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Partial Cox Regression Analysis for
High-Dimensional Microarray Gene Expression

Data

Hongzhe Li and Jiang Gui

Rowe Program in Human Genetics and Department of Statistics, University of
California, Davis, CA 95616,USA

ABSTRACT

Motivation: Animportant application of microarray technology
is to predict various clinical phenotypes based on the gene
expression profile. Success has been demonstrated in mole-
cular classification of cancer in which different types of cancer
serve as categorical outcome variable. However, there has
been less research in linking gene expression profile to cen-
sored survival outcome such as patients’ overall survival time
or time to cancer relapse. In this paper, we develop a partial
Cox regression method for constructing mutually uncorrelated
components based on microarray gene expression data for
predicting the survival of future patients.

Results: The proposed partial Cox regression method invol-
ves constructing predictive components by repeated least
square fitting of residuals and Cox regression fitting. The
key difference from the standard principal components Cox
regression analysis is that in constructing the predictive com-
ponents, our method utilizes the observed survival/censoring
information. We also propose to apply the time dependent
receiver operating characteristic curve analysis to evaluate the
results. We applied our methods to a publicly available data
set of diffuse large B-cell lymphoma. The results indicated
that combining the partial Cox regression method with prin-
cipal components analysis results in parsimonious model with
fewer components and better predictive performance. We con-
clude that the proposed partial Cox regression method can be
very useful in building a parsimonious predictive model that
can accurately predict the survival of future patients based
on the gene expression profile and survival times of previous
patients.

Availability: R codes are available upon request.

Contact: hli@ucdavis.edu

INTRODUCTION

DNA microarray technology permits simultaneous measure
ments of expression levels for thousands of genes, whic
offers the possibility of a powerful, genome-wide approach

to the genetic basis of different types of tumors. The genome-
wide expression profiles can be used for molecular classifica-
tion of cancers, for studying varying levels of drug responses
in the area of pharmacogenomics and for predicting diffe-
rent patients’ clinical outcomes. The problem of cancer class
prediction using the gene expression data, which can be for-
mulated as predicting binary or multi-category outcomes, has
been studied extensively and has been demonstrated great pro-
mise in recent years (Golukt al., 1999; Alonet al,, 1999;
Garberet al,, 2001; Rosenwaldt al., 2002). However, there
has been less development in relating gene expression profiles
to censored survival phenotypes such as time to cancer recur-
rence or death due to cancer. Due to large variability in time to
cancer recurrence among cancer patients, studying possibly
censored survival phenotypes can be more informative than
treating the phenotypes as binary or categorical variables.
From a statistical perspective, one challenge to studying
time to event outcome results from right censoring during
patient followup, since some patients may still be event-
free. These patients are termed right-censored, and for these
patients, we only know that the time to event is greater
than the time of last followup. An additional challenge is in
the microarray gene expression data itself. Microarray gene
expression data is often measured with great deal of back-
ground, irrelevant readings, and the sample size of tissues or
patients is usually very small compared to the number of genes
measured by expression arrays. In addition, there is a potential
of high collinearity of the gene expression levels among many
genes. Censoring of patients proves difficult when compa-
red to binary or continuous phenotypes. A frequent approach
to relating gene expression profiles to survival phenotypes is
to first group tumor samples into several clusters based on
gene expression patterns across many genes, and then to use
the Kaplan-Meier (KM) curve or the log-rank test to indicate
whether there is a difference in survival time among different
tumor groups. Another approach is to cluster genes first based
on their expression across different samples, and use the sam-
Rle averages of the gene expression levels in a Cox model
(Cox, 1972) for survival outcome. Both approaches suffer the
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drawback that the phenotype information is completely igno4reats both time to event and time to censoring as the same in
red in the clustering step and therefore may result in loss ofhe linear PLS procedure. Pagkal. (2002) reformulated the
efficiency. Additionally, results will potentially be sensitive Cox model as a Poisson regression and applied the formula-
to the clustering algorithm and distance metrics employed, agon of PLS of Marx (1996) for the generalized linear models
well as the number of clusters chosen. to derive the PLS components. However, such reformulation
Perhaps the most developed technique in relating geni@troduces many additional nuisance parameters and when the
expression profiles to phenotypes is the gene harvesting proumber of covariates is large, the algorithm may fail to con-
cedure of Hastieet al. (2001). This is a forward stepwise verge. In addition, Parét al.(2002) did not evaluate how well
regression method that can be applied to a spectrum dhe model predicts the survival of a future patient.
outcome types, including survival data, in which case the step- In this paper, we propose a different extension of PLS to
wise regression corresponds to a stepwise Cox model. Thie censored survival data in the framework of the Cox model
central strategy of gene harvesting, and what distinguishes iy providing a parallel algorithm for constructing the latent
from conventional forward stepwise techniques, is to initiallycomponents. The algorithm involves constructing predictive
cluster all genes via hierarchical clustering, and then to coneomponents by repeated least square fitting of residuals and
sider the average expression profiles from all of the cluster€ox regression fitting. These components can then be used
in the resulting dendrogram as additional covariates (beyonth the Cox model for building a useful predictive model for
the individual gene expression profiles). The number of termsurvival. We call this method the partial Cox regression (PCR)
retained is determined by cross-validation. By using clustersnethod. In addition, we propose to employ the time dependent
as covariates, selection of correlated sets of genes is favoreceiver operating characteristic (ROC) curve (Heagsrdy,
which in turn potentially reduces overfitting. However, gene2000) to assess how well the model predicts the survival. The
harvesting is sensitive to clustering procedure specificationgest of the paper is organized as follows: we first present the
and more importantly as demonstrated by Segal. (2003), PCR methods for constructing the predictive components for
gene harvesting admits artifactual solutions. These arise asthe Cox model. We then apply the methods to analysis of
result of the nature and extent of the basis expansion represette diffuse large B-cell lymphoma (DLBCL) survival data set
ted by the additional covariates in the typically small sampleof Rosenwaldet al. (2002) and compare their performance
size settings. in prediction by splitting the data into training and testing
Another approach to dealing with the problem of high-sets and by using the concept of the time-dependent ROC
dimensionality and multi-collinearity is through penalized curves. We conclude the paper with a discussion of the results
maximum patrtial likelihood estimation. Li and Luan (2003) presented in this paper.
developed a penalized estimation procedure for the Cox model
using kernels. The procedure is in fact reduced to f(he METHODS AND RESULTS

penalized estimation of the standard Cox model with lineary algorithm for constructing the partial Cox

predictors when the inner product kernel is used. Howe'regression model

ver, the paper did not provide a formal practical procedure

for choosing different kernels or the corresponding tuning>UPPOSe that we have a sample size éfom which to esti-
parameters. mate thg relationship between the survival time and thg gene
Partial least squares (PLS) (Wold, 1966) is a method ofXPression level, - -, X, of p genes. Due to censoring,
constructing linear regression equations by constructing nef?r ¢ = 1.---,n, thedth datum in the sample is denoted
explanatory variables or factors or components using linea? (fi: i, i1, Zio, -, 2ip), Whered; is the censoring indi-
combinations of the original variables. The methods can b&tOr andz; is the survival time ifo; = 1 or censoring
effectively applied to the settings where the number of explaliMe if di = 0, and {zi1, zi, -+, zip} is the vector of
natory variables is very large (Wold, 1966; Garthwaite, 1094) he gene expression level pfgenes for theth sample. Let
Different from the principal components (PC) analysis, this®i = {Z1j,%2;,"-,Zn;} be the vector of gene expression
method makes use of the response variable in constructif§Ve's of thejth gene oven samples. Our aim is to build
the latent components. The method identifies linear combith€ following Cox regression model for the hazard of cancer
nations of the original variables as predictors and uses thedgcurrence or death at time
linear componentsinthe standard regression analysis. Nguyen  \(t) = Xo(t) exp(Bi Ty + BoTo + - - - + B T})
and Rock (2002) applied the standard PLS methods of Wold B
(1966) directly to survival data and used the resulted PLS = Ao(t) exp(f (X)), @
components in the Cox model for predicting survival time.where each componefi, and the risk score functiofi(X)
The approach did not really generalize the linear PLS to cenis a linear combination oKX = {X3, X,,--- ,X,}. In this
sored survival data, but applied it directly. However, suchmodel,\q(t) is an unspecified baseline hazard function.
direct application of the Wold algorithm to survival data is Following the idea of PLS (Garthwaite, 1994), we adopts
guestionable and indeed does not seem reasonable sincdht principle that when considering the relationship between
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the hazard and some specifi&dvariable, otherX variables This procedure extends iteratively in a natural way to give

are not allowed to influence the relationship directly but arecomponents, - - - , Tk, where the maximum value &f is the
only allowed to influence it through the componeffs Par-  sample sizer. Specifically, suppose thdt (; > 1) has just
ticularly, we propose to develop the following procedure tobeen constructed for variablé$;, j = 1,--- ,p. To obtain
determine the components sequentially. To construct the first; 1, first, V;; is regressed againg} and denote the residual
component, first define asV(;+1);,» Which can be written as

Vij=X;-2; (2) V;/TZ

n Vit = Vij — mo—=T. (6)
wherez ; = 1/n ", z;;. The vector of the sample values ;T
of Vi isvi; = {v11j, -+ ,vn1;} = 2; — Z; and therefore
the sample mean df ; is zero. Then for each genewe fit Then perform the following Cox regression analysis for each
the following Cox model Js

At) = Ao(t) exp(B1;V1;) A(t) = Xo(t) exp(Bi T+ oo+ - -, BT+ Brit1); Viit1)y)

based on the sample value Bf; and obtain the maximum

partial likelihood estimate (MPLE) of,;, denoted by3, ;. and denote the MPLE ¢;;..1); 85i-1);- We then construct

. T;11 as
Then eachd;;Vy; provides an estimate of the log relative 1
hazard in the hazard function. To reconcile these estimates, »
we setT’ equal to the weighted average, so o Z w(i+1)j/3(i+1)j‘/(i+1)j7 7)
p =1
T = B Vij, 3 ,
! ;w”ﬁ” 1 3) wherew;;1y;$ are the weights.

We call the above procedure the partial Cox regression
wherew ; is a weight withy~ w;; = 1. It is easy to see that (PCR) and the component§, T, - - - constructed the PCR
the sample mean df; is also zero. Note thal; is a special components. It is easy to verify that these components are
type of compound covariates advocated by Tukey (1993) in autually uncorrelated with sample mean of zero. In addition,
clinical trial setting when there are many covariates. it is also easy to verify that the procedure gives precisely the

Note that theX variables potentially contain further useful PLS in the case of linear model and when the simple linear
information for predicting the risk of recurrence or survival. regression is used in place of the Cox regression. In construc-
So one should not stop at thg step. The information in ting the PCR weights, we let;; o var(V;;), i.e., variables
X that is not in7y may be estimated by residuals from a with large variance are given larger weights. This weight was
regression ofl;; (equivalently, X;) on Ty, and denote the also suggested in the PLS literatures (e.g., Garthwaite, 1994).
residual ad’;, which can be written as An alternative is to use equal weights Iofp, which aims to
spread the load among tB&variables in making predictions.

In this paper, we use only the variance weights.

After the componentsT},Ts,--- ,T, are determined,
model (1) is used for estimating the hazard function by the
Similarly, the contribution of the residual information¥i;  standard partial likelihood method. After an estimate of the
to the variability in the risk of recurrence or death after adju-regression model (1) has been determined, equations (3)-(7)
sting 71 can be estimated by performing the following Cox can be used to write the risk score functif(X ) in model (1)
regression analysis, in terms of original variables(, rather than the components

V. T
Vaj = Vi; Jignl

— ——1. 4
i~ @

Tla"' 7Tk:i-e-y
A(t) = Ao(t) exp(B1T1 + PB2;V2;)
~ ~ P p
and denote the MPLE ¢f,; asf,;. Then eachBs;Va; pro- f(X) = ZﬂfVlj — ZBJ(XJ‘ — ),
vides an estimate of the log relative hazard after adjusting for =1 =

T:. We define the next componehy as
» for some coefficients;. This can then be used for estimating
_ A the hazard function for future samples on the basis of thieir
Ty =3 waibeVes ®) values. Note that the sample mean of the score fungtion)
is zero. Finally, by examining the coefficients &fvalues in
wherew,;s are the weights. Note here the sample med of the final model, one can rank the gene effects by the absolute
is zero. values of the coefficients.

Jj=1
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The time dependent ROC curves and area under testing and training samples). In another words, the informa-
the curves tion from the testing samples was indeed used in the clustering

For classification or linear regression problem, one can us&t€P in their analysis.

cross-validated misclassification rate or the sum of square resA Comparison with principa| Components ana|ysM/e con-
duals as a criteria to assess how well the model predicts th§idered to construct the PCR components using all the 7399
outcomes. However, due to censoring neither criteria can bgenes and using only those genes which are significant in a
used in censoring data regression setting. In order to assegfivariate Cox regression analysis at the level of 0.05 (1836
how well the model predicts the survival outcome, we proposgenes) and 0.01 (506 genes). We built the PCR components
to employ the idea of time dependent ROC curve for censoregased on the gene expression data of these genes using the
data and area under the curve (AUC) as our criteria. ThesggQ patients in the training data set defined in Rosenetld
methods were recently developed by Heagettgl. (2000)  al. (2002). Table 1 shows thevalues from univariate Cox
in the context of the medical diagnosis. For a given risk scorgegression analysis for the first ten PCR components construc-
function f(X'), we can define time dependent sensitivity andted with different number of genes. We observed that the first
specificity functions as seven PCR components are significantly associated with the
e risk of death at the 0.05 level, all other PCR components are
sensitivity(c, ¢|f(X)) Prif(X)>cs(t) =1}, not significant. As a comparison, we list in the same table
specificityc, t|f (X)) = Pr{f(X) <¢|é(t) =0}, the p-values for the first 10 PCs with the largest variances.

_ ) _ ) _ Note that there are only two PCs among the top 10 PCs with
with cbeing the cutoff value anbeing the time and define the  the |argest variances which are significantly associated with
corresponding ROC(f (X)) curve for any time as the plot  the risk of survival. This demonstrates that the PCR com-
of sensitivity(c, t| /(X)) vs 1 — specificity(c, | (X)) with  nonents are more significantly related to survival and fewer
cutoff point ¢ varying, and the AUC as the area under thepcR components are needed in order to explain the variability
ROC(|f(X)) curve, denoted by AUC(f(X)). Hered(t) is  in survival than the PCs.
the event indicator at time. A nearest neighbor estimator  \we also considered to perform the PCR analysis by per-
for the bivariate distribution function is used for estimating forming principal components analysis first on the gene
these conditional probabilities accounting for possible censoaypression matrix. For the training set of 160 individuals,
ring (Akritas, 1994). Note that larger AUC attimé@ased on  there are a total of 159 PCs after centering the data. Trea-
a risk score functiory (X) indicates better predictability of ting these 159 PCs as a set of new variables, we constructed
time to event at time as measured by sensitivity and speci- the PCR components using our proposed methods. We call
ficity evaluated at time. In our application presented in the gych components PC-PCR components. Table 1 presents the
next section, we study several different methods of construc;.yajyes for the first 10 PC-PCR components in the univariate
ting the risk score functiorf (X) in the Cox model (1) and oy regression analysis. We observed that only the first 3 or
compare their predictive performance based on the AUCs. 4 pCR components are strongly associated with the survival
Application to Real Data Set in the univariate Cox regression analysis, indicating that the
eF’OC—PCR components result in further dimension reduction
¢comparing to the PC or PCR analysis.

To demonstrate the proposed PCR methods, we re-analyz
a recently published data set of DLBCL by Rosenweticl.
(2002). This data set includes a total of 240 patients withEvaluation of the predictive performance of the model®
DLBCL, including 138 patient deaths during the followups examine how well the Cox model with PCR components,
with median death time of 2.8 years. The gene expressioprincipal components and PC-PCR components predict the
measurements of 7,399 genes are available for analysis. Vairvival of future patients, we built several models using trai-
applied a nearest neighbor technique to estimate those miging data and predicted the survival for patients in the testing
sing values. Specifically, for each gene, we first identifieddata set. All the components were constructed using all the
8 genes which are the nearest neighbors according to Eucl-399 genes. We used only the components which are signi-
dean distance. We then filled the missing with the average dicantly related to the risk of death at the0.05 level in the

the nearest neighbors. Rosenwetdl. divided the 240 pati- univariate Cox regression analysis to build the final predictive
ents into a training set of 160 patients and a validation set omodel. We used the mean of the risk scores of the patients in
testing set of 80 patients and built a multivariate Cox modelthe training set, which is zero, as the cutoff point to divide the
The variables in the Cox model included the average genpatients into high and low risk groups. Based on the estimated
expression levels of smaller sets of genes in four different geneoefficients, we estimated the risk scores for patients in the
expression signatures together with the gene expression levgsting data set and divided these patients into two risk groups.
of BMPG6. It should be noted that in order to select the gend-igure 1 (a)-(c) shows the Kaplan-Meier survival curves for
expression signatures, they performed a hierarchical clustéhe two risk groups defined by three different models. Alt-
ring analysis for genes across all the samples (including bothough all three models give significant difference in the risk
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Table 1. Results (p-values) for univariate Cox regression analysis for the first 10 PCR components, first 10 PC-PCR components and the top 10 PCs with the
largest variances built using 7399, 1836 and 506 genes.

Number of genes used

7399 1836 506
PCR PC PC-PCR PCR PC PC-PCR PCR PC PC-PCR
8E-13 0.373 0 7TE-13 2E-08 0 3E-13 2E-11 0

4E-09 0.505 3E-11 2E-06 2E-03 3E-13 1E-04 0.189 2E-12
9E-10 1E-05 2E-03 3E-11 0.565 2E-05 6E-09 0.481 2E-07
2E-05 0.907 0.233 4E-06 0.429  0.047 1E-05 0.014 4E-03
2E-03 0.942 0.223 8E-04 0.686  0.280 3E-04 0.846 0.086
4E-03 0.873 0.280 0.024 0.454 0.432 2E-03 0.784 0.234
0.031 0.784 0.829 0.013 0.358 0.551 0.027 0.486 0.190
0.078 0.553 0.824 0.121 0.064 0.716 0.056 0.951 0.546
0.298 0.421  0.652 0.499 0.376 0.839 0.241 0.124 0.516
0 0251 0.029 0.899 0.356 0.365 0.518 0.143 0.112 0.946

P OO~NOOODWNEE

of death between the high and low risk groups, the Cox modetlesting data set based on the Cox model with PC-PCR com-
with PC-PCR components seems to give the best separatigronents, as compared to only 37 times using the PCs only.
between the two risk groups. The median survival times are 16or ap-value of 0.05, 92 out 100 runs resulted in significance
years and 2 years respectively for the low and high-risk groupsdifference in survival between the two risk groups define by
defined by the PC-PCR mode0.0033). Figure 1 (d) shows the PC-PCR components, as compared to only 67 times based
the time-dependent area under the ROC curves based on tba the PCs alone. It is also interesting to note that for all the
estimated risk scores of the patients in the testing data set. W0 runs, the model with PC-PCR components uses only 3
observe that the Cox model with PC-PCR components gaveomponents in the model, as compared to using about 10 PCs
the best predictive performance on the testing patients. Thim the Cox regression model. These results indicate that the
AUCs in the first 10 years are close to 65%. On the other handZox model with a small number of PC-PCR components can
the Cox model with PCs results in very low AUCSs, less thangive better predictive performance than the Cox model with a
60%. large number of principal components.
To validate the better performance of using PC-PCR com-

ponents observed in analysis of the training/testing sets deffable 2. Summary of significance results based on 100 training/testing sets.
ned by Rosenwaldt al. (2002), we conducted the following The number in the table is the number of times when the two risk groups in
training/testing sets analysis. In the absence of genuine te$ testing data sets have significant difference in risk for the chesatue.

sets, the prediction performance of difference models are Corﬁ:’_(:: Cox model with PCs; PC-PCR: Cox model with PC-PCR components.
pared based on random division of the dataset into a leaning

set and a testing set. We chose to use 2:1 scheme by choosing p-value 10> 10~% 1073 10°2 0.05 0.1

160 patients as training set and 80 patients as testing set. For PC 0 1 14 37 67 76

each learning set (LS)/testing set (TS) run, we considertouse PC-PCR 4 8 31 65 92 94

the PC and PC-PCR procedures build the predictive model
using all the 7399 genes. For a chosen number of genes, pre-
dictive models are constructed using the LS. The predictive ) ) ] o )
model is then applied to the TS to obtain the risk scores. w&omparison with thel., penalized estimation Finally, as
then divide the patients in the TS into high and low risk group® comparison, Figure 2 shows the results from the penalized
based on whether the score is positive or negative and caRrocedure of Liand Luan (2003). While the estimated survival
culate thep value for testing the risk difference between the CUrves for the high and low risk groups in the testing data set
two groups. We considered to estimate the risk scores using'e quite comparable to the those obtained by the PCR or PC-
PCs and PC-PCR components. Each LS/TS run yields a set 5CR procedures (see Figure 1 (a) and (c)), the AUC seems a
p-values for the TS and the results are summarized in Tabl@itlower than that estimated from the PC-PCR procedure. Of
2 for each model over a total of 100 runs. Fop-galue of ~ COUrse, it is impossible to conclude which method performs
0.01, we observed that 65 out of 100 runs showed a Signit_)etter by analyzing only one data set.' However, the proposed
ficant difference in risk between the two risk groups for thePCR procedure does have computational advantage over the

L, penalized procedure since it does not require inversion of
large matrix.
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Fig. 1. Results from analysis of the DLBCL data set. (a)-(c) Survival curves for two groups of patients in the testing set defined by having
positive (high risk) or negative (low risk) risk scores. The scores are estimated based on the model built from the training data set using all
the 7399 genes. (a) Results based on the Cox model with 7 PCR components; (b) results based on the Cox model with 12 PCs; (c) result
based on the Cox model with 3 PC-PCR components. (d) The area under the curves for the three models based on the estimated risk scor:
for patients in the testing data set.

CONCLUSIONS AND DISCUSSION of the DLBCL data set shows that by combining the princi-
It is clinically relevant and very important to predict pati- Pal components analysis with our proposed PCR analysis we
ent's time to cancer relapse or time to death due to canceétbtain the best predictive results for the testing data sets.
after treatment using gene expression profiles of the cance- Like the PCregression analysis, the major objective of PCR
rous cells prior to the treatment. Powerful statistical method§nalysis is to replace thedimensional gene expression levels
for such prediction allow microarray gene expression data t®Y @ much smaller numbeérof PCR components. Because of
be used efficiently. In this paper, we have proposed to devdhe way of constructing the PCRs, the components constructed
lop the partial Cox regression method for censored survivaln earlier steps should be more predictive to the survival time
data in order to construct predictive components for survivafhan those constructed in later steps. However, determining
using microarray gene expression data. The model searchite number of PCR componeritsised in the Cox regression
for the genes whose expression levels are related to sur/todel (1) is not obvious. In order to eliminate large varian-
val phenotypes and identifies the optimal combinations of th€€S due to multi-collinearity it is essential to delete all those
gene expression data in predicting the risk of cancer recui€oOmponents whose variances are very small, but at the same
rence or death. Since the risk of cancer recurrence or deafi"®, it is undesirable to delete components that have high
due to cancer may result from the interplay between manyorrelatlon with the outcomes. In this paper, we propose to
genes, methods which can utilize data of many genes, as fhoose the firsk: PCR or PC-PCR components which are
the case of our proposed model, are expected to show petignificant in a univariate Cox regression analysis to build
ter performance in predicting risk. We have demonstrated thée final predictive model since thes@omponents are most
applicability of our methods by analyzing time to death of predictive and have_- large variances. This simple method of
diffuse large B-cell ymphoma patients and obtained satisfaccomponents selection seems to work well for the DLBCL
tory results, as evaluated by both applying the model to th&lata set in term of predicting clinically relevant risk groups.
test data set and time dependent ROC curves. Our analysf¥e also examined other methods of components selection
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Fig. 2. Results from analysis of the DLBCL data set based on the penalized procedure of Li and Luan (2003). (a) Survival curves for two
groups of patients in the testing set defined by having positive (high risk) or negative (low risk) risk scores. The scores are estimated based
on the model built from the training data set using all the 7399 genes. (b) The area under the curves for the model based on the estimated risk
scores for patients in the testing data set.

such as AICs and cross-validated partial likelihood (CVPL)in poor predictive performance since such gene selection pro-
(Huang and Harrington, 2002) methods and observed that theedure totally ignores possible combinatorial effects of gene
AICs tend to select fewer components and CVPL tends t@xpressions on the risk of death. One interesting idea is to
select more components. Neither methods resulted in bettéeratively select genes based on the coefficients in the final
predictive performance than the simple method used in thi€ox regression models, i.e., iteratively removing those genes
paper (details not shown). with small coefficients and refitting the model. This deser-
Our proposed procedure is very different from some preves further investigation. Another possibility of selecting the
vious attempts in extending the PLS to the censored survivaklevant genes for building a predictive model is through the
data (e.g., Nguyen and Rock, 2002; Parkl., 2002). Instead lasso type (Tibshirani, 1997), penalized maximum partial
of working directly with the Cox model, these previous exten-likelihood estimation subject to the sum of the absolute value
sions reduce the problem to a linear model problem and theaf the coefficients being less than a constant. Our preliminary
use the PLS idea for the linear models to identify the preresults from this lasso type estimation procedure in the high-
dictive components. These components are then used in tliBmensional settings are very encouraging and final results
Cox model as a set of covariates. Our approach constructs thell be reported in another paper.
components directly based on the Cox model and the com- In summary, since the number of genes is usually much
ponents constructed in earlier steps are expected to be molarger than the number of patients, it is crucial to develop
predictive than those constructed in later steps. It would benethods for efficient dimension reduction. We have developed
interesting to compare the predictive performances of thesthe partial Cox regression method for identifying uncorrelated
different extensions. It is also important to point out that allpredictive components for censored survival phenotypes. Our
these extensions assume a proportional hazard model, whichagsalysis of the diffuse large B-cell lymphoma data set shows
the most popular model for censored survival data. Howevethat by combining the principal components analysis with our
the proportional hazards assumption may not hold for genproposed PCR analysis we obtain the best predictive results for
expression data or for all diseases. As an alternative, we cahe testing data set. The proposed PC-PCR procedure can be
consider the accelerated failure time models or more generakry useful in building a parsimonious predictive model that
semi-parametric transformation models (Wei, 1992; Chetng can be used for classifying the future patients into clinically
al., 1995). We are currently pursuing these alternative modelgelevant high and low risk groups based on the gene expression
Although the proposed PCR analysis has no computationadrofile and survival times of previous patients.
or methodological limitation in term of the number of genes
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