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Enumeration of Ancestral Configurations

for Matching Gene Trees and Species Trees

FILIPPO DISANTO and NOAH A. ROSENBERG

ABSTRACT

Given a gene tree and a species tree, ancestral configurations represent the combinatorially
distinct sets of gene lineages that can reach a given node of the species tree. They have been
introduced as a data structure for use in the recursive computation of the conditional
probability under the multispecies coalescent model of a gene tree topology given a species
tree, the cost of this computation being affected by the number of ancestral configurations of
the gene tree in the species tree. For matching gene trees and species trees, we obtain
enumerative results on ancestral configurations. We study ancestral configurations in bal-
anced and unbalanced families of trees determined by a given seed tree, showing that for
seed trees with more than one taxon, the number of ancestral configurations increases for
both families exponentially in the number of taxa n. For fixed n, the maximal number of
ancestral configurations tabulated at the species tree root node and the largest number of
labeled histories possible for a labeled topology occur for trees with precisely the same
unlabeled shape. For ancestral configurations at the root, the maximum increases with kn

0 ,
where k0 � 1:5028 is a quadratic recurrence constant. Under a uniform distribution over the
set of labeled trees of given size, the mean number of root ancestral configurations grows
with

ffiffiffiffiffiffiffiffi
3=2

p
(4=3)n and the variance with *1:4048(1:8215)n. The results provide a contri-

bution to the combinatorial study of gene trees and species trees.

Keywords: combinatorics, gene trees, phylogenetics, species trees.

1. INTRODUCTION

Investigations of the evolution of genomic regions along species tree branches have generated new

combinatorial structures that can assist in studying gene trees and species trees (Maddison, 1997; Degnan

and Salter, 2005; Than and Nakhleh, 2009; Degnan et al., 2012; Wu, 2012). Among these structures are

ancestral configurations, structures that for a given gene tree topology and species tree topology describe the

possible sets of gene lineages that can reach a given node of the species tree (Wu, 2012).

Ancestral configurations represent the set of objects over which recursive computations are performed in

a fundamental calculation for inference of species trees from information on multiple genetic loci: the

evaluation of gene tree probabilities conditional on species trees (Wu, 2012). Because of the appearance of

ancestral configurations in sets over which sums are computed [e.g., Eq. (7) of Wu (2012)], solutions to
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enumerative problems involving ancestral configurations contribute to an understanding of the computa-

tional complexity of phylogenetic calculations.

Under the assumption that a gene tree and a species tree have a matching labeled topology t, we examine

the number of ancestral configurations that can appear at the nodes of the species tree. Extending results

of Wu (2012), whose appendix reported the number of ancestral configurations for caterpillar species trees

and established a lower bound for completely balanced species trees, we study the number of ancestral

configurations when t belongs to families of trees characterized by a balanced or unbalanced pattern and a

seed tree. As a special case, we derive upper and lower bounds on the number of ancestral configurations

possessed by matching gene trees and species trees of given size. Finally, we study the mean and the

variance of the number of ancestral configurations when t is a random labeled tree of given size selected

under a uniform distribution.

2. PRELIMINARIES

We study ancestral configurations for rooted binary labeled trees. We start with some definitions and

preliminary results. In Section 2.1, we recall basic properties of rooted binary labeled trees. In Section 2.2,

we recall properties of generating functions that will be used to derive some of our enumerative results.

Following Wu (2012), in Section 2.3, we define ancestral configurations, and we determine a recursive

procedure to compute their number for matching gene trees and species trees at a given species tree node.

We then relate the total number of ancestral configurations in a tree to the number of ancestral configu-

rations at the root of the tree.

2.1. Labeled topologies

A labeled topology, or tree for short, of size jtj = n is a bifurcating rooted tree with n labeled taxa

(Fig. 1A). We assume without loss of generality a linear (alphabetical) order a � b � c � � � � among the

set fa‚ b‚ c‚ . . .g of possible labels for the taxa of a tree. A tree of size n has leaves labeled using the first

n labels in the order �. Given two trees t1 and t2, we write t1@ t2 and say that t1 is isomorphic to t2 when,

removing labels at their taxa, t1 and t2 share the same unlabeled topology. The set of trees of size n is

denoted by Tn, and T =[n�1Tn denotes the set of all trees of any size. The number of trees of size n � 2

can be computed as jTnj = (2n - 3)!! = 1 · 3 · 5 · � � � · (2n - 3) (Felsenstein, 1978), which can be rewritten

for n � 1 as

jTnj =
(2n - 2)!

2n - 1(n - 1)!
=

(2n)!

2n(2n - 1)n!
: (1)
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FIG. 1. A gene tree and a species tree with a matching labeled topology t. (A) A tree t of size 6 isomorphic to the

gene tree and species tree depicted in (B, C). Tree t is characterized by its shape and by the labeling of its taxa. It

is convenient to label the internal nodes of t. We identify each lineage (edge) of t by its immediate descendant node,

so, for example, lineage g results from the coalescence of lineages a and b. (B) A possible realization R1 of the gene

tree in (A) (dotted lines) in the species tree with a matching topology (solid lines). The ancestral configuration at

species tree node ‘ is fh‚ e‚ fg. The configuration at node m is fa‚ b‚ ‘g. (C) A different realization R2 of the gene tree

in (A) in the matching species tree. The configurations at species tree nodes ‘ and m are fc‚ d‚ ig and fg‚ h‚ ig,
respectively.
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The exponential generating function associated with the sequence jTnj is defined as

T(z) =
X
t2T

zjtj

jtj! =
X1
n = 1

jTnjzn

n!
= z +

z2

2
+

3z3

6
+

15z4

24
+ . . . ‚ (2)

and it is given by (Flajolet and Sedgewick, 2009, Example II.19)

T(z) = 1 -
ffiffiffiffiffiffiffiffiffiffiffi
1 - 2z
p

: (3)

Throughout the article, most of our results are purely combinatorial. Where a probability distribution on

the set of labeled topologies of a given size is needed, we assume a uniform probability distribution over the

set of trees of given size.

2.2. Exponential growth and analytic combinatorics

Following Flajolet and Sedgewick (2009), a sequence of non-negative numbers an is said to have

exponential growth kn or, equivalently, to be of exponential order k when

lim sup
n!1

[(an)1=n] = lim
n!1

[ sup
m�n

[(am)1=m]] = k:

This relationship can be rephrased as an = kns(n), where s is a subexponential factor, that is,

lim supn!1 [s(n)1=n] = 1. By these definitions, a sequence an grows exponentially in n when its exponential

order strictly exceeds 1.

The exponential order of a sequence gives basic information about its speed of growth and enables

comparisons with other sequences. In particular, from the definition, it follows that if (an) has exponential

order ka and (bn) has exponential order kb < ka, then the sequence of ratios bn=an converges to 0 expo-

nentially fast as (kb=ka)n. If two sequences (an) and (bn) have the same exponential growth, then we write

an ./ bn.

We are interested in the exponential growth of several increasing sequences of non-negative integers.

Several results will be obtained through techniques of analytic combinatorics [see Sections IV and VI of

Flajolet and Sedgewick (2009)]. The entries of a sequence of integers (an)n�0 can be interpreted as the

coefficients of the power series expansion A(z) =
P1

n = 0 anzn at z = 0 of a function A(z), the generating

function of the sequence. Considering z as a complex variable, under suitable conditions, there exists a

general correspondence between the singular expansion of the generating function A(z) near its dominant

singularity—the one nearest to the origin—and the asymptotic behavior of the associated coefficients an. In

particular, the exponential order of the sequence (an) is given by the inverse of the modulus of the dominant

singularity of A(z). For instance, the exponential order of the sequence jTnj=n!, with jTnj as in Equation (1),

is 2 because 1=2 is the dominant singularity of the associated generating function [Eq. (3)]. In other words,

jTnj=n! increases with a subexponential multiple of 2n as n becomes large.

2.3. Gene trees, species trees, and ancestral configurations

In this section, we define the object on which our study focuses: the ancestral configurations of a gene

tree G in a species tree S. Ancestral configurations have been introduced by Wu (2012). In our framework,

where exactly one gene lineage has been selected from each species, we assume G and S to have the same

labeled topology t.

2.3.1. Ancestral configurations. Suppose R is a realization of a gene tree G in a species tree S,

where we focus on the case of G = S = t (Fig. 1). In other words, R is one of the evolutionary possibilities for

the gene tree G on the matching species tree S. Viewed backward in time, for a given node k of t, consider

the set C(k‚ R) of gene lineages (edges of G) that are present in S at the point right before node k.

As in Wu (2012), the set C(k‚ R) is called the ancestral configuration of the gene tree at node k of the

species tree. Taking the tree t depicted in Figure 1A and considering the realization R1 of the gene tree G = t

in the species tree S = t as given in Figure 1B, we see that the gene lineages a, b, and ‘ are those present in

the species tree at the point right before the root node m. The set C(m‚ R1) = fa‚ b‚ ‘g is thus the ancestral

configuration of the gene tree at node m of the species tree. Similarly, the ancestral configuration of the

gene tree at node ‘ of the species tree is the set of gene lineages C(‘‚ R1) = fh‚ e‚ fg. In Figure 1C, where a
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different realization R2 of the same gene tree is depicted, the ancestral configuration at the root m of the

species tree is the set of gene lineages C(m‚ R2) = fg‚ h‚ ig. The ancestral configuration at node ‘ is

C(‘‚ R2) = fc‚ d‚ ig.
Let <(G‚ S) be the set of possible realizations of the gene tree G = t in the species tree S = t. For a given

node k of t, by considering all possible elements R 2 <(G‚ S), we define the set

C(k) = fC(k‚ R) : R 2 <(G‚ S)g (4)

and the number

c(k) = jC(k)j: (5)

Thus, c(k) corresponds to the number of different ways the gene lineages of G can reach the point right before

node k in S, when all possible realizations of the gene tree G in the species tree S are considered. For instance,

taking t as in Figure 1A, we have C(g) = ffa‚ bgg, C(‘) = ffc‚ d‚ e‚ fg‚ fh‚ e‚ fg‚ fc‚ d‚ ig‚ fh‚ igg, and

C(m) = ffg‚ ‘g‚ fa‚ b‚ ‘g‚ fg‚ c‚ d‚ e‚ fg‚ fa‚ b‚ c‚ d‚ e‚ fg‚ fg‚ h‚ e‚ fg‚
fa‚ b‚ h‚ e‚ fg‚ fg‚ c‚ d‚ ig‚ fa‚ b‚ c‚ d‚ ig‚ fg‚ h‚ ig‚ fa‚ b‚ h‚ igg:

(6)

Note that for two different realizations R1‚ R2 2 <(G‚ S) and an internal node k, we do not necessarily have

C(k‚ R1) 6¼ C(k‚ R2).

For each internal node k, our definition of ancestral configuration specifically excludes as a possibility

the case in which all gene tree lineages descended from node k have coalesced at species tree node k so that

fkg =2C(k). Each configuration at node k is considered at the point right before node k in the species tree,

and there is thus no time for the gene lineages from the left subtree of k to coalesce with those from the

right subtree of k. Our definition is identical to that of Wu (2012), with the exception that we say that a leaf

or 1-taxon tree has 0 ancestral configurations, whereas Wu assigns these cases 1 ancestral configuration.

Because we assume gene tree G and species tree S have the same labeled topology t, the set C(k) and the

quantity c(k) defined in Equations (4) and (5) depend only on node k and tree t. In what follows, we use the

term configuration at node k of t to denote an element of C(k). The next result provides a recursive

procedure for calculating the number c(k) at a given node k of t.

Proposition 1 Given a tree t with jtj > 1, the number c(r) of possible configurations at the root r of t

can be recursively computed as

c(r) = 1 + c(r‘) + c(rr) + c(r‘)c(rr) = [c(r‘) + 1][c(rr) + 1]‚ (7)

where r‘ (resp. rr) denotes the left (resp. right) child of r and c(r) is set to 0 when jtj = 1.

Proof. If A and B are two sets of sets, we define A� B = fa [ b : a 2 A‚ b 2 Bg. The set C(r) of

configurations at internal node r can be decomposed as

C(r) = ffr‘‚ rrgg [ [C(r‘)� ffrrgg] [ [ffr‘gg � C(rr)] [ [C(r‘)� C(rr)]‚ (8)

where the set unions are disjoint because, as already noted, fr‘g =2C(r‘) and frrg =2C(rr). We immediately

obtain Equation (7), as c(r) = jC(r)j. -

We reiterate that for Equation (7) to apply for all t with jtj > 1, we must set to 0 the number of

configurations at a species tree leaf and at the root of the 1-taxon tree. For the tree depicted in Figure 1A,

each configuration in C(m) [Eq. (6)] can be obtained as described in Equation (8) from the configurations

in C(g) and C(‘). Note indeed that c(m) = 10 = (1 + 1)(4 + 1) = [c(g) + 1][c(‘) + 1], as determined by Equa-

tion (7).

2.3.2. Total configurations and root configurations. Let K(t) be the set of nodes of a tree t. The

number of nodes jK(t)j satisfies jK(t)j = 2jtj- 1 < 2jtj. Define the total number of configurations in t as the sum

c =
X

k2K(t)

c(k):
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Let c(r) be the number of configurations at the root r of t, or root configurations for short. As is shown in

Appendix 1, c(r) satisfies the bound

c(r) � 2jtj=2: (9)

Furthermore, because c(r) � c(k) for each node k of t, we have

c(r) � c � 2jtjc(r): (10)

This result indicates that the total number of configurations c and the number of root configurations c(r)

are equal up to a factor that is at most polynomial in the tree size jtj. A consequence is that in measuring

c(r) for a family (ti) of trees of increasing size, an exponential growth of the form c(r) ./ kjtj for the number

of root configurations translates into the same exponential growth for the total number of configurations in

t:

c(r) ./ kjtj5c ./ kjtj‚ (11)

where, by virtue of Equation (9), k � 2.

An equivalent result holds when we consider the expected value of the total number of configurations

En[c] in a random labeled tree topology of given size n. Indeed, when a tree of size n is selected at random

from the set of labeled topologies, Equation (10) gives En[c(r)] � En[c] � 2nEn[c(r)]. Thus, the expo-

nential growth of En[c] with respect to n can be recovered from the exponential growth of En[c(r)],

En[c] ./ En[c(r)]: (12)

Similarly, for the second moment En[c2], we have En[c(r)2] � En[c2] � 4n2En[c(r)2], and thus

En[c2] ./ En[c(r)2]: (13)

Using these results, in Sections 3 and 5 we will determine the exponential growth of c(r) and c with

respect to size jtj when t is considered in different settings. In Section 3, t belongs to families of unbalanced

or balanced trees, whereas in Section 5, we perform our analysis considering t as a random labeled topology

of given size.

2.4. Root configurations in small trees

For small values of n, Equation (7) enables the exhaustive computation of the number of root configura-

tions c(r) for representative labelings of each of the unlabeled topologies of size n. In Figure 2, each dot

corresponds to the logarithm of the number of root configurations for a certain tree shape of size determined by

its x-coordinate. The dots associated with the largest values of c(r) are connected by the top line, whose growth

is linear in n. Indeed, as was shown by Wu (2012), there exist families of trees for which the growth of the

number of root configurations is exponential in the tree size. From Equation (9), it follows that the growth of

the sequence of the largest number of root configurations in trees of size n must be exponential in n as well.

The tree shapes whose labeled topologies possess the largest number of root configurations among trees

of fixed size appear in Figure 3 together with their number of root configurations c(r). Starting with n = 4,

2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

Number of leaves

N
at

ur
al

lo
ga

ri
th

m
of

th
e

nu
m

be
r

of
ro

ot
co

nf
ig

ur
at

io
ns

FIG. 2. Natural logarithm of the number of root

configurations for all possible tree shapes of size

2 � n � 10. The value for n = 1, log (0), is omitted.

Dots corresponding to the largest and smallest

numbers of root configurations for each n are con-

nected by the top and bottom lines, respectively.
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each shape in the sequence can be seen to be produced by connecting two smaller shapes also in the

sequence (possibly the same shape) to a shared root.

The tree shape that minimizes the number of root configurations is the caterpillar topology. The number of

root configurations in the caterpillar of size n is n - 1 (Wu, 2012). The bottom line in Figure 2, which connects

dots corresponding to the smallest number of root configurations for a tree with n taxa, grows with log(n - 1).

These observations show that tree topology can have a considerable impact on the number of ancestral

configurations that are possible for a given tree size. Indeed, the next section investigates the effect of tree

balance on the number of root configurations in a tree. Figure 2 suggests that for random labeled topologies

of a specified size, we can expect the variance of the number of root configurations to be large. We will

confirm this claim in Section 5. We will also show that although there exist tree families (e.g., caterpillars)

for which the growth of the number of root configurations is polynomial in the tree size, the expected

number of root configurations in a random labeled topology of given size n grows exponentially in n.

3. ROOT CONFIGURATIONS FOR UNBALANCED
AND BALANCED FAMILIES OF TREES

In this section, we study the number of root configurations for particular families of trees, extending

beyond two cases considered by Wu (2012): the caterpillar case, which was studied exactly, and the

completely balanced case, for which a loose lower bound of
ffiffiffi
2
p n

was reported. As balance is an important

tree property that influences ancestral configurations, we study unbalanced and balanced families generated

by different seed trees. Upper and lower bound results on the number of root configurations for trees of

specified size appear in Section 4.

For a given seed tree s, we consider the unbalanced family (uh(s)) (Fig. 4A) and the balanced family

(bh(s)) (Fig. 4B) defined as follows:

= 55= 35= 25= 15= 10= 6= 4= 2= 1c (   )r c (   )r c (   )r c (   )r c (   )r c (   )r c (   )r c (   )r c (   )r

FIG. 3. Tree shapes of size 2 � n � 10 whose labeled topologies have the largest number of root configurations

among trees of size n. The number of root configurations c(r) is indicated for each tree. In each tree displayed, the two

root subtrees each maximize the number of root configurations among trees of their size.

suh

u 1h+=

s s s s s

s s s s

s s

s s

1bh+

b bh h

=

A

B

FIG. 4. Unbalanced and balanced families of trees defined from a given seed tree s. (A) The unbalanced family

uh = uh(s) is defined by u0 = s, setting uh + 1 as the tree of size juh + 1j = juhj + jsj = (h + 2)jsj obtained by appending uh and s

to a shared root node. (B) The balanced family bh = bh(s) is defined by b0 = s, setting bh + 1 as the tree of size

jbh + 1j = 2jbhj = 2h + 1jsj obtained by appending two copies of bh to a shared root node.
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u0(s) = s; uh + 1(s) = (uh(s)‚ s) (14)

b0(s) = s; bh + 1(s) = (bh(s)‚ bh(s))‚ (15)

where (t1‚ t2) is the tree shape obtained by appending trees t1 and t2 to a shared root node. Note that the

family of caterpillar trees is obtained as (uh(s)) when jsj = 1. For the same seed tree of size 1, (bh(s)) is the

family of completely balanced trees. When jsj = 2, (uh(s)) resembles the lodgepole family (kh), which is

defined recursively by setting k0 as the 1-taxon tree, and kh + 1 = (kh‚ s) (Disanto and Rosenberg, 2015). The

only difference is that in uh(s), each leaf is in a cherry, whereas kh has a unique leaf that is not in a cherry.

For each family, it is understood that we consider an arbitrary labeling of each unlabeled shape in the family.

3.1. Unbalanced families

Fix a seed tree s and consider the family uh = uh(s) as defined in Equation (14). Let c = c0 be the number of

root configurations in s = u0, and define ch as the number of root configurations in uh. If s is the 1-taxon tree, then

as noted earlier, the number of root configurations c is set to 0. From Proposition 1, we obtain the recursion

ch + 1 = 1 + c + ch(c + 1)‚ (16)

starting with c0 = c. As shown in Appendix 2, the generating function

Uc(z) =
X1
h = 0

chzh

is described by

Uc(z) =
z + c

(1 - z)(1 - z - cz)
: (17)

For c � 0, the dominant singularity of Uc—the singularity nearest to the origin—is the solution

z0 = 1=(c + 1) � 1 of the equation 1 - z - cz = 0. Applying Theorem IV.7 of Flajolet and Sedgewick (2009)

yields the exponential growth of the sequence (ch) with respect to the index h as

ch ./
1

z0

� �h

= (c + 1)h: (18)

Because uh has juhj = (h + 1)jsj leaves, substituting h = juhj=jsj - 1 in Equation (18), we obtain the next

proposition.

Proposition 2 In the unbalanced family (uh), the exponential growth of the number of root con-

figurations in the size juhj is

[(c + 1)1=jsj]juhj‚ (19)

where jsj is the size of the seed tree and c is its number of root configurations. The total number of

configurations in the family (uh) has the same exponential growth.

In other words, for values of the number of leaves n at which a member of the unbalanced family exists,

the number of root configurations in the unbalanced family grows with [(c + 1)1=jsj]n.

When the seed tree is the 1-taxon tree, so that c = 0 and (uh) is the sequence of caterpillar trees, Equation (19)

gives the exponential growth 1juhj = 1. Indeed, the number of root configurations in the caterpillar family grows

like a polynomial function of the size, as immediately follows from Equation (16) [see also Wu (2012)]. Taking

jsj > 1, the number of root configurations in uh(s) becomes exponential in the tree size. Table 1 illustrates that

for unbalanced families defined by small seed trees of size greater than one, root configurations in n-taxon trees—

provided that a tree with n taxa is in the family—have exponential growth in the range 1:3n to 1:5n.

3.2. Balanced families

The results change when we consider balanced families. For a fixed seed tree s, consider the family

bh = bh(s) as defined in Equation (15). Let c = c0 be the number of root configurations in seed tree s = b0, and

define ch as the number of root configurations in bh. If jsj = 1, then c is 0. From Proposition 1, we obtain
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ch + 1 = (ch + 1)2‚

with c0 = c. Defining the sequence xh + 1 = x2
h + 1, with x0 = c + 1, it is straightforward to show that ch = xh - 1.

Sequence xh can be studied as in Aho and Sloane (1973, Section 3 and Example 2.2). For h � 1, a

constant kc exists for which

xh = ºk(2h)
c ß‚

where ºkß is the floor function for k. The constant kc can be approximated using the recursive definition of

xh, summing terms in a series:

kc = (c + 1) exp
X1
h = 0

2 - h - 1 log 1 +
1

x2
h

� �" #
: (20)

Switching back to ch, for h � 1, we obtain

ch = xh - 1 = ºk(2h)
c ß - 1: (21)

Thus, because ch grows with ºk(2h)
c ß, to determine the exponential growth of the number of root con-

figurations, it remains to evaluate the constant kc. Rescaling Equation (21) to consider the number of leaves

jbhj = 2hjsj as a parameter, we obtain the next proposition.

Proposition 3 In the balanced family (bh), the exponential growth of the number of root configu-

rations in the size jbhj is

[(kc)
1=jsj]jbhj‚ (22)

where jsj is the size of the seed tree. The constant kc can be computed as in Equation (20) and bounded by

c + 1 < kc < (c + 1) +
1

c + 1
: (23)

The total number of configurations in the family (bh) has the same exponential growth.

In other words, for values of the number of leaves n, at which a member of the balanced family exists,

the number of root configurations in the balanced family grows with [(kc)
1=jsj]n.

Proof. It remains only to prove the bound [Eq. (23)]. The lower bound follows quickly from Equation

(20), as the exponent is positive. The upper bound is obtained by observing that the sequence xh = x2
h - 1 + 1

is increasing, and thus log (1 + 1=x2
0) � log (1 + 1=x2

h) for each h � 0. Therefore, from Equation (20) and the

fact that x0 = c + 1, we have

Table 1. Approximate Values of the Constants That When Raised to the Power n Describe

the Exponential Growth with the Number of taxa n of the Number of Ancestral

Configurations in Unbalanced and Balanced Families For Small Seed Trees

Seed tree s jsj c
(c + 1)1=jsj

(unbalanced)

(kc)
1=jsj

(balanced)

Seed

tree s jsj c
(c + 1)1=jsj

(unbalanced)

(kc)
1=jsj

(balanced)

1 0 1 1.503 5 6 1.476 1.479

2 1 1.414 1.503 6 5 1.348 1.351

3 2 1.442 1.469 6 6 1.383 1.385

4 3 1.414 1.425 6 7 1.414 1.416

4 4 1.495 1.503 6 8 1.442 1.444

5 4 1.380 1.385 6 10 1.491 1.492

5 5 1.431 1.435 6 9 1.468 1.469

Each constant is obtained to three decimal places by numerically evaluating Equation (20).
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kc < (c + 1) exp log 1 +
1

x2
0

� �X1
h = 0

2 - h - 1

" #
= (c + 1) 1 +

1

(c + 1)2

� �
:

-

Comparing the number of root configurations in balanced families with those in unbalanced families

(Table 1), we see that the exponential order for balanced families is greater than in unbalanced families,

although typically still in the range 1:3n to 1:5n.

3.3. Comparing unbalanced and balanced families

For a given seed tree s, the quantities u(s) = (c + 1)1=jsj and b(s) = (kc)
1=jsj determine the exponential orders

of the sequences considered in Propositions 2 and 3, respectively. We observe three facts.

(i) Applying the lower bound in Equation (23), c + 1 < kc, for a fixed seed tree s, we always have

u(s) < b(s): (24)

Therefore, the growth of the number of ancestral configurations in the family bh(s) is exponentially faster than the

growth in the family uh(s). When s is not small, however, u(s) can become close to b(s). For large s, c is also

large. Owing to the upper bound in Equation (23), although c + 1 < kc, kc only slightly exceeds c + 1. Fur-

thermore, the exponent 1=jsj in the expressions for u(s) and b(s) further reduces the difference between them.

For instance, if s is the caterpillar tree with 10 leaves, we have c = 9, u(s) = (10)1=10 � 1:2589, and

1:2589 � (10)1=10 < b(s) < (10:1)1=10 � 1:2601. In this case, b(s) - u(s) is bounded above by a constant

near 10 - 3. The increasing similarity of u(s) and b(s) is already evident in Table 1, as their values for 6-

taxon seed trees are substantially closer to each other than for the smaller 1-, 2-, and 3-taxon seed trees.

(ii) The choice of the seed tree can play an important role in the relative values of b(s) and u(s) as taking

two different seed trees can flip the inequality in Equation (24). In fact, if s1 and s2 are two seed trees of the

same size js1j = js2j = jsj for which c1 > c2, then

u(s1) > b(s2): (25)

To obtain this result, we note that jsj log u(s1) = log (c1 + 1) � log [(c2 + 1) + 1] � log [(c2 + 1) + 1=(c2 + 1)]

> log kc2
= jsj log b(s2), where the latter inequality follows from the upper bound [Eq. (23)]. The result

is observable in Table 1, where at fixed jsj of 4, 5, or 6, u(s) for some of the shapes exceeds b(s) for other

shapes.

(iii) When the seed tree s is chosen as the 1-taxon tree with jsj = 1, the constant b(s) = k0 determines an

upper bound for the number of root configurations that a tree of given size can have. This result is shown in

more detail in the following section. The value of k0 can be computed numerically from Equation (20):

k0 � 1:502836801: (26)

This constant provides the exact value for which
ffiffiffi
2
p
� 1:4142, reported by Wu (2012), provided a lower

bound.

4. SMALLEST AND LARGEST NUMBERS OF ROOT
CONFIGURATIONS FOR TREES OF FIXED SIZE

We have seen that the number of root configurations for caterpillar trees grows polynomially and that the

number of root configurations in unbalanced noncaterpillar families and balanced families grows exponentially.

In the examples we have considered, the exponential growth proceeds with 1:3n to 1:503n. We now show that

the caterpillar trees have the smallest number of root configurations and that the constant k0 [Eq. (26)], in fact,

provides an upper bound on the exponential growth of the number of root configurations as n increases. We

characterize the labeled topologies that possess the largest number of root configurations at fixed n.

4.1. Smallest number of root configurations

For the caterpillar tree of size n, the number of root configurations is n - 1. We show that this value, n - 1,

is the smallest number of root configurations for a tree of size n.
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Let ct(r) denote the number of root configurations of tree t. Let mn(r) = minft:jtj = ngct(r). Suppose we have

shown for each i with 1 � i � n - 1 that

mi(r) = i - 1: (27)

The claim clearly holds for i = 1‚ 2‚ 3, for each of which the sole tree t has i - 1 root configurations.

For n � 2, we use induction to prove Equation (27) for i = n. Suppose t0 is a tree of size n such that

ct0 (r) = mn(r). The number of root configurations of t0 is given by Proposition 1 as the product

ct0 (r) = [ct0
‘
(r) + 1][ct0r (r) + 1], where t0‘ and t0r are the root subtrees of t0. Because t0 has the minimal number of

root configurations, t0‘ and t0r must separately possess the minimal number of root configurations among

trees of their size. We can then write ct0
‘
(r) = mi(r) and ct0r (r) = mn - i(r), where, without loss of generality, i is

a certain value with 1 � i � ºn=2ß. Therefore, ct0(r) has the form ct0 (r) = [mi(r) + 1][mn - i(r) + 1]. It is

determined from the minimum

mn(r) = ct0 (r) = minfi:1�i�ºn=2ßg[mi(r) + 1][mn - i(r) + 1]: (28)

Applying the inductive hypothesis [Eq. (27)], we obtain mn(r) = minfi:1�i�ºn=2ßgi(n - i). In the permissible

range for i, the product i(n - i) reaches its minimum value at i = 1, equaling n - 1 as desired.

By induction, we have shown that Equation (27) holds for each i � 1. Furthermore, the fact that the

product [mi(r) + 1][mn - i(r) + 1] in Equation (28) is minimal only at i = 1 also demonstrates that those tree

shapes of size n with the smallest number of root configurations can be recursively obtained by appending the

1-taxon tree and the tree shape of size n - 1 with the smallest number of root configurations to a shared root

node. Trees resulting from this recursive construction are exactly those having a caterpillar shape.

4.2. Largest number of root configurations

For the largest number of root configurations, we denote Mn(r) = maxft:jtj= ngct(r). Similarly to Equation

(28), we seek to identify the trees t that produce the maximum in the following equation and to evaluate that

maximum:

Mn(r) = maxfi:1�i�ºn=2ßg[Mi(r) + 1][Mn - i(r) + 1]: (29)

Note that M1(r) = 0. Taking ~Mn = Mn(r) + 1, we have the recursion

~Mn = 1 + maxfi:1�i�ºn=2ßg
~Mi

~Mn - i‚

starting with ~M1 = 1. The sequence ~Mn was studied by de Mier and Noy (2012, Theorems 1 and 2), where it

was shown (i) taking d = d(n) as the power of 2 nearest to n=2, we have ~Mn = 1 + ~Md
~Mn - d, so that

Mn(r) = [Md(r) + 1][Mn - d(r) + 1];

(ii) for all n � 10, k
n - 1=4
0 < ~Mn < kn

0, that is,

k
n - 1=4
0 - 1 < Mn(r) < kn

0 - 1‚ (30)

where the constant k0 has been already computed in Equation (26).

For small n, the labeled topologies with the largest numbers of root configurations appear in Figure 3.

Collecting the results for the smallest and largest number of root configurations, we can state the

following facts.

Proposition 4 (i) For each n � 1, the smallest number of root configurations in a tree of size n is

mn(r) = n - 1. The caterpillar tree shape of size n has exactly mn(r) root configurations. (ii) For each

n � 10, the largest number of root configurations in a tree of size n, Mn(r), can be bounded as in Equation

(30). For n � 2, if d = d(n) denotes the power of 2 nearest to n=2, then Mn(r) is the number of root

configurations in the tree shape tn recursively defined as jt1j = 1, tn = (td‚ tn - d). When n = 2h for integers h, tn
is the completely balanced tree of depth h and Mn(r) = ºkn

0ß - 1 [Eq. (21)].

As a corollary, we obtain the following result, the proof of which appears in Appendix 3.
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Corollary 1 (i) The exponential growth of the sequences mn(r) = minft:jtj = ngct(r) and Mn(r) =
maxft:jtj = ngct(r) follows mn(r) ./ 1 and Mn(r) ./ kn

0. (ii) The sequences mn = minft:jtj= ngct and

Mn = maxft:jtj = ngct, giving, respectively, the smallest and the largest total number of configurations ct in a

tree t of size n, have exponential growth mn ./ mn(r) and Mn ./Mn(r).

The family of tree shapes (tn) defined in Proposition 4 by the recursive decomposition jt1j = 1 and

tn = (td‚ tn - d), where d is the power of 2 nearest to n=2, already has a place in the study of gene trees and

species trees, as it provides the maximally probable tree shapes of Degnan and Rosenberg (2006). Given a

labeled topology t of size n, a labeled history of t is a linear ordering of the n - 1 internal nodes of t such that

the order of the nodes in each path going from the root of t to a leaf of t is increasing (Fig. 5). As reported by

Harding (1974) and proved by Hammersley and Grimmett (1974), each labeled topology with tn as its

underlying unlabeled topology possesses the maximal number of labeled histories among labeled topologies

of size n. Consider the Yule model for the probability distribution of tree shapes, in which pairs of lineages in

a labeled set of n lineages are joined together, at each step choosing uniformly among pairs (Yule, 1925;

Harding, 1971; Brown, 1994; McKenzie and Steel, 2000; Steel and McKenzie, 2001; Rosenberg, 2006;

Disanto et al., 2013; Disanto and Wiehe, 2013). Among all labeled topologies with size n, those with the

largest number of labeled histories—and hence with shape tn—have the highest probability under the model.

For n � 3, the maximally probable labeled topologies of size n—those with the most labeled histories—

can be recursively characterized as those labeled topologies whose two root subtrees are maximally

probable labeled topologies of sizes s = 2k and n - s, where k = 1 + º log2 [(n - 1)=3]ß (Hammersley and

Grimmett, 1974; Harding, 1974). This characterization matches our characterization that the unlabeled

shapes with the largest number of root configurations are those for which the subtrees have the most root

configurations and sizes d and n - d, where d = 2‘ is the nearest power of 2 to n=2.

To see that the characterizations are identical so that fd‚ n - dg = fs‚ n - sg, note that a specific 2‘ is the

nearest power of 2 to n=2 precisely for integers n 2 [2‘ + 2‘- 1‚ 2‘ + 2‘+ 1] = [3 · 2‘ - 1‚ 3 · 2‘]. On the end-

points of the interval, there are two choices for d, but in both cases, one choice is 2‘. At the same time, the

integers n for which ‘ = 1 + º log2 [(n - 1)=3]ß are precisely those in [3 · 2‘- 1 + 1‚ 3 · 2‘]. Thus,

fs‚ n - sg = fd‚ n - dg for all integers n in [3 · 2‘ - 1 + 1‚ 3 · 2‘]. On the lower boundary, for n = 3 · 2‘- 1,

s = 2‘- 1 and fs‚ n - sg = f2‘ - 1‚ 2‘g = fd‚ n - dg. Dividing the integers in [3‚1) into a union of intervals

[1‘ = 1[3 · 2‘ - 1‚ 3 · 2‘), we see that fs‚ n - sg = fd‚ n - dg on each interval and hence fs‚ n - sg = fd‚ n - dg
for all n � 3.

This result shows that for a given tree size, those labeled topologies whose shapes belong to the family

(tn) maximize both the number of root configurations and the number of labeled histories. For these labeled

topologies, in Figure 6, we plot the logarithm of the maximum number of labeled histories possible for a
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FIG. 5. The three labeled histories of the la-

beled topology t = ((a‚ b)‚ (c‚ (d‚ e))) of size n = 5.

Each labeled history can be represented by bi-

jectively labeling the n - 1 internal nodes of t with

the integers in [1‚ n - 1] in such a way that each

path from the root of t to a leaf of t is labeled by

an increasing sequence.
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FIG. 6. Natural logarithm of the maximum

number of histories possible for a labeled topol-

ogy of size n as a function of the natural logarithm

of the maximum number of root configurations

possessed by a labeled topology of the same size

(2 � n � 50). The maxima occur at the same set

of labeled topologies.
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labeled topology of size n as a function of the logarithm of the maximum number of root configurations.

Although the shapes are the same, the number of labeled histories is considerably larger than the number of

root configurations. The growth is approximately linear, suggesting that the maximal number of labeled

histories increases approximately exponentially in the maximal number of root configurations.

5. THE NUMBER OF ROOT CONFIGURATIONS
IN A RANDOM LABELED TOPOLOGY

We now study through generating functions the number of root configurations when trees of a given size are

randomly selected under a uniform distribution on the set of labeled topologies. In Section 5.1, we show that the

expectation En[c(r)] of the number of root configurations in a random labeled topology of size n has exponential

growth (4=3)n. In Section 5.2, we show that the variance Varn[c(r)] of the number of root configurations has

exponential growth 4

7(8
ffiffi
2
p

- 11)

h in

. The same results hold for the random total number of configurations.

5.1. Mean number of root configurations

Define the exponential generating function

F(z) =
X
t2T

ct(r)

jtj! zjtj‚ (31)

where ct(r) is the number of root configurations in tree t. As shown in Appendix 4, the function F satisfies

F(z) =
1

2
[F(z) + T(z)]2‚ (32)

where T(z) is the exponential generating function in Equation (3). Solving Equation (32), we obtain a

closed form for F(z),

F(z) =
ffiffiffiffiffiffiffiffiffiffiffi
1 - 2z
p

-
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffiffiffiffiffiffiffiffiffi
1 - 2z
p

- 1

q
=

z2

2
+ z3 + 2z4 +

33z5

8
+ � � � (33)

We have taken the negative root of the quadratic equation, as it is the root that produces the correct

value of F(z) = 0 at z = 0. It can be seen that F(0) = 0 is required by noting that the first term in Equation

(31) is the z1 term, as the set T contains only trees of size at least 1, so that Equation (31) has no

constant term.

The value of z that cancels the second square root in Equation (33) is z = 3=8, which is smaller than the

value z = 1=2 that cancels the first square root,
ffiffiffiffiffiffiffiffiffiffiffi
1 - 2z
p

. In the complex plane, both z = 3=8 and z = 1=2 are

singularities of F(z). The dominant singularity is z = 3=8 as it is nearer to the origin. To highlight the type of

singularity that F(z) has at the point z = 3=8, it is convenient to factor the second square root in Equation (33),

writing F(z) as

F(z) =
ffiffiffiffiffiffiffiffiffiffiffi
1 - 2z
p

-
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 -

8

3
z

r !
f (z)‚

where

f (z) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3(1 - 2

ffiffiffiffiffiffiffiffiffiffiffi
1 - 2z
p

)

8z - 3

s
(34)

is an analytic function in the circle fz 2 C : jzj < 1=2g, except at a removable singularity f (3=8) =
ffiffiffiffiffiffiffiffi
3=2

p
.

Thus, we see that at z = 3=8, the generating function F(z) has a singularity of the square root type.

We can then apply Theorems VI.1 and VI.4 of Flajolet and Sedgewick (2009) to recover the asymptotic

behavior of the nth coefficient of F(z),

[zn]F(z) =
1

n!

X
t2Tn

ct(r)‚
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as the nth coefficient of the expansion of F(z) at the singularity z = 3=8. This expansion is given by

F(z) =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 - 2

3

8

r
-

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 -

8

3
z

r !
f (3=8) =

1

2
-

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 -

8

3
z

r ffiffiffi
3

2

r
:

We thus have

1

n!

X
t2Tn

ct(r)*[zn] -
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 -

8

3
z

r ! ffiffiffi
3

2

r
*

1

2
ffiffiffiffiffiffiffi
pn3
p 8

3

� �n
ffiffiffi
3

2

r
*

ffiffiffi
3

8

r
1ffiffiffiffiffiffiffi
pn3
p 8

3

� �n

‚ (35)

where we have used the asymptotic relationship [zn] -
ffiffiffiffiffiffiffiffiffi
1 - z
p� �

*1= 2
ffiffiffiffiffiffiffi
pn3
p	 


(Flajolet and Sedgewick,

2009). Dividing by the number of trees of size n, jTnj, as given in Equation (1), using Stirling’s formula

n!*
ffiffiffiffiffiffiffiffi
2pn
p

(n=e)n, and noting the definition of En[c(r)] as a mean over all labeled topologies, we obtain the

asymptotic expected number of root configurations in a random labeled topology of size n:

En[c(r)] =

P
t2Tn

ct(r)

jTnj
*

ffiffi
3
8

q
1ffiffiffiffiffi
pn3
p 8

3

� �n
n!

(2n)!
(2n - 1)2nn!

*

ffiffiffi
3

2

r
4

3

� �n

: (36)

We summarize these results in a proposition.

Proposition 5 The mean number of root configurations in a random labeled topology of size n

among the jTnj labeled tree topologies is asymptotically

En[c(r)]*

ffiffiffi
3

2

r
4

3

� �n

:

The mean total number of configurations has exponential growth

En[c] ./ En[c(r)] ./ (4=3)n:

In Figure 7A, we can see that the approach of the natural logarithm of the exact mean number of root

configurations—computed by evaluating the expansion of the generating function F(z)—to the asymptotic

value log [
ffiffiffiffiffiffiffiffi
3=2

p
(4=3)n] proceeds quickly, so that even with small values of n, the exact mean and the

asymptote are quite close on a logarithmic scale.

5.2. Variance of the number of root configurations

By applying the same approach used to determine the mean value of the number of root configurations

across labeled topologies, in this section, we study the expectation En[c(r)2] and then derive the asymptotic

variance Varn[c(r)] of the number of root configurations.
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FIG. 7. Mean and variance of the number of root configurations in random labeled topologies of fixed size. (A) Exact

natural logarithm of the mean, computed from the power series expansion of F(z) [Eq. (33)], and its asymptotic

approximation from Proposition 5. (B) Exact natural logarithm of the variance, computed from the power series

expansion of G(z) [Eq. (39)], and its asymptotic approximation from Proposition 6.
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G(z) =
X
t2T

ct(r)2

jtj! zjtj: (37)

As shown in Appendix 5, the function G(z) satisfies

G(z) =
1

2
[G(z) + 2F(z) + T(z)]2: (38)

This equation relates G(z) to the generating functions F(z) and T(z) appearing in Equations (33) and (3).

Solving for G(z), we obtain the function

G(z) = -

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffiffiffiffiffiffiffiffiffi
1 - 2z
p

- 1

q
- 2

ffiffiffiffiffiffiffiffiffiffiffi
1 - 2z
p

- 1

r
+ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffiffiffiffiffiffiffiffiffi
1 - 2z
p

- 1

q
-
ffiffiffiffiffiffiffiffiffiffiffi
1 - 2z
p

=
z2

2
+ 2z3 +

13z4

2
+

161z5

8
+ � � � ‚ (39)

which has its dominant singularity at z = 7(8
ffiffiffi
2
p

- 11)=8 � 0:2745 < 3=8 < 1=2. In the same way as in the

derivation of F(z), we have taken the negative root of the quadratic Equation (38) as it is this root that

produces the correct value of G(z) = 0 at z = 0. At the dominant singularity for z, the first square root in

Equation (39) cancels. Factoring this square root, the function G(z) can be written as

G(z) = -

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 -

8z

7(8
ffiffiffi
2
p

- 11)

s" #
g(z) + 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffiffiffiffiffiffiffiffiffi
1 - 2z
p

- 1

q
-
ffiffiffiffiffiffiffiffiffiffiffi
1 - 2z
p

‚

where

g(z) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
49(1 - 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffiffiffiffiffiffiffiffiffi
1 - 2z
p

- 1
p

+ 2
ffiffiffiffiffiffiffiffiffiffiffi
1 - 2z
p

)

8(11 + 8
ffiffiffi
2
p

)z - 49

s
: (40)

The function g(z) is analytic in the circle fz 2 C : jzj < 3=8g, except at the removable singularity

g(7(8
ffiffiffi
2
p

- 11)=8) = 1:4048 . . .. By Theorems VI.1 and VI.4 of Flajolet and Sedgewick (2009), we can

recover the asymptotic behavior of the nth coefficient zn[G(z)] = (1=n!)
P

t2Tn
ct(r)2 as

1

n!

X
t2Tn

ct(r)2*[zn] -

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 -

8z

7(8
ffiffiffi
2
p

- 11)

s !
g(7(8

ffiffiffi
2
p

- 11)=8)*
g(7(8

ffiffiffi
2
p

- 11)=8)

2
ffiffiffiffiffiffiffi
pn3
p 8

7(8
ffiffiffi
2
p

- 11)

� �n

: (41)

Dividing by jTnj and using Stirling’s approximation, we get

En[c(r)2] =
P

t2Tn
ct(r)2

jTnj
*g(7(8

ffiffiffi
2
p

- 11)=8)
4

7(8
ffiffiffi
2
p

- 11)

� �n

: (42)

To obtain an asymptotic estimate for the variance, we use Equation (36) to note that the exponential

growth of (En[c(r)])2 is [(4=3)2]n. Because (4=3)2 < 4=[7(8
ffiffiffi
2
p

- 11)], we have that as n!1,

Varn[c(r)]

En[c(r)2]
=

En[c(r)2] - (En[c(r)])2

En[c(r)2]
= 1 -

(En[c(r)])2

En[c(r)2]
! 1‚ (43)

and thus, the variance asymptotically satisfies Varn[c(r)]*En[c(r)2].

Furthermore, because En[c] ./ En[c(r)] and En[c2] ./ En[c(r)2] as shown in Equations (12) and (13),

Equation (43) also holds when we replace c(r) by c. Thus, the variance Varn[c] of the total number of

configurations in a random labeled topology of size n satisfies

Varn[c]*En[c2] ./ En[c(r)2]*Varn[c(r)]:

We summarize these results in a proposition.

Proposition 6 The variance of the number of root configurations in a random labeled topology of

size n among the jTnj labeled tree topologies is asymptotically
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Varn[c(r)]*g(7(8
ffiffiffi
2
p

- 11)=8)
4

7(8
ffiffiffi
2
p

- 11)

� �n

‚

where g(7(8
ffiffiffi
2
p

- 11)=8) � 1:4048. The variance of the total number of configurations has exponential

growth

Varn[c] ./ Varn[c(r)] ./
4

7(8
ffiffiffi
2
p

- 11)

� �n

:

Figure 7B demonstrates that on a logarithmic scale, the approach of the exact variance of the number

of root configurations—computed from (n!=jTnj)zn[G(z)] - f(n!=jTnj)zn[F(z)]g2
—to the asymptotic value

g 7 8
ffiffiffi
2
p

- 11
� �

=8
� �

4

7(8
ffiffi
2
p

- 11)

h in

occurs rapidly in n, although slower than was seen for the mean in Figure 7A.

6. CONCLUSIONS

Under the assumption that the labeled gene tree topology matches the species tree topology, G = S = t, we

have studied the number of ancestral configurations in a given phylogenetic tree t. In particular, we have

focused on the exponential growth of the number of root configurations in t, a quantity that also describes

the exponential growth of the total number of configurations in t.

In Section 3, extending results of Wu (2012), in which the enumeration of ancestral configurations for

caterpillar trees and a lower bound for their number in completely balanced trees were determined, we

considered special families of trees generated by arbitrary seed trees s, namely the unbalanced family uh(s)

and the balanced family bh(s) (Fig. 4). The main results describing the influence of tree balance and the

seed tree topology on the number of ancestral configurations are collected in Proposition 2 and Proposition

3 for the unbalanced and balanced cases. We have shown that for each fixed seed tree s, the number of

ancestral configurations in the balanced family bh(s) grows exponentially faster than in the unbalanced

family uh(s). When the size of the seed tree s is large, however, the difference between the exponential

orders of the two integer sequences can become small. We have also observed that the choice of the seed

tree can have an important influence on the number of root configurations. In fact, the number of root

configurations in the family uh(s1) can grow exponentially faster than in the family bh(s2) when the number

of root configurations in s1 exceeds that of s2.

When jsj = 1, the unbalanced family uh(s) reduces to the caterpillar family, and the balanced family bh(s)

gives the family of completely balanced trees. As shown in Proposition 4, among trees of size n, the

caterpillar tree with n taxa possesses the smallest number of root configurations. When n is a power of 2,

the completely balanced tree of size n has the largest number; more generally, the largest number of root

configurations occurs at precisely those labeled topologies that for a fixed n generate the largest number of

labeled histories. As the caterpillar labeled topologies give rise to the smallest number of labeled histories

at fixed n—only one—both the largest and smallest numbers of root configurations occur at trees producing

the extrema in the number of labeled histories. The growth of the number of root configurations in the

caterpillar family is polynomial, whereas for the completely balanced trees, it is exponential with order

k0 � 1:5028.

Assuming a uniform distribution over the labeled topologies with a given size n, in Section 5 we studied

the mean and the variance of the number of ancestral configurations in a random labeled topology of size n.

By using a generating function approach, in Propositions 5 and 6, we have shown that the mean number of

ancestral configurations has exponential growth (4=3)n, whereas for the variance, we have

4

7(8
ffiffiffi
2
p

- 11)

� �n

� 1:8215n:

Our results can assist in relating the complexity of algorithms for computing gene tree probabilities based

on ancestral configurations—STELLS (Wu, 2012)—to those that use an evaluation based on a different

class of combinatorial objects, the coalescent histories (Degnan and Salter, 2005; Rosenberg, 2007; Than

et al., 2007; Rosenberg and Degnan, 2010; Rosenberg, 2013; Disanto and Rosenberg, 2015, 2016). In such

comparisons, we expect that the ancestral configurations will often grow slower, as is seen in comparing the
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polynomial growth of the number of ancestral configurations in the caterpillar case with the corresponding

exponential growth of the number of coalescent histories. However, the trees with the largest numbers of

coalescent histories and the largest number of ancestral configurations are not the same, so that potential

exists for each type of algorithm to be favorable in different cases. It remains to be seen whether the

complexity of gene tree probability calculations can be reduced by choosing the computational approach

based on tree sizes and shapes under consideration.

Many enumerative problems on ancestral configurations remain open. First, we assumed that the gene

tree and species tree have the same labeled topology, and we did not study nonmatching gene trees and

species trees. As has been seen for coalescent histories (Rosenberg and Degnan, 2010), however, the

nonmatching case merits further analysis, as a nonmatching gene tree labeled topology can have more root

configurations and more total configurations than the topology that matches the species tree. Consider a

caterpillar species tree topology vn = (( . . . ((a1‚ a2)‚ a3)‚ . . . )‚ an), labeling the unique internal node with k

descendants bk for 2 � k � n. For a matching caterpillar gene tree, by Proposition 1, the number of

configurations at node bk is c(bk) = k - 1, so that the number of root configurations is c(bn) = n - 1 and the

total number of configurations is c =
Pn

k = 2 c(bk) = n(n - 1)=2.

Now consider a pseudocaterpillar gene tree topology wn = (( . . . (((a1‚ a2)‚ (a3‚ a4))‚ a5)‚ . . . )‚ an) with

n � 6, continuing with vn as the species tree topology. Topology wn differs from vn only in the placement

of a4. We label the node of wn ancestral to a1 and a2 by d2, the node ancestral to a3 and a4 by d�2, and the

unique node ancestral to k taxa, 4 � k � n, by dk. At nodes b2, b3, b4, and b5 of vn, the configurations are

C(b2) = ffa1‚ a2gg, C(b3) = ffa1‚ a2‚ a3g‚ fd2‚ a3gg, C(b4) = ffa1‚ a2‚ a3‚ a4g‚ fd2‚ a3‚ a4gg, and C(b5) =
ffa1‚ a2‚ a3‚ a4‚ a5g‚ fd2‚ a3‚ a4‚ a5g‚ fa1‚ a2‚ d�2‚ a5g‚ fd2‚ d�2‚ a5g‚ fd4‚ a5gg, with c(b2) = 1, c(b3) = 2,

c(b4) = 2, and c(b5) = 5. For 6 � k � n, C(bk) is obtained by adding taxon ak to each configuration in

C(bk - 1) and noting the existence of one additional configuration, fdk - 1‚ akg, so that c(bk) = c(bk - 1) + 1 = k.

The number of root configurations of wn for n � 6 is c(bn) = n, and the number of total configurations is

c = 1 + 2 + 2 + 5 +
Pn

k = 6 c(bk) = n(n + 1)=2 - 5. Because n > n - 1 and n(n + 1)=2 - 5 > n(n - 1)=2 for n � 6,

root configurations and total configurations are more numerous for the nonmatching pseudocaterpillar

topology than for the matching caterpillar.

Second, when ancestral configurations are grouped according to an equivalence relationship defined in

the appendix of Wu (2012) that accounts for symmetries in gene trees, the number of the resulting

equivalence classes—the number of nonequivalent ancestral configurations—remains to be investigated.

For gene trees and species trees with a matching labeled topology, our enumerations can be used as upper

bounds for the number of nonequivalent ancestral configurations, and they can help in measuring the

decrease in the number of ancestral configurations when the equivalence relationship is taken into account.

We defer this analysis for future work.
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7. APPENDIX 1. PROOF OF EQUATION (9)

Given a tree t, fix without loss of generality one of the possible planar representations of the tree t: one of

the possible drawings of t in which edges do not cross and intersect only at their endpoints (Fig. 1A).

A root configuration of t uniquely determines a partition of the set of leaves of t in the following way.

If c = fk1‚ k2‚ . . . ‚ kmg is a root configuration of t, where each ki is a node of t, then the associated partition

is c0 = f‘1‚ ‘2‚ . . . ‚ ‘mg‚ where ‘i is the set of leaves of t descended from node ki (including ki itself when ki

is a leaf). For instance, the partition of the leaf label set fa‚ b‚ c‚ d‚ e‚ fg associated with the root config-

uration c = fa‚ b‚ ‘g depicted in Figure 1B is c0 = ffag‚ fbg‚ fc‚ d‚ e‚ fgg. Note that for each pair of indices
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i‚ j with i 6¼ j, the leaves in ‘i are either all on the left or all on the right of the leaves in ‘j in the planar

representation of t.

Without loss of generality, we can assume that the set c0 is indexed such that if 1 � i < j � m, then the

leaves in ‘i are all depicted in the planar representation to the left of the leaves in ‘j. Taking the cardinality

of each element ‘i of c0 determines the vector c† = (j‘1j‚ j‘2j‚ . . . ‚ j‘mj)‚ which represents a composition, or

ordered partition, of the integer n = jtj. For instance, for the root configurations of the tree of size n = 6

depicted in Figure 1A, we obtain the following compositions of 6:

fg‚ ‘g ! (2‚ 4)‚ fa‚ b‚ ‘g ! (1‚ 1‚ 4)‚ fg‚ h‚ ig ! (2‚ 2‚ 2)‚ fa‚ b‚ h‚ ig ! (1‚ 1‚ 2‚ 2)‚

fg‚ h‚ e‚ fg ! (2‚ 2‚ 1‚ 1)‚ fa‚ b‚ h‚ e‚ fg ! (1‚ 1‚ 2‚ 1‚ 1)‚ fg‚ c‚ d‚ ig ! (2‚ 1‚ 1‚ 2)‚

fa‚ b‚ c‚ d‚ ig ! (1‚ 1‚ 1‚ 1‚ 2)‚ fg‚ c‚ d‚ e‚ fg ! (2‚ 1‚ 1‚ 1‚ 1)‚ fa‚ b‚ c‚ d‚ e‚ fg ! (1‚ 1‚ 1‚ 1‚ 1‚ 1):

As can be seen in this example, for a given planar representation of t, the mapping c! c† is injective

(i.e., c1 6¼ c20c†1 6¼ c†2 ). For 1 � i � n, there are
n - 1

i - 1

� �
compositions of n into i parts, as i - 1 de-

marcations must be placed among n - 1 possible positions between entries of the length-n vector

(1‚ 1‚ . . . ‚ 1) to separate groups of 1s that will be aggregated together. Using the binomial theorem to sum

over all possible values of i, the number of distinct compositions of n is
Pn

i = 1

n - 1

i - 1

� �
= 2n - 1. Because

each root configuration is associated with a distinct composition of n, we obtain c(r) � 2jtj - 1, and the proof

of Equation (9) is complete.

8. APPENDIX 2. PROOF OF EQUATION (17)

We obtain Equation (17) from Equation (16) by noting that for z close to 0, the following expansion

holds:

Uc(z) =
X1
h = 0

chzh = c0 +
X1
h = 0

ch + 1zh + 1 = c + z
X1
h = 0

[1 + c + (1 + c)ch]zh

= c + z(1 + c)
X1
h = 0

zh + z(1 + c)
X1
h = 0

chzh = c +
z

1 - z
(1 + c) + z(1 + c)Uc(z):

9. APPENDIX 3. PROOF OF COROLLARY 1

The proof follows from the properties of mn(r) and Mn(r) stated in Proposition 4. Part (i) is immediate

from Proposition 4 and the definition of the exponential order.

For (ii), we start with mn. Let mn ./ kn
m be the exponential growth of the sequence mn, so that km is its

exponential order. Denote by (tn) the caterpillar family of trees, where tn is the caterpillar with n � 1 taxa.

Thus, ctn is the total number of configurations in tn and ctn (r) = mn(r) is its number of root configurations. By

Equation (11), we have ctn ./ ctn (r), and ctn (r) ./ mn(r) ./ 1 from part (i) of the corollary. Thus, ctn ./ 1:
Because total configurations are at least as numerous as root configurations, mn � ctn . Then the growth of

mn has exponential order at most that of ctn , so that km � 1. Clearly, however, we cannot have km < 1,

because mn � 1 for n � 2 and km < 1 would imply that the sequence mn decreases below 1 with increasing

n. Thus, km = 1.

For the sequence Mn, let Mn ./ kn
M be the exponential growth of the sequence Mn: This sequence has

exponential order kM. Suppose (tn) is any sequence of trees with jtnj = n such that ctn = Mn; that is, tn has the

largest total number of configurations among trees of size n. From Equation (11), Mn ./ ctn (r), where the

latter sequence has order smaller than or equal to k0 because by definition Mn(r) � ctn (r) for all n, and

Mn(r) ./ kn
0 from part (i) of the corollary. Thus, kM � k0: At the same time, for all n, we have Mn � Mn(r),

as the largest total number of configurations is larger than the largest number of root configurations. Thus,

kM � k0. It follows that k = k0.
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10. APPENDIX 4. PROOF OF EQUATION (32)

The proof follows from the tree decomposition procedure that is illustrated in Figure 8. According to this

procedure, each tree t of size n is either the 1-taxon tree t = 	 or it can be created in a unique way by

relabeling and appending to a shared root node two smaller trees t1 and t2 that become the root subtrees of t.

From Proposition 1, the number ct(r) of root configurations of t can be computed in this case as the product

[ct1 (r) + 1][ct2 (r) + 1]. Summing over all possible trees t, the tree decomposition described in Figure 8

translates into the following decomposition for the generating function F(z):

F(z) =
X
t2T

ct(r)

jtj! zjtj =
c	(r)

1
z +

X
t:jtj>1

ct(r)

jtj! zjtj

=
c	(r)

1
z +

1

2

X
(t1‚ t2)2T · T

[ct1 (r) + 1][ct2 (r) + 1]zjt1j + jt2j

(jt1j + jt2j)!
jt1j + jt2j
jt1j

� �" #
: (44)

The first equality is the definition of F(z). In the second equality, the set of trees over which the sum is

evaluated is partitioned into two parts, the 1-taxon tree t = 	 and the trees of size larger than 1. In the third

equality, the set of trees t with jtj > 1 is realized taking all possible pairs of trees (t1‚ t2) 2 T · T and

applying to each pair the procedure in Figure 8, considering all
jt1j + jt2j
jt1j

� �
possible relabelings of t1 and

t2. The quantity ct(r) in the sum
P

t:jtj>1
ct(r)
jtj! zjtj is replaced by the product ct(r) = [ct1 (r) + 1][ct2 (r) + 1] and

the term jtj is replaced by jt1j + jt2j. Note the factor 1=2 that appears in Equation (44) before the summation.

This factor takes into account the fact that for each pair (t1‚ t2) 2 T · T with t1 6¼ t2, there exists a sym-

metric pair (t2‚ t1). Symmetric pairs generate exactly the same trees according to the procedure in Figure 8,

and multiplying by 1=2 is required to avoid double counting. When t1 = t2, the factor 1=2 is still required

because only half of the
jt1j + jt2j
jt1j

� �
relabelings of t1 and t2 (Fig. 8B) create nonisomorphic trees when t1

and t2 are appended to a shared root node. Finally, observe that the number c	(r) of root configurations in

the 1-taxon tree is 0.

a b c1 1 1

a b c d2222 t1 t2

a d

t2t1

c1 a 2 2 2 2c b1 1b a b c d e f g

A B C

adg b e c f

t

FIG. 8. Composition of two trees t1 and t2 of sizes n1 = 3 and n2 = 4 to obtain a tree t of size n = n1 + n2 = 7. (A) Trees

t1 and t2, with leaves labeled by fa1‚ b1‚ c1g and fa2‚ b2‚ c2‚ d2g. As in Section 2.1, we impose without loss of

generality a linear order a � b � c � . . . for the leaves of a tree; here, we have a1 � b1 � c1 and a2 � b2 � c2 � d2.

(B) Relabeling of trees t1 and t2. After relabeling, t1 and t2 have leaves labeled in the set a � b � c � d � e � f � g

of size n = n1 + n2. For the relabeling procedure, we choose (dotted circles) n1 elements among the n possible new

labels fa‚ b‚ c‚ d‚ e‚ f ‚ gg. There are exactly
n

n1

� �
different choices. The chosen elements relabel t1, whereas the

elements not selected (dotted squares) relabel t2. With respect to the order �, the ith label of t1 is assigned the label

determined by the ith circle. Similarly, the ith label of t2 is assigned the label determined by the ith square. (C) After

relabeling t1 and t2, the new tree t is obtained by appending t1 and t2 to a shared root node. Starting with trees t1 and t2

in (A), the same procedure can generate
n

n1

� �
different trees t, one for each possible choice of the n1 elements

(dotted circles) among the n new labels. The only exception is when t1 = t2, for which the
n

n1

� �
relabelings generate

each tree exactly twice.
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From Equation (44) and the definitions of F(z) and T(z) in Equations (2) and (31), algebraic manipu-

lations yield

F(z) =
1

2

X
t12T

X
t22T

[ct1 (r) + 1][ct2 (r) + 1]zjt1j+ jt2j

(jt1j + jt2j)!
jt1j + jt2j
jt1j

� �

=
1

2

X
t12T

ct1 (r)

jt1j!
zjt1j +

X
t12T

zjt1j

jt1j!

 ! X
t22T

ct2 (r)

jt2j!
zjt2j +

X
t22T

zjt2j

jt2j!

 !

=
1

2
[F(z) + T(z)]2:

11. APPENDIX 5. PROOF OF EQUATION (38)

The proof follows the case of Equation (32). For jtj > 1, the number ct(r)2 can be obtained as the product

(ct1 (r) + 1)2(ct2 (r) + 1)2, where t1 and t2 are the root subtrees of t. The tree decomposition described in

Figure 8 yields

G(z) =
X
t2T

ct(r)2

jtj! zt =
c	(r)2

1
z +

1

2

X
(t1‚ t2)2T · T

[ct1 (r) + 1]2[ct2 (r) + 1]2zjt1j+ jt2j

(jt1j + jt2j)!
jt1j + jt2j
jt1j

� �" #

=
1

2

X
t12T

ct1 (r)2zjt1j

jt1j!
+ 2
X
t12T

ct1 (r)zjt1j

jt1j!
+
X
t12T

zjt1j

jt1j!

 ! X
t22T

ct2 (r)2zjt2j

jt2j!
+ 2
X
t22T

ct2 (r)zjt2j

jt2j!
+
X
t22T

zjt2j

jt2j!

 !

=
1

2
[G(z) + 2F(z) + T(z)]2:
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