tissues or
patients is usually very small compared to the number of genes
measured by expression arrays. In addition, there is a potential
of high collinearity of the gene expression levels among many
genes. Censoring of patients proves difficult when compa-
red to binary or continuous phenotypes. A frequent approach
to relating gene expression profiles to survival phenotypes is
to first group tumor samples into several clusters based on
gene expression patterns across many genes, and then to use
the Kaplan-Meier (KM) curve or the log-rank test to indicate
whether there is a difference in survival time among different
tumor groups. Another approach is to cluster genes first based
on their expression across different samples, and use the sam-
ple averages of the gene expression levels in a Cox model
(Cox, 1972) for survival outcome. Both approaches suffer the
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drawback that the phenotype information is completely igno-
red in the clustering step and therefore may result in loss of
efficiency. Additionally, results will potentially be sensitive
to the clustering algorithm and distance metrics employed, as
well as the number of clusters chosen.

Perhaps the most developed technique in relating gene
expression profiles to phenotypes is the gene harvesting pro-
cedure of Hastieet al. (2001). This is a forward stepwise
regression method that can be applied to a spectrum of
outcome types, including survival data, in which case the step-
wise regression corresponds to a stepwise Cox model. The
central strategy of gene harvesting, and what distinguishes it
from conventional forward stepwise techniques, is to initially
cluster all genes via hierarchical clustering, and then to con-
sider the average expression profiles from all of the clusters
in the resulting dendrogram as additional covariates (beyond
the individual gene expression profiles). The number of terms
retained is determined by cross-validation. By using clusters
as covariates, selection of correlated sets of genes is favored,
which in turn potentially reduces overfitting. However, gene
harvesting is sensitive to clustering procedure specifications
and more importantly as demonstrated by Segalet al.(2003),
gene harvesting admits artifactual solutions. These arise as a
result of the nature and extent of the basis expansion represen-
ted by the additional covariates in the typically small sample
size settings.

Another approach to dealing with the problem of high-
dimensionality and multi-collinearity is through penalized
maximum partial likelihood estimation. Li and Luan (2003)
developed a penalized estimation procedure for the Cox model
using kernels. The procedure is in fact reduced to theL2

penalized estimation of the standard Cox model with linear
predictors when the inner product kernel is used. Howe-
ver, the paper did not provide a formal practical procedure
for choosing different kernels or the corresponding tuning
parameters.

Partial least squares (PLS) (Wold, 1966) is a method of
constructing linear regression equations by constructing new
explanatory variables or factors or components using linear
combinations of the original variables. The methods can be
effectively applied to the settings where the number of expla-
natory variables is very large (Wold, 1966; Garthwaite, 1994).
Different from the principal components (PC) analysis, this
method makes use of the response variable in constructing
the latent components. The method identifies linear combi-
nations of the original variables as predictors and uses these
linear components in the standard regression analysis. Nguyen
and Rock (2002) applied the standard PLS methods of Wold
(1966) directly to survival data and used the resulted PLS
components in the Cox model for predicting survival time.
The approach did not really generalize the linear PLS to cen-
sored survival data, but applied it directly. However, such
direct application of the Wold algorithm to survival data is
questionable and indeed does not seem reasonable since it

treats both time to event and time to censoring as the same in
the linear PLS procedure. Parket al. (2002) reformulated the
Cox model as a Poisson regression and applied the formula-
tion of PLS of Marx (1996) for the generalized linear models
to derive the PLS components. However, such reformulation
introduces many additional nuisance parameters and when the
number of covariates is large, the algorithm may fail to con-
verge. In addition, Parket al.(2002) did not evaluate how well
the model predicts the survival of a future patient.

In this paper, we propose a different extension of PLS to
the censored survival data in the framework of the Cox model
by providing a parallel algorithm for constructing the latent
components. The algorithm involves constructing predictive
components by repeated least square fitting of residuals and
Cox regression fitting. These components can then be used
in the Cox model for building a useful predictive model for
survival. We call this method the partial Cox regression (PCR)
method. In addition, we propose to employ the time dependent
receiver operating characteristic (ROC) curve (Heagertyet al.,
2000) to assess how well the model predicts the survival. The
rest of the paper is organized as follows: we first present the
PCR methods for constructing the predictive components for
the Cox model. We then apply the methods to analysis of
the diffuse large B-cell lymphoma (DLBCL) survival data set
of Rosenwaldet al. (2002) and compare their performance
in prediction by splitting the data into training and testing
sets and by using the concept of the time-dependent ROC
curves. We conclude the paper with a discussion of the results
presented in this paper.

METHODS AND RESULTS
An algorithm for constructing the partial Cox
regression model
Suppose that we have a sample size ofn from which to esti-
mate the relationship between the survival time and the gene
expression levelsX1, · · · , Xp of p genes. Due to censoring,
for i = 1, · · · , n, the ith datum in the sample is denoted
by (ti, δi, xi1, xi2, · · · , xip), whereδi is the censoring indi-
cator andti is the survival time ifδi = 1 or censoring
time if δi = 0, and {xi1, xi2, · · · , xip}′ is the vector of
the gene expression level ofp genes for theith sample. Let
xj = {x1j , x2j , · · · , xnj}′ be the vector of gene expression
levels of thejth gene overn samples. Our aim is to build
the following Cox regression model for the hazard of cancer
recurrence or death at timet

λ(t) = λ0(t) exp(β1T1 + β2T2 + · · ·+ βkTk)

= λ0(t) exp(f(X)), (1)

where each componentTk and the risk score functionf(X)
is a linear combination ofX = {X1, X2, · · · , Xp}. In this
model,λ0(t) is an unspecified baseline hazard function.

Following the idea of PLS (Garthwaite, 1994), we adopts
the principle that when considering the relationship between
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the hazard and some specifiedX variable, otherX variables
are not allowed to influence the relationship directly but are
only allowed to influence it through the componentsTk. Par-
ticularly, we propose to develop the following procedure to
determine the components sequentially. To construct the first
component, first define

V1j = Xj − x̄.j (2)

wherex̄.j = 1/n
∑n

i=1 xij . The vector of the sample values
of V1j is v1j = {v11j , · · · , vn1j} = xj − x̄.j and therefore
the sample mean ofV1j is zero. Then for each genej, we fit
the following Cox model

λ(t) = λ0(t) exp(β1jV1j)

based on the sample value ofV1j and obtain the maximum
partial likelihood estimate (MPLE) ofβ1j , denoted byβ̂1j .
Then eachβ̂1jV1j provides an estimate of the log relative
hazard in the hazard function. To reconcile these estimates,
we setT1 equal to the weighted average, so

T1 =
p∑

j=1

w1j β̂1jV1j , (3)

wherew1j is a weight with
∑

w1j = 1. It is easy to see that
the sample mean ofT1 is also zero. Note thatT1 is a special
type of compound covariates advocated by Tukey (1993) in a
clinical trial setting when there are many covariates.

Note that theX variables potentially contain further useful
information for predicting the risk of recurrence or survival.
So one should not stop at theT1 step. The information in
Xj that is not inT1 may be estimated by residuals from a
regression ofV1j (equivalently,Xj) on T1, and denote the
residual asV2j , which can be written as

V2j = V1j −
V
′
1jT1

T
′
1T1

T1. (4)

Similarly, the contribution of the residual information inV1j

to the variability in the risk of recurrence or death after adju-
sting T1 can be estimated by performing the following Cox
regression analysis,

λ(t) = λ0(t) exp(β1T1 + β2jV2j)

and denote the MPLE ofβ2j asβ̂2j . Then eacĥβ2jV2j pro-
vides an estimate of the log relative hazard after adjusting for
T1. We define the next componentT2 as

T2 =
p∑

j=1

w2j β̂2jV2j , (5)

wherew2js are the weights. Note here the sample mean ofT2

is zero.

This procedure extends iteratively in a natural way to give
componentT2, · · · , TK , where the maximum value ofK is the
sample sizen. Specifically, suppose thatTi (i ≥ 1) has just
been constructed for variablesVij , j = 1, · · · , p. To obtain
Ti+1, first,Vij is regressed againstTi and denote the residual
asV(i+1)j , which can be written as

V(i+1)j = Vij −
V
′
ijTi

T
′
i Ti

Ti. (6)

Then perform the following Cox regression analysis for each
j,

λ(t) = λ0(t) exp(β1T1+β2T2+ · · · , βiTi +β(i+1)jV(i+1)j)

and denote the MPLE ofβ(i+1)j asβ̂(i+1)j . We then construct
Ti+1 as

Ti+1 =
p∑

j=1

w(i+1)j β̂(i+1)jV(i+1)j , (7)

wherew(i+1)js are the weights.
We call the above procedure the partial Cox regression

(PCR) and the componentsT1, T2, · · · constructed the PCR
components. It is easy to verify that these components are
mutually uncorrelated with sample mean of zero. In addition,
it is also easy to verify that the procedure gives precisely the
PLS in the case of linear model and when the simple linear
regression is used in place of the Cox regression. In construc-
ting the PCR weights, we letwij ∝ var(Vij), i.e., variables
with large variance are given larger weights. This weight was
also suggested in the PLS literatures (e.g., Garthwaite, 1994).
An alternative is to use equal weights of1/p, which aims to
spread the load among theX variables in making predictions.
In this paper, we use only the variance weights.

After the componentsT1, T2, · · · , Tk are determined,
model (1) is used for estimating the hazard function by the
standard partial likelihood method. After an estimate of the
regression model (1) has been determined, equations (3)-(7)
can be used to write the risk score functionf(X) in model (1)
in terms of original variablesX, rather than the components
T1, · · · , Tk, i.e.,

f(X) =
p∑

j=1

β∗j V1j =
p∑

j=1

β∗j (Xj − x̄.j),

for some coefficientsβ∗j . This can then be used for estimating
the hazard function for future samples on the basis of theirX
values. Note that the sample mean of the score functionf(X)
is zero. Finally, by examining the coefficients ofX values in
the final model, one can rank the gene effects by the absolute
values of the coefficients.
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The time dependent ROC curves and area under
the curves
For classification or linear regression problem, one can use
cross-validated misclassification rate or the sum of square resi-
duals as a criteria to assess how well the model predicts the
outcomes. However, due to censoring neither criteria can be
used in censoring data regression setting. In order to assess
how well the model predicts the survival outcome, we propose
to employ the idea of time dependent ROC curve for censored
data and area under the curve (AUC) as our criteria. These
methods were recently developed by Heagertyet al. (2000)
in the context of the medical diagnosis. For a given risk score
functionf(X), we can define time dependent sensitivity and
specificity functions as

sensitivity(c, t|f(X)) = Pr{f(X) > c|δ(t) = 1},
specificity(c, t|f(X)) = Pr{f(X) ≤ c|δ(t) = 0},

with c being the cutoff value andt being the time and define the
corresponding ROC(t|f(X)) curve for any timet as the plot
of sensitivity(c, t|f(X)) vs 1 − specificity(c, t|f(X)) with
cutoff point c varying, and the AUC as the area under the
ROC(t|f(X)) curve, denoted by AUC(t|f(X)). Hereδ(t) is
the event indicator at timet. A nearest neighbor estimator
for the bivariate distribution function is used for estimating
these conditional probabilities accounting for possible censo-
ring (Akritas, 1994). Note that larger AUC at timet based on
a risk score functionf(X) indicates better predictability of
time to event at timet as measured by sensitivity and speci-
ficity evaluated at timet. In our application presented in the
next section, we study several different methods of construc-
ting the risk score functionf(X) in the Cox model (1) and
compare their predictive performance based on the AUCs.

Application to Real Data Set
To demonstrate the proposed PCR methods, we re-analyzed
a recently published data set of DLBCL by Rosenwaldet al.
(2002). This data set includes a total of 240 patients with
DLBCL, including 138 patient deaths during the followups
with median death time of 2.8 years. The gene expression
measurements of 7,399 genes are available for analysis. We
applied a nearest neighbor technique to estimate those mis-
sing values. Specifically, for each gene, we first identified
8 genes which are the nearest neighbors according to Eucli-
dean distance. We then filled the missing with the average of
the nearest neighbors. Rosenwaldet al.divided the 240 pati-
ents into a training set of 160 patients and a validation set or
testing set of 80 patients and built a multivariate Cox model.
The variables in the Cox model included the average gene
expression levels of smaller sets of genes in four different gene
expression signatures together with the gene expression level
of BMP6. It should be noted that in order to select the gene
expression signatures, they performed a hierarchical cluste-
ring analysis for genes across all the samples (including both

testing and training samples). In another words, the informa-
tion from the testing samples was indeed used in the clustering
step in their analysis.

A comparison with principal components analysisWe con-
sidered to construct the PCR components using all the 7399
genes and using only those genes which are significant in a
univariate Cox regression analysis at the level of 0.05 (1836
genes) and 0.01 (506 genes). We built the PCR components
based on the gene expression data of these genes using the
160 patients in the training data set defined in Rosenwaldet
al. (2002). Table 1 shows thep-values from univariate Cox
regression analysis for the first ten PCR components construc-
ted with different number of genes. We observed that the first
seven PCR components are significantly associated with the
risk of death at the 0.05 level, all other PCR components are
not significant. As a comparison, we list in the same table
the p-values for the first 10 PCs with the largest variances.
Note that there are only two PCs among the top 10 PCs with
the largest variances which are significantly associated with
the risk of survival. This demonstrates that the PCR com-
ponents are more significantly related to survival and fewer
PCR components are needed in order to explain the variability
in survival than the PCs.

We also considered to perform the PCR analysis by per-
forming principal components analysis first on the gene
expression matrix. For the training set of 160 individuals,
there are a total of 159 PCs after centering the data. Trea-
ting these 159 PCs as a set of new variables, we constructed
the PCR components using our proposed methods. We call
such components PC-PCR components. Table 1 presents the
p-values for the first 10 PC-PCR components in the univariate
Cox regression analysis. We observed that only the first 3 or
4 PCR components are strongly associated with the survival
in the univariate Cox regression analysis, indicating that the
PC-PCR components result in further dimension reduction
comparing to the PC or PCR analysis.

Evaluation of the predictive performance of the modelsTo
examine how well the Cox model with PCR components,
principal components and PC-PCR components predict the
survival of future patients, we built several models using trai-
ning data and predicted the survival for patients in the testing
data set. All the components were constructed using all the
7399 genes. We used only the components which are signi-
ficantly related to the risk of death at thep=0.05 level in the
univariate Cox regression analysis to build the final predictive
model. We used the mean of the risk scores of the patients in
the training set, which is zero, as the cutoff point to divide the
patients into high and low risk groups. Based on the estimated
coefficients, we estimated the risk scores for patients in the
testing data set and divided these patients into two risk groups.
Figure 1 (a)-(c) shows the Kaplan-Meier survival curves for
the two risk groups defined by three different models. Alt-
hough all three models give significant difference in the risk
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Table 1. Results (p-values) for univariate Cox regression analysis for the first 10 PCR components, first 10 PC-PCR components and the top 10 PCs with the
largest variances built using 7399, 1836 and 506 genes.

Number of genes used
7399 1836 506

PCR PC PC-PCR PCR PC PC-PCR PCR PC PC-PCR
1 8E-13 0.373 0 7E-13 2E-08 0 3E-13 2E-11 0
2 4E-09 0.505 3E-11 2E-06 2E-03 3E-13 1E-04 0.189 2E-12
3 9E-10 1E-05 2E-03 3E-11 0.565 2E-05 6E-09 0.481 2E-07
4 2E-05 0.907 0.233 4E-06 0.429 0.047 1E-05 0.014 4E-03
5 2E-03 0.942 0.223 8E-04 0.686 0.280 3E-04 0.846 0.086
6 4E-03 0.873 0.280 0.024 0.454 0.432 2E-03 0.784 0.234
7 0.031 0.784 0.829 0.013 0.358 0.551 0.027 0.486 0.190
8 0.078 0.553 0.824 0.121 0.064 0.716 0.056 0.951 0.546
9 0.298 0.421 0.652 0.499 0.376 0.839 0.241 0.124 0.516
10 0.251 0.029 0.899 0.356 0.365 0.518 0.143 0.112 0.946

of death between the high and low risk groups, the Cox model
with PC-PCR components seems to give the best separation
between the two risk groups. The median survival times are 10
years and 2 years respectively for the low and high-risk groups
defined by the PC-PCR model (p=0.0033). Figure 1 (d) shows
the time-dependent area under the ROC curves based on the
estimated risk scores of the patients in the testing data set. We
observe that the Cox model with PC-PCR components gave
the best predictive performance on the testing patients. The
AUCs in the first 10 years are close to 65%. On the other hand,
the Cox model with PCs results in very low AUCs, less than
60%.

To validate the better performance of using PC-PCR com-
ponents observed in analysis of the training/testing sets defi-
ned by Rosenwaldet al. (2002), we conducted the following
training/testing sets analysis. In the absence of genuine test
sets, the prediction performance of difference models are com-
pared based on random division of the dataset into a leaning
set and a testing set. We chose to use 2:1 scheme by choosing
160 patients as training set and 80 patients as testing set. For
each learning set (LS)/testing set (TS) run, we consider to use
the PC and PC-PCR procedures build the predictive model
using all the 7399 genes. For a chosen number of genes, pre-
dictive models are constructed using the LS. The predictive
model is then applied to the TS to obtain the risk scores. We
then divide the patients in the TS into high and low risk group
based on whether the score is positive or negative and cal-
culate thep value for testing the risk difference between the
two groups. We considered to estimate the risk scores using
PCs and PC-PCR components. Each LS/TS run yields a set of
p-values for the TS and the results are summarized in Table
2 for each model over a total of 100 runs. For ap-value of
0.01, we observed that 65 out of 100 runs showed a signi-
ficant difference in risk between the two risk groups for the

testing data set based on the Cox model with PC-PCR com-
ponents, as compared to only 37 times using the PCs only.
For ap-value of 0.05, 92 out 100 runs resulted in significance
difference in survival between the two risk groups define by
the PC-PCR components, as compared to only 67 times based
on the PCs alone. It is also interesting to note that for all the
100 runs, the model with PC-PCR components uses only 3
components in the model, as compared to using about 10 PCs
in the Cox regression model. These results indicate that the
Cox model with a small number of PC-PCR components can
give better predictive performance than the Cox model with a
large number of principal components.

Table 2. Summary of significance results based on 100 training/testing sets.
The number in the table is the number of times when the two risk groups in
the testing data sets have significant difference in risk for the chosenp-value.
PC: Cox model with PCs; PC-PCR: Cox model with PC-PCR components.

p-value 10−5 10−4 10−3 10−2 0.05 0.1
PC 0 1 14 37 67 76
PC-PCR 4 8 31 65 92 94

Comparison with theL2 penalized estimation Finally, as
a comparison, Figure 2 shows the results from the penalized
procedure of Li and Luan (2003). While the estimated survival
curves for the high and low risk groups in the testing data set
are quite comparable to the those obtained by the PCR or PC-
PCR procedures (see Figure 1 (a) and (c)), the AUC seems a
bit lower than that estimated from the PC-PCR procedure. Of
course, it is impossible to conclude which method performs
better by analyzing only one data set. However, the proposed
PCR procedure does have computational advantage over the
L2 penalized procedure since it does not require inversion of
large matrix.
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Fig. 1. Results from analysis of the DLBCL data set. (a)-(c) Survival curves for two groups of patients in the testing set defined by having
positive (high risk) or negative (low risk) risk scores. The scores are estimated based on the model built from the training data set using all
the 7399 genes. (a) Results based on the Cox model with 7 PCR components; (b) results based on the Cox model with 12 PCs; (c) results
based on the Cox model with 3 PC-PCR components. (d) The area under the curves for the three models based on the estimated risk scores
for patients in the testing data set.

CONCLUSIONS AND DISCUSSION
It is clinically relevant and very important to predict pati-
ent’s time to cancer relapse or time to death due to cancer
after treatment using gene expression profiles of the cance-
rous cells prior to the treatment. Powerful statistical methods
for such prediction allow microarray gene expression data to
be used efficiently. In this paper, we have proposed to deve-
lop the partial Cox regression method for censored survival
data in order to construct predictive components for survival
using microarray gene expression data. The model searches
for the genes whose expression levels are related to survi-
val phenotypes and identifies the optimal combinations of the
gene expression data in predicting the risk of cancer recur-
rence or death. Since the risk of cancer recurrence or death
due to cancer may result from the interplay between many
genes, methods which can utilize data of many genes, as in
the case of our proposed model, are expected to show bet-
ter performance in predicting risk. We have demonstrated the
applicability of our methods by analyzing time to death of
diffuse large B-cell lymphoma patients and obtained satisfac-
tory results, as evaluated by both applying the model to the
test data set and time dependent ROC curves. Our analysis

of the DLBCL data set shows that by combining the princi-
pal components analysis with our proposed PCR analysis we
obtain the best predictive results for the testing data sets.

Like the PC regression analysis, the major objective of PCR
analysis is to replace thep-dimensional gene expression levels
by a much smaller numberk of PCR components. Because of
the way of constructing the PCRs, the components constructed
in earlier steps should be more predictive to the survival time
than those constructed in later steps. However, determining
the number of PCR componentsk used in the Cox regression
model (1) is not obvious. In order to eliminate large varian-
ces due to multi-collinearity it is essential to delete all those
components whose variances are very small, but at the same
time, it is undesirable to delete components that have high
correlation with the outcomes. In this paper, we propose to
choose the firstk PCR or PC-PCR components which are
significant in a univariate Cox regression analysis to build
the final predictive model since thesek components are most
predictive and have large variances. This simple method of
components selection seems to work well for the DLBCL
data set in term of predicting clinically relevant risk groups.
We also examined other methods of components selection
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Fig. 2. Results from analysis of the DLBCL data set based on the penalized procedure of Li and Luan (2003). (a) Survival curves for two
groups of patients in the testing set defined by having positive (high risk) or negative (low risk) risk scores. The scores are estimated based
on the model built from the training data set using all the 7399 genes. (b) The area under the curves for the model based on the estimated risk
scores for patients in the testing data set.

such as AICs and cross-validated partial likelihood (CVPL)
(Huang and Harrington, 2002) methods and observed that the
AICs tend to select fewer components and CVPL tends to
select more components. Neither methods resulted in better
predictive performance than the simple method used in this
paper (details not shown).

Our proposed procedure is very different from some pre-
vious attempts in extending the PLS to the censored survival
data (e.g., Nguyen and Rock, 2002; Parket al., 2002). Instead
of working directly with the Cox model, these previous exten-
sions reduce the problem to a linear model problem and then
use the PLS idea for the linear models to identify the pre-
dictive components. These components are then used in the
Cox model as a set of covariates. Our approach constructs the
components directly based on the Cox model and the com-
ponents constructed in earlier steps are expected to be more
predictive than those constructed in later steps. It would be
interesting to compare the predictive performances of these
different extensions. It is also important to point out that all
these extensions assume a proportional hazard model, which is
the most popular model for censored survival data. However,
the proportional hazards assumption may not hold for gene
expression data or for all diseases. As an alternative, we can
consider the accelerated failure time models or more general
semi-parametric transformation models (Wei, 1992; Chenget
al., 1995). We are currently pursuing these alternative models.

Although the proposed PCR analysis has no computational
or methodological limitation in term of the number of genes
that can be used in the prediction of patient’s time to clinical
event, since not all genes will be relevant to predicting cen-
sored survival phenotypes, we would expect better prediction
results using only genes that are related to the phenotypes.
However, we found in application to the lymphoma data set
that selecting genes based on univariate analysis may result

in poor predictive performance since such gene selection pro-
cedure totally ignores possible combinatorial effects of gene
expressions on the risk of death. One interesting idea is to
iteratively select genes based on the coefficients in the final
Cox regression models, i.e., iteratively removing those genes
with small coefficients and refitting the model. This deser-
ves further investigation. Another possibility of selecting the
relevant genes for building a predictive model is through the
lasso type (Tibshirani, 1997)L1 penalized maximum partial
likelihood estimation subject to the sum of the absolute value
of the coefficients being less than a constant. Our preliminary
results from this lasso type estimation procedure in the high-
dimensional settings are very encouraging and final results
will be reported in another paper.

In summary, since the number of genes is usually much
larger than the number of patients, it is crucial to develop
methods for efficient dimension reduction. We have developed
the partial Cox regression method for identifying uncorrelated
predictive components for censored survival phenotypes. Our
analysis of the diffuse large B-cell lymphoma data set shows
that by combining the principal components analysis with our
proposed PCR analysis we obtain the best predictive results for
the testing data set. The proposed PC-PCR procedure can be
very useful in building a parsimonious predictive model that
can be used for classifying the future patients into clinically
relevant high and low risk groups based on the gene expression
profile and survival times of previous patients.
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