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Computational Analysis of SAXS Data Acquisition
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ABSTRACT

Small-angle x-ray scattering (SAXS) is an experimental biophysical method used for gaining
insight into the structure of large biomolecular complexes. Under appropriate chemical
conditions, the information obtained from a SAXS experiment can be equated to the pair
distribution function, which is the distribution of distances between every pair of points in
the complex. Here we develop a mathematical model to calculate the pair distribution
function for a structure of known density, and analyze the computational complexity of
these calculations. Efficient recursive computation of this forward model is an important
step in solving the inverse problem of recovering the three-dimensional density of biomo-
lecular structures from their pair distribution functions. In particular, we show that inte-
grals of products of three spherical-Bessel functions arise naturally in this context. We then
develop an algorithm for the efficient recursive computation of these integrals.

Key words: fast evaluation of integrals, pair distribution function, recurrence relations, SAXS,

spherical-Bessel functions.

1. INTRODUCTION

Structure determination of biological macromolecules is important in biology because of the close

relationship between shape and function. Many experimental methods for determining the structure of

macromolecules exist in the field of biophysics. For single proteins and small complexes composed of one or

more protein molecule and nucleic acids, macromolecular x-ray crystallography (MX) and nuclear magnetic

resonance (NMR) have demonstrated great success in producing more than 100,000 structures reported in the

Protein Data Bank (PDB) (Berman et al., 2000). Now, as the fields of biology and biophysics turn more

toward the study of cellular phenomena, the role of understanding the structure and motion of large bio-

molecular complexes is becoming critical. These complexes can be thought of as the intellectual bridge

between single-molecule studies and cellular phenomena.

The experimental methods used to study large complexes are very different than in the single-molecule

case. Two of the main methods used in this context are small-angle x-ray scattering (SAXS) and cryo-

electron microscopy (cryo EM). In this article we focus on the relationship between the shape of a

biomolecular complex, and the data obtained from SAXS experiments. In the process, we uncover a

computational problem and its solution: how to efficiently compute integrals of products of three spherical-

Bessel functions.
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2. BASIC FORMULATION IN SAXS

Let a biomolecular complex be viewed as a solid body, B. The key quantities that are obtained from

SAXS experiments include the scattering density and the pair distance distribution function, respectively

denoted as IB( p) and pB(r) throughout this article. Here p and r denote the radial coordinate in the

reciprocal Fourier space and the radial coordinate in the real-space spherical coordinates system, respec-

tively. The scattering density profile is usually obtained from SAXS experiments. Then one can compute

the pair distance distribution (Svergun et al., 2013) as

pB(r) =
r2

2p2

Z 1
0

IB(p)
sin (pr)

pr
p2dp: (1)

And the reverse is written as

IB(p) = 4p
Z 1

0

pB(r)
sin (pr)

pr
dr: (2)

The pair distance distribution function is the distribution of distances between every pair of points in the

biomolecular complex, which contains important geometric information linked to the experimental data. In

this article, we seek to develop an efficient method to compute Equation (1). The points in the complex

body can be either discrete in the sense that they represent the coordinates of each atom, or continuous

variables of space in the body when treated as a continuum, which is a very similar concept as used in

describing the radial distribution function of a fluid. In this work, we employ the latter continuum de-

scription of body. To this end, we first define the characteristic function as

vB(x)¼: 1 if x 2 B

0 if x =2B

�
(3)

which is interpreted as the unit body density. Here x 2 R3 denotes the position in 3D Euclidean space. A

number of geometric quantities can be computed from it. For example, the volume of the body is

computed as

V(B) =
Z

R3

vB(x) dx =
Z

B

1dx

where dx = dxdydz is the usual integration measure for R3. When we use the spherical coordinates x = ru
where u 2 S2 is a unit vector of each point in the surface of the unit sphere, then this measure becomes

dx = r2drdu = r2dr sin h dhd/ where h and / denote the polar and azimuthal angles.

There are several ways to compute the intensity and pair distance distribution functions. One way

includes the so-called Debye approximation (Debye, 1915) where

IB(p) =
Z

R3

Z
R3

vB(x1)vB(x2)
sin pkx1 - x2kð Þ

pkx1 - x2k
dx1dx2 (4)

and

pB(r) =
Z

R3

Z
R3

vB(x1)vB(x2)d r - kx1 - x2kð Þ dx1dx2: (5)

Another way is to compute the pair distance distribution function using the so-called self-convolution as

(Svergun et al., 2013; Kratky, 1963)

pB(r) =
r2

4p

Z
S2

vB(x) � vB( - x) du

=
r2

4p

Z
S2

du

Z
R3

vB(y)vB(y + ru) dy

(6)

where * denotes the convolution in R3. If we define vB(x) = vB( - x) (i.e., body B reflected through the

origin as its mass center), then it follows that
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pB(r) =
r2

4p

Z
S2

vB � vB

� �
(ru) du =

r2

4p

Z
S2

Z
R3

vB(y) vB(ru - y) dy du: (7)

This alternative way does not involve any Dirac delta functions that are singular and has lower dimension

of the integral than the expression (5).

We note that Equation (7) is invariant under translational shifts of the coordinate system in which the

body is defined. Let vB + t(x)¼: vB(x - t). Then

vB + t � vB + t

� �
(x) =

Z
R3

vB + t(y) vB + t(x - y) dy

=
Z

R3

vB + t(y) vB - t(x - y) dy =
Z

R3

vB(y - t) vB(x - y + t) dy:

Let z = y - t, then

vB + t � vB + t

� �
(x) =

Z
R3

vB(y - t) vB(x - y + t) dy

=
Z

R3

vB(z)vB(x - z) dz = vB � vB

� �
(x):

Also, since convolution on Rn is commutative, the roles of B and B can be reversed. Finally, integration

over the sphere is invariant under rotation. As a result, pB(r) is invariant under the action of the full

Euclidean group, E(3), which includes translations, rotations, and reflections.

As we will show later, the spherical-Bessel functions are a natural basis to express pB(r). These can be

viewed as being defined by a generating function (Abramowitz and Stegun, 1972)

cos
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 - 2xt
p

x
=
X1
l = 0

tl

l!
jl - 1(x)‚

and they have the Rodrigues formula (which in this case is called Rayleigh’s formula) (Andrews et al.,

1999; Arfken and Weber, 2010)

jl(x) = ( - 1)lxl 1

x

d

dx

� �l
sin x

x
:

3. CONVOLUTION WITH FOURIER TRANSFORM ON R3

AND PAIR DISTANCE DISTRIBUTION

In this section we discuss the spherical Fourier transform in 3D Euclidean space, which is a prerequisite

for the recursive formula to computing the quantity of interest in SAXS. We then derive a new expression

for the pair distribution function involving the integral of the product of three spherical-Bessel functions.

3.1. Spherical Fourier transform in R3

In spherical coordinates, it is known that

eip�x = 4p
X1
l = 0

Xl

m = - l

iljl(pr) Ym
l (u)Ym

l (up) (8)

and

e -ip�x = eip�x = 4p
X1
l = 0

Xl

m = - l

( - i)ljl(pr)Ym
l (u)Ym

l (up) (9)

where Ym
l (u) denotes the spherical harmonics function of degree l and order m, which together with the

spherical-Bessel function is important in describing shapes in spherical coordinates. However, as we
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will see, this function does not contribute that much to computing pB(r) due to the spherical averaging

effect as in Equation (6). We use i as the complex imaginary unit,
ffiffiffiffiffiffiffi
- 1
p

, to distinguish it from an index

i. Here x = ru is described by the spherical coordinates (r, h, /) (i.e., u 2 S2), and p = pup is described

by ( p, hp, /p).

Then the Fourier transform in spherical coordinates is expressed as

FR3 [f (ru)]¼: f̂ (p) =
Z

R3

f (ru)e - ip�xdx

=
X1
l = 0

Xl

m = - l

4p( - i)l �f m
l (p) Ym

l (up):

(10)

Here

�f m
l (p)¼:

Z 1
r = 0

f m
l (r) jl(pr) r2dr (11)

(which is the spherical Hankel transform) and

f m
l (r)¼:

Z
S2

f (ru) Ym
l (u) du =

Z p

h = 0

Z 2p

/ = 0

f (r‚ h‚ /) Ym
l (h‚ /) sin hdhd/ (12)

(which is a spherical-harmonic transform).

The inverse formula is written as

f (ru) =
1

2p2

X1
l = 0

Xl

m = - l

il
Z 1

p = 0

4p( - i)l�f m
l (p) jl(pr) p2dp

� �
Ym

l (u) (13)

where, after combining Equations (11) and (12),

�f m
l (p) =

Z
r0

Z
S2

f (r0u0)Ym
l (u0) jl(pr0)r02dr0du0: (14)

3.2. Convolution and pair distance distribution function

The spherical Fourier transform of the self-convolution is written as

FR3 [vB � vB] = ( dvB � vB)(pup) = v̂B(pup) v̂B(pup)

and the inverse formula is written as

vB � vB

� �
(ru) =

1

2p2

X1
l = 0

Xl

m = - l

Z 1
p = 0

Z
up2S2

il dvB � vB

� �
(pup) jl(pr)Ym

l (u)Ym
l (up)p2dpdup

where v̂B(pup) and v̂B(pup) are obtained by Equation (10). Finally, the pair distance distribution function is

calculated as

pB(r) =
r2

4p

Z
S2

vB � vB

� �
(ru) du: (15)

What we encounter first is Z
up

Ym
l (up)Ym0

l0 (up)Ym00

l00 (up) dup:

First, the product of the second and the third terms is expressed as (Varshalovich et al., 1988)

Ym0

l0 (up)Ym00

l00 (up) =
X
L‚ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2l0 + 1)(2l00 + 1)

4p(2L + 1)

s
CL‚ 0

l0‚ 0‚ l00‚ 0CL‚ M
l0‚ m0‚ l00‚ m00Y

M
L (up)
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where Cl‚ m
l1‚ m1;l2‚ m2

denotes the Clebsch–Gordan coefficients (or CGCs) (Chirikjian, 2012; Varshalovich

et al., 1988). Then use the fact that Z
up

Ym
l (up) YM

L (up) dup = dL‚ l dM‚ m:

Hence Z
up

Ym
l (up) Ym0

l0 (up) Ym00

l00 (up) dup =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2l0 + 1)(2l00 + 1)

4p(2l + 1)

s
Cl‚ 0

l0‚ 0‚ l00‚ 0Cl‚ m
l0‚ m0‚ l00‚ m00

Note that a property of CGCs is that they are only nonzero in the case when m00 = m - m0.
Also we will average over u 2 S2 to obtain the expression of pB(r), we use the followingZ

u2S2

Ym
l (u) du =

ffiffiffiffiffiffi
4p
p

dl‚ 0dm‚ 0:

Then the associated Clebsch–Gordan coefficients become simplified as

C0‚ 0
l0‚ 0‚ l00‚ 0 = dl0‚ l00 ( - 1) - l0

ffiffiffiffiffiffiffiffiffiffiffiffi
1

2l0 + 1

r
and

C0‚ 0
l0‚ m0‚ l0‚ - m0 = dl0‚ l00 ( - 1)l0 - m0

ffiffiffiffiffiffiffiffiffiffiffiffi
1

2l0 + 1

r
:

Hence Z
u

vB � vB

� �
(ru) du =

1

2p2

X
l0‚ m0

(4p)2( - 1)l0
Z

p

Z
r0

Z
u0

vB(r0u0)Ym0
l0 (u0) du0jl0 (pr0) r0

2

dr0

·
Z

r00

Z
u00

vB(r00u00)Y - m0
l0 (u00) du00jl0 (pr00) r00

2

dr00( - 1) - m0 j0(pr) p2dp:

Note that

Y - m0
l0 (u0) = ( - 1) - m0Ym0

l0 (u0)

Then Z
u

vB � vB

� �
(ru) du =

1

2p2

X
l0‚ m0

(4p)2( - 1)l0
Z

p

Z
r0

Z
u0

vB(r0u0)Ym0
l0 (u0) jl0 (pr0) r02dr0du0

·
Z

r00

Z
u00

vB(r00u00)Ym0

l0 (u00)jl0 (pr00)r002dr00du00 j0(pr) p2dp:

Moreover, one can find that Z
R3

vB(ru) jl0 (pr)Ym0

l0 (u)r2drdu

=
Z

R3

vB( - ru) jl0 (pr)Ym0

l0 (u)r2drdu

=
Z

R3

vB(ru0) jl0 (pr)Ym0

l0 ( - u0)r2drdu0

= ( - 1)l0
Z

R3

vB(ru0) jl0 (pr)Ym0

l0 (u0) r2drdu0 (16)

by using the fact that Ym
l ( - u) = ( - 1)lYm

l (u) (Varshalovich et al., 1988).
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Then

pB(r) =
r2

4p

Z
S2

vB � vB

� �
(ru) du

=
r2

2p2

Z 1
p = 0

4p
X1
l0 = 0

Xl0

m0 = - l0

Z
r0

Z
S2

vB(r0u0) Ym0

l0 (u0) jl0 (pr0)r02dr0du0
� �(

·
Z

r0

Z
S2

vB(r0u0)Ym0
l0 (u0) jl0 (pr0) r02dr0du0

� ��
j0(pr) p2dp

=
r2

2p2

Z 1
p = 0

4p
X1
l0 = 0

Xl0

m0 = - l0

Z
r0

Z
S2

vB(r0u0) Ym0

l0 (u0) jl0 (pr0) r02dr0du0
� �(

·
Z

r0

Z
S2

vB(r0u0) Ym0
l0 (u0) jl0 (pr0) r02dr0du0

� ��
j0(pr) p2dp: (17)

Hence we define another key quantity in the formulation as

(mB)l‚ m(p)¼:
Z

r

(v�B)l‚ m(r) jl(pr) r2dr (18)

where

(v�B)l‚ m(r) =
Z

S2
vB(ru)Ym

l (u) du: (19)

Usually in SAXS modeling, first Equation (19) is computed numerically for sampled values of r and this is

substituted into Equation (18). Then the scattering density is computed numerically for sampled values of p as

IB(p) = 4p
X1
l = 0

Xl

m = - l

(mB)l‚ m(p) (mB)l‚ m(p); (20)

and the pair distance distribution function is computed as

pB(r) =
r2

2p2

Z 1
0

IB(p) j0(pr) p2dp: (21)

which is the same as Equation (1), by noting that sin( pr)/pr = j0( pr).

In the following section we introduce a new way of doing these calculations that involves fewer

numerical integrals in Fourier space, thereby potentially reducing aliasing effects.

3.3. Explicit computation of pair distance distribution function

Given the molecular complex, B, we can directly apply Equations (18) and (20) for computing the pair

distance distribution analytically. Specifically one can first analytically compute (mB)l,m( p) using Equation

(18), and square it to sum over l and m to compute IB( p) as in Equation (20). Then one can obtain pair

distance distribution function pB(r) from Equation (21) directly.

This leads to

pB(r) =
2r2

p

X1
l = 0

Z 1
0

Z 1
0

Xl

m = - l

(v�B)l‚ m(r00)(v�B)l‚ m(r0)

" #
0 l l

r r0 r00

� �
j

r002r02dr00dr0 (22)

where

0 l l

r r0 r00

� �
j

¼:
Z 1

0

j0(pr) jl(pr00) jl(pr0)p2dp

which denotes ‘‘3j integral’’ (Dong and Chirikjian, 2014).*

*Here the subscript j denotes that integral resulted from spherical-Bessel functions, and distinguishes this notation
from that used from the Wigner 3-J symbols (Chirikjian, 2012; Varshalovich et al., 1988), which are not related.
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These equations are the central equations of this article. The following section explains how 3j integrals

can be computed using efficient and stable recurrence formulas. Then the computation of IB( p) using

Equation (2) follows.

4. INTEGRALS OF PRODUCTS OF THREE SPHERICAL-BESSEL FUNCTIONS

In this section, we present the motivation and analytical underpinnings for our computational

contribution to matching candidate configurations of biomolecular complexes to the data collected by

SAXS.

4.1. Motivation: Why do these arise in this problem?

Historically, integrals of product of three spherical-Bessel functions have been studied in the field of

physics, such as nuclear physics, particle physics, and astrophysics, most of which are devoted to

finding analytical solutions of these integrals as series solutions involving many nested summa-

tions (Gervois and Navelet, 1985a,b, 1989; Mehrem et al., 1991; Mehrem and Hohenegger, 2010;

Mehrem, 2013). Unlike conventional studies, in this article, we are developing the recursive form of

the integrals of the product of three spherical-Bessel functions that lend themselves to efficient com-

putation. This current study is not only applicable to SAXS, but also can be applied to the fields

mentioned above.

Focusing our main attention to SAXS, if a function of position is expanded in spherical coordinates, it is

natural to use Bessel functions for the radial dependence and spherical harmonics for the angular depen-

dence. When substituting into the formulas for the pair distribution function, integrals over the angular

quantities can be computed in closed form and a series of products of Bessel functions results. But in SAXS

experiments the distribution pB(r) is itself a function of radial coordinates, and a natural basis in which to

express it is spherical-Bessel functions. Therefore, matching the model pair distribution function with the

experimental data requires projecting the model into the same basis set as the data. Essentially, applying the

inverse spherical-Hankel transform to the model introduces an integral of the product of three spherical-

Bessel functions (the two originally in the model, and one that appears as part of the projection process).

Efficient evaluation of these integrals therefore would facilitate the process of matching coefficients in

models of SAXS densities and the experimental data.

4.2. Recursive computation

The spherical-Bessel functions are one of the classical sets of orthogonal functions used in mathematical

physics. The first few of these can be computed in closed form in terms of elementary functions as

j0(x) = sin x
x

‚ j1(x) = sin x
x2 - cos x

x
, and j2(x) = ( 3

x2 - 1) sin x
x

- 3 cos x
x2 . Spherical-Bessel functions of higher index can

be recursively computed from these initial values using the relationships

jn(x) =
x

2n + 1
[jn + 1(x) + jn - 1(x)] (23)

and

j0n(x) =
1

2n + 1
[njn - 1(x) - (n + 1)jn + 1(x)] (24)

where 0 denotes the derivative with respect to x.

The three-term spherical-Bessel-function integrals that arise in the motivating applications in SAXS are

of form

m n l

a b c

� �
j

¼:
Z 1

0

jm(ar) jn(br) jl(cr) r2 dr: (25)

We use the subscript j here to distinguish this from other integrals that use similar notation. We believe that

recursive algorithms for computing Equation (25) have not been attempted before, because only recently

has the problem of integrals of three Bessel functions been articulated in Auluck (2012), and in that article
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the Bessel function Jm(x) [see, e.g., Watson (1995) for definition] were considered rather than the spherical-

Bessel functions jl(x).

4.2.1. Useful properties. Obviously, since scalar multiplication is commutative, we always have that

these integrals are invariant under permutations of columns:

m n l

a b c

� �
j

= n m l

b a c

� �
j

= l n m

c b a

� �
j

= m l n

a c b

� �
j

= l m n

c a b

� �
j

= n l m

b c a

� �
j

:

When c > 0, if r0 = cr, we get dr0 = cdr, r = c-1r0, and dr = c-1dr0. Substituting into Equation (25),

m n l

a b c

� �
j

=
Z 1

0

jm
a

c
r0

	 

jn

b

c
r0

� �
jl r0ð Þc - 2r0 - 2c - 1dr0

=
1

c3

m n l
a
c

b
c

1

� �
j

:

(26)

Another special case results, when c = 0‚ m 6¼ n

m n l

a b c

� �
j

=
Z 1

0

jm(ar)jn(br)jl(0)r2dr

= dl‚ 0

Z 1
0

jm(ar) jn(br)r2dr‚

(27)

and when c = 0, m = n

m n l

a b c

� �
j

=
Z 1

0

jm(ar)jn(br)jl(0)r2dr

= dl‚ 0

pd(a - b)

2a2
:

(28)

4.2.2. General recurrence relations. Based on the expression jn(x) =
x

2n + 1
[jn + 1(x) + jn - 1(x)], we set

G(m‚ n‚ l‚ a‚ b‚ c)¼:
Z 1

0

jm(ar)jn(br)jl(cr)rdr

=
Z 1

0

ar

2m + 1
[jm + 1(ar) + jm - 1(ar)] jn(br)jl(cr)rdr

=
a

2m + 1

m + 1 n l

a b c

� �
j

+
m - 1 n l

a b c

� �
j

 !
:

(29)

By a similar computation, we can get

G(m‚ n‚ l‚ a‚ b‚ c) =
Z 1

0

jm(ar) jn(br) jl(cr)rdr

=
Z 1

0

jm(ar)
br

2n + 1
[jn + 1(br) + jn - 1(br)] jl(cr)rdr

=
b

2n + 1

m n + 1 l

a b c

� �
j

+
m n - 1 l

a b c

� �
j

 ! (30)

794 DONG ET AL.



and

G(m‚ n‚ l‚ a‚ b‚ c) =
Z 1

0

jm(ar) jn(br) jl(cr)rdr

=
Z 1

0

jm(ar)jn(br)
cr

2l + 1
[jl + 1(cr) + jl - 1(cr)]rdr

=
c

2l + 1

m n l + 1

a b c

� �
j

+
m n l - 1

a b c

� �
j

 ! (31)

These will be used in the next section to obtain the general recurrence relations, which is for computing

Equation (25) rather than discretizing these integrals.

4.2.3. Generating recurrence relations using integration by parts. Using integration by parts to

compute the function G defined in the previous section is another route to obtaining recurrence relations as

follows.

G(m‚ n‚ l‚ a‚ b‚ c) =
Z 1

0

jm(ar)jn(br)jl(cr)rdr

=
1

2

Z 1
0

jm(ar)jn(br)jl(cr)dr2

=
1

2
jm(ar)jn(br)jl(cr)r2

����1
0

-
Z 1

0

@jm(ar)jn(br)jl(cr)

@r
r2dr

� 

=

1

2

�
0 -
Z 1

0

(aj0m(ar)jn(br)jl(cr) + bjm(ar)j0n(br)jl(cr)

+ cjm(ar)jn(br)j0l(cr))r2dr



=

1

2

Z 1
0

a

2m + 1
(m + 1)jm + 1(ar) - mjm - 1(ar)ð Þ jn(br)jl(cr)

n
+

b

2n + 1
((n + 1)jn + 1(br) - njn - 1(br))jm(ar)jl(cr)

+
c

2l + 1
((l + 1)jl + 1(cr) - ljl - 1(cr))jm(ar)jn(br)

o
r2dr

=
a(m + 1)

2(2m + 1)

m + 1 n l

a b c

� �
j

-
am

2(2m + 1)

m - 1 n l

a b c

� �
j

+
b(n + 1)

2(2n + 1)

m n + 1 l

a b c

� �
j

-
bn

2(2n + 1)

m n - 1 l

a b c

� �
j

+
c(l + 1)

2(2l + 1)

m n l + 1

a b c

� �
j

-
cl

2(2l + 1)

m n l - 1

a b c

� �
j

(32)

Then equating (29) = (32), (30) = (32), (31) = (32) gives

a(m - 1)

2(2m + 1)

m + 1 n l

a b c

� �
j

+
b(n + 1)

2(2n + 1)

m n + 1 l

a b c

� �
j

+
c(l + 1)

2(2l + 1)

m n l + 1

a b c

� �
j

=
a(2 + m)

2(2m + 1)

m - 1 n l

a b c

� �
j

+
bn

2(2n + 1)

m n - 1 l

a b c

� �
j

+
cl

2(l + 1)

m n l - 1

a b c

� �
j

(33)
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a(m + 1)

2(2m + 1)

m + 1 n l

a b c

� �
j

+
b(n - 1)

2(2n + 1)

m n + 1 l

a b c

� �
j

+
c(l + 1)

2(2l + 1)

m n l + 1

a b c

� �
j

=
am

2(2m + 1)

m - 1 n l

a b c

� �
j

+
b(2 + n)

2(2n + 1)

m n - 1 l

a b c

� �
j

+
cl

2(2l + 1)

m n l - 1

a b c

� �
j

(34)

a(m + 1)

2(2m + 1)

m + 1 n l

a b c

� �
j

+
b(n + 1)

2(2n + 1)

m n + 1 l

a b c

� �
j

+
c(l - 1)

2(2l + 1)

m n l + 1

a b c

� �
j

=
am

2(2m + 1)

m - 1 n l

a b c

� �
j

+
bn

2(2n + 1)

m n - 1 l

a b c

� �
j

+
c(2 + l)

2(2l + 1)

m n l - 1

a b c

� �
j

(35)

Rewriting (33), (34), and (35) in matrix form,

a(m - 1)

2(2m + 1)

b(n + 1)

2(2n + 1)

c(l + 1)

2(2l + 1)

a(m + 1)

2(2m + 1)

b(n - 1)

2(2n + 1)

c(l + 1)

2(2l + 1)

a(m + 1)

2(2m + 1)

b(n + 1)

2(2n + 1)

c(l - 1)

2(2l + 1)

0BBBBBBB@

1CCCCCCCA

m + 1 n l

a b c

� �
j

m n + 1 l

a b c

� �
j

m n l + 1

a b c

� �
j

0BBBBBBBBB@

1CCCCCCCCCA

=

a(2 + m)

2(2m + 1)

bn

2(2n + 1)

cl

2(2l + 1)

am

2(2m + 1)

b(2 + n)

2(2n + 1)

cl

2(2l + 1)

am

2(2m + 1)

bn

2(2n + 1)

c(2 + l)

2(2l + 1)

0BBBBBBB@

1CCCCCCCA

m - 1 n l

a b c

� �
j

m n - 1 l

a b c

� �
j

m n l - 1

a b c

� �
j

0BBBBBBBBB@

1CCCCCCCCCA
:

(36)

If we let Mj =

a(m - 1)

2(2m + 1)

b(n + 1)

2(2n + 1)

c(l + 1)

2(2l + 1)
a(m + 1)

2(2m + 1)

b(n - 1)

2(2n + 1)

c(l + 1)

2(2l + 1)
a(m + 1)

2(2m + 1)

b(n + 1)

2(2n + 1)

c(l - 1)

2(2l + 1)

0BBBBBB@

1CCCCCCA, then the determinant of this matrix is

det(Mj) =
abc(m + n + l + 1)

2(2l + 1)(2m + 1)(2n + 1)
‚

which is never zero when a,b,c > 0 and m,n,l ‡ 0. Inverting this matrix gives four-term recurrence relations

for the quantity of interest. This is very promising for computing the integrals that arise in SAXS, and

represents an alternative to numerical integration, which has the obvious drawback of not being exact,

requiring a finite truncation of the upper bound of integration, and being very time consuming to evaluate

on each point in a fine discretized grid of values of a, b, c and many values of m, n, l.

4.2.4. Recurrence relations when m = - 1, 0. We note that in Equation (22), we need a special

form of 3j integral as m = 0 and n = l. For that reason, in this section, we develop the recurrence relations for

the special cases where n and l vary with m fixed as 0 or 1. The reason why we need to consider m = - 1 as

well as m = 0 will be clear in the following derivation of the recurrence relations. First let us define

xn‚ l¼
: - 1 n l

a b c

� �
j
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and

yn‚ l¼
: 0 n l

a b c

� �
j

:

We seek to find the vector recurrence relations with these two variables.

Let us consider the definition of j - 1 (x) as

j - 1(x) =
cos x

x
: (37)

This satisfies the recurrence formula Equation (23) and the definition of spherical-Bessel functions

jn(x) =
ffiffiffiffi
p
2x

p
Jn + 1

2
(x).

Let us consider the following term Z 1
0

cos (ar) jn(br) jl(cr) dr: (38)

This can be expressed into two different terms, by using Equation (23), asZ 1
0

cos (ar) jn(br) jl(cr) dr

=
ab

2n + 1
(xn + 1‚ l + xn - 1‚ l)

=
ac

2l + 1
(xn‚ l + 1 + xn‚ l - 1):

(39)

Then let us consider Z 1
0

cos (ar)
@jn(br)

@r
jl(cr) dr: (40)

This term can be expressed into two different forms. First,

=
Z 1

0

cos (ar)
b

2n + 1
njn - 1(br) - (n + 1)jn + 1(br)f g jl(cr) dr

=
b

2n + 1

Z 1
0

cos (ar) njn - 1(br) - (n + 1)jn + 1(br)f g jl(cr) dr:

(41)

The other expression can be obtained by using the integration by parts as

= cos (ar) jn(br) jl(br)
���1
0

-
Z 1

0

jn(br)
@

@r
cos (ar) jl(cr)ð Þ dr

= - dn‚ 0dl‚ 0 + a

Z 1
0

sin (ar) jn(br) jl(cr) dr -
Z 1

0

cos (ar) jn(br) cj0l(cr) dr

= - dn‚ 0dl‚ 0 + a

Z 1
0

sin (ar) jn(br) jl(cr) dr

-
c

2l + 1

Z 1
0

cos (ar) jn(br) ljl - 1(cr) - (l + 1)jl + 1(cr)ð Þ dr: (42)

Now we take the partial derivative with respect to a to both the expressions. Then Equation (41) becomes

= -
b

2n + 1

Z 1
0

r sin (ar) njn - 1(br) - (n + 1)jn + 1(br)f g jl(cr) dr (43)

and (42) becomes

=
Z 1

0

sin (ar) jn(br) jl(cr) dr + a

Z 1
0

r cos (ar) jn(br) jl(cr) dr

-
c

2l + 1

Z 1
0

( - r) sin (ar) jn(br) ljl - 1(cr) - (l + 1)jl + 1(cr)ð Þdr:

(44)
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Similarly, we have

@

@a

Z 1
0

sin (ar)
@jn(br)

@r
jl(cr) dr

=
Z 1

0

@

@a
sin (ar)

b

2n + 1
njn - 1(br) - (n + 1)jn + 1(br)f g jl(cr) dr

=
b

2n + 1

Z 1
0

r cos (ar) njn - 1(br) - (n + 1)jn + 1(br)f g jl(cr) dr

(45)

and

@

@a

Z 1
0

sin (ar)
@jn(br)

@r
jl(cr) dr

= -
Z 1

0

cos (ar) jn(br) jl(cr) dr + a

Z 1
0

r sin (ar) jn(br) jl(cr) dr

-
c

2l + 1

Z 1
0

r cos (ar) jn(br) ðljl - 1(cr) - (l + 1)jl + 1(cr)Þ dr:

(46)

Then from Equations (43) and (44), we have

-
abn

2n + 1
yn - 1‚ l +

ab(n + 1)

2n + 1
yn + 1‚ l =

Z 1
0

sin (ar) jn(br) jl(cr) dr

+ a2xn‚ l +
acl

2l + 1
yn‚ l - 1 -

ac(l + 1)

2l + 1
yn‚ l + 1:

(47)

Also from Equations (45) and (46), we have

abn

2n + 1
xn - 1‚ l -

ab(n + 1)

2n + 1
xn + 1‚ l = -

Z 1
0

cos (ar)jn(br) jl(cr) dr

+ a2yn‚ l -
acl

2l + 1
xn‚ l - 1 +

ac(l + 1)

2l + 1
xn‚ l + 1:

(48)

Here
R1

0
cos (ar) jn(br) jl(cr) dr can be expressed with Equation (39). Combining them with Equation (48),

we have

bn

2n + 1
xn + 1‚ l +

c(l + 1)

2l + 1
xn‚ l + 1 =

b(n + 1)

2n + 1
xn - 1‚ l +

cl

2l + 1
xn‚ l - 1 - ayn‚ l

b(n + 1)

2n + 1
xn + 1‚ l +

cl

2l + 1
xn‚ l + 1 =

bn

2n + 1
xn - 1‚ l +

c(l + 1)

2l + 1
xn‚ l - 1 - ayn‚ l:

(49)

Then, let us consider Z 1
0

sin (ar) jn(br) jl(cr) dr (50)

similarly with Equation (39). Then we have two expressions for it asZ 1
0

sin (ar) jn(br) jl(cr) dr

=
ab

2n + 1
yn - 1‚ l + yn + 1‚ lð Þ

=
ac

2l + 1
yn‚ l - 1 + yn‚ l + 1ð Þ:

(51)

We combine these expressions with Equation (47) to have

bn

2n + 1
yn + 1‚ l +

c(l + 1)

2l + 1
yn‚ l + 1 =

b(n + 1)

2n + 1
yn - 1‚ l +

cl

2l + 1
yn‚ l - 1 + axn‚ l

b(n + 1)

2n + 1
yn + 1‚ l +

cl

2l + 1
yn‚ l + 1 =

bn

2n + 1
yn - 1‚ l +

c(l + 1)

2l + 1
yn‚ l - 1 + axn‚ l:

(52)
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We arrange Equations (49) and (52) to have

bn
2n + 1

c(l + 1)
2l + 1

0 0

b(n + 1)
2n + 1

cl
2l + 1

0 0

0 0 bn
2n + 1

c(l + 1)
2l + 1

0 0 b(n + 1)
2n + 1

cl
2l + 1

0BBBBB@

1CCCCCA
xn + 1‚ l

xn‚ l + 1

yn + 1‚ l

yn‚ l + 1

0BBB@
1CCCA

=

0 b(n + 1)
2n + 1

cl
2l + 1

- a 0 0

0 bn
2n + 1

c(l + 1)
2l + 1

- a 0 0

a 0 0 0 b(n + 1)
2n + 1

cl
2l + 1

a 0 0 0 bn
2n + 1

c(l + 1)
2l + 1

0BBBBB@

1CCCCCA

xn‚ l

xn - 1‚ l

xn‚ l - 1

yn‚ l

yn - 1‚ l

yn‚ l - 1

0BBBBBBBB@

1CCCCCCCCA
:

(53)

The determinant of 2 · 2 matrix in the left-hand side of the equation is bc(n + l + 1)
(2n + 1)(2l + 1)

	 
2

, which is not zero.

Hence it is solvable and complete, once m = - 1, 0 and n = - 1, 0 are computed, which is the topic of the

following section.

4.2.5. Recurrence relations when m = - 1, 0 and n = - 1, 0. We define

- 1 - 1 l

a b c

� �
j

=
1

ab

Z 1
0

cos (ar) cos (br) jl(cr) dr¼: zl‚ (54)

- 1 0 l

a b c

� �
j

=
1

ab

Z 1
0

cos (ar) sin (br) jl(cr) dr¼: vl‚ (55)

0 - 1 l

a b c

� �
j

=
1

ab

Z 1
0

sin (ar) cos (br) jl(cr) dr¼: ul‚ (56)

and

0 0 l

a b c

� �
j

=
1

ab

Z 1
0

sin (ar) sin (br) jl(cr) dr¼: wl: (57)

First, let us consider zl; let us take @
@c

toZ 1
0

cos (ar) cos (br) jl(cr) r - 1dr: (58)

Then

@

@c

Z 1
0

cos (ar) cos (br) jl(cr) r - 1 dr

=
Z 1

0

cos (ar) cos (br) rj0l(cr) r - 1 dr (59)

=
abl

2l + 1
zl - 1 -

ab(l + 1)

2l + 1
zl + 1:

Another expression is obtained by calculating the followingZ 1
0

cos (ar) cos (br)
@jl(cr)

@c
r - 1 dr

=
Z 1

0

cos (ar) cos (br)
r

c

@jl(cr)

@r
r - 1 dr =

1

c

Z 1
0

cos (ar) cos (br)
@jl(cr)

@r
dr

=
1

c
cos (ar) cos (br) jl(cr)

���1
0

-
1

c

Z 1
0

jl(cr)
@

@r
( cos (ar) cos (br)) dr

= -
1

c
dl‚ 0 -

1

c

Z 1
0

( - a) sin (ar) cos (br) jl(cr) dr -
1

c

Z 1
0

( - b) cos (ar) sin (br) jl(cr) dr (60)
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From Equations (59) and (60), we obtain

abl

2l + 1
zl - 1 -

ab(l + 1)

2l + 1
zl + 1 = -

1

c
dl‚ 0 +

a2b

c
ul +

ab2

c
vl: (61)

Similar techniques can be applied to the cases for ul, vl, and wl. When we consider

@

@c

Z 1
0

cos (ar) sin (br) jl(cr) r - 1 dr‚ (62)

then we obtain

abl

2l + 1
vl - 1 -

ab(l + 1)

2l + 1
vl + 1 =

a2b

c
wl -

ab2

c
zl: (63)

When we consider

@

@c

Z 1
0

sin (ar) cos (br) jl(cr) r - 1 dr‚ (64)

then we obtain

abl

2l + 1
ul - 1 -

ab(l + 1)

2l + 1
ul + 1 = -

a2b

c
zl +

ab2

c
wl: (65)

When we consider

@

@c

Z 1
0

sin (ar) sin (br) jl(cr) r - 1 dr‚ (66)

then we obtain

abl

2l + 1
wl - 1 -

ab(l + 1)

2l + 1
wl + 1 = -

a2b

c
vl -

ab2

c
ul: (67)

In total, we have four equations as

l + 1

2l + 1
zl + 1 =

l

2l + 1
zl - 1 -

a

c
ul -

b

c
vl +

1

abc
dl‚ 0

l + 1

2l + 1
vl + 1 =

l

2l + 1
vl - 1 -

a

c
wl +

b

c
zl

l + 1

2l + 1
ul + 1 =

l

2l + 1
ul - 1 +

a

c
zl -

b

c
wl (68)

l + 1

2l + 1
wl + 1 =

l

2l + 1
wl - 1 +

a

c
vl +

b

c
ul

Let nl = [zl vl ul wl]
T. Then four equations can be arranged as

l + 1

2l + 1
nl + 1 =

l

2l + 1
nl - 1 + Lnl +

1

abc
dl‚ 0e1 (69)

where e1 = [1 0 0 0]T and

L =

0 - b
c

- a
c

0
b
c

0 0 - a
c

a
c

0 0 - b
c

0 a
c

b
c

0

0BB@
1CCA:

This completes the recurrence relations for m = - 1, 0 and n = - 1, 0.

Regarding the initial conditions, we need to compute the cases when l = 0. Then from Equation (69), we

can obtain other terms sequentially. The closed forms of the initial conditions can be found as
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- 1 - 1 0

a b c

� �
j

=

0 c < ja - bj
p

8abc
c = ja - bj

p
4abc
ja - bj < c < a + b‚

3p
8abc

c = a + b
p

2abc
c > a + b

8>>>><>>>>: (70)

- 1 0 0

a b c

� �
j

=
1

8abc
log ( - a + b + c)2(a + b + c)2

(a + b - c)2(a - b + c)2

	 

c < ja - bj or cqa + b

- 1
4abc

log a2 - (b - c)2

- a2 + (b + c)2

	 

ja - bjpc < a + b

8<: ‚ (71)

and

0 0 0

a b c

� �
j

=
0 c < ja - bj or c > a + b

p
4abc

ja - bj < c < a + b
p

8abc
c = ja - bj or c = a + b

8<: : (72)

5. COMPUTATIONAL COMPLEXITY

In numerical computations, the bandlimit for summations over l and m must be finite, and integrals over r

and p must be sampled at discrete values up to a finite limit. Suppose that we have O(N) discrete values for

each of these variables. In the subsections that follow we analyze the computational cost and issues

affecting numerical accuracy when computing the pair distribution function using traditional approaches

and when using our 3j-integral approach.

5.1. Cost by direct evaluation

Since Equation (19) is used in both approaches, let us consider it first. Given l, m, and each point on r,

there are two integrations (over the unit sphere S2), which makes the computational cost as O(N2).

Now the computational cost for the approach to use Equations (18), (20), and (21) is estimated as

follows. Regarding the calculation of (18), one has to consider each pair of l and m, and each point of p.

Also there is one integration on r. Hence the total cost for calculating (18) becomes O(N4). Furthermore,

(20) involves two summations and storage to an array of p, which leads to the cost of O(N3). Then by the

same reasoning, the computational cost for (21) becomes O(N2). If we are particularly concerned with (20)

and (21), the total computational cost is estimated as O(N4).

A similar cost estimate for computing Equation (22) can be performed. Suppose we have precomputed

and store all of 3j integral values. First, the computational cost of brute-force precomputation for 3j integral

is estimated as O(N5) with O(N) values for each variable, and the space cost to store all of these is O(N4).

But there are one-time costs. In computing Equation (22), we begin with the summation over m of

(v�B)l‚ m(r00)(v�B)l‚ m(r0). This has a cost of O(N4), and afterward m is removed from further nested compu-

tations. Since what remains in Equation (22) involves one summation and two integrations for each fixed

value of r, the cost of directly computing Equation (22) is O(N4) when done for all values of r. This is a

similar computational cost with the previous approach.

It should be noted that all of the computational costs described here do not assume any properties of

recursive computations. The potential to gain efficiencies using recursions is described in the next section.

5.2. Cost by fast Hankel and fast spherical-harmonic transforms

Instead of directly computing the terms, one can use the fast transform approaches. General three-term

linear recurrence relations have been studied extensively (Amos and Burgmeier, 1973; Gautschi, 1967). In

addition, algorithms for the fast Bessel/spherical-Bessel transforms (Candel, 1981; Goldstein and Thaler,

1959; Johansen and Sorensen, 1979) and the fast spherical harmonics (Driscoll and Healy, 1994; Healy

et al., 2003; Gorski et al., 2005; Gumerov and Duraiswami, 2005) have been investigated.

Though ‘‘fast’’ algorithms for spherical-Bessel transforms have reported complexities of as low as

O(N log N) and O(N2 log 2N), respectively, they can suffer from numerical stability problems. Nevertheless,

we revisit the issue of computational cost if one hypothetically uses the fastest of these algorithms.
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For the approach in Equations (18), (20), and (21), the O(N4) bottleneck reduces to O(N3 log 2N) since

the spherical-harmonic transform is computed for each of O(N) values of r.

Recursions help in computing Equation (22) in several ways. First, the same computational bottleneck

mentioned above appears in this method as well. Second, rather than precomputing 3j integrals, in principle

they can be computed on the fly. That is, because the 3j integrals satisfy recurrences, the potential to

develop a ‘‘fast 3j transform’’ exists, which would make this competitive in terms of speed with the more

traditional approach in Equations (18), (20), and (21). In addition, there are numerical stability and ac-

curacy advantages to our new approach, as discussed below.

5.3. Numerical accuracy

In addition to computational cost, there are other advantages of recursively computing the 3j integrals

and evaluating the pair distribution function using Equation (22). First, unlike Equation (20), which

requires converting the problem to Fourier space and back, the approach of using 3j integrals keeps

everything in real space. And since integrals over p are not sampled nor are they computed with finite

bandlimits, this can avoid any possible aliasing, which is common in sampling in the Fourier approach.

That is, recurrence relations that we have derived compute the exact values of the 3j integrals as if they had

been computed analytically over the continuous half-infinite integral. Secondly, recurrence relations for 3j

integrals are more stable than numerical integration and fast spherical-Bessel transforms. The reason for

this is because the recurrence relations that result from inverting the matrix on the left side of Equation (36)

all involve coefficients that depend only on m, n, l, with a, b, c factoring out. Therefore, the sorts of

instabilities that arise when computing fast associated Legendre and fast spherical-Bessel transforms are

avoided. It is counter-intuitive that the integral of products of functions has nicer recurrence relations than

the original functions themselves. Both of aforementioned factors emphasize the importance of using the

recurrence relations.

6. NUMERICAL EXAMPLES

We consider lactoferrin molecules as a numerical example. Lactoferrin molecules are know to have the

hinge-bending motion [described by the motion among three rigid-cluster parts (Kim et al., 2005)] due to

their iron-ion binding functions, which results in two different conformations (open and closed confor-

mation, respectively represented as 1LFH and 1LFG), as shown in Figure 1. We apply the method for a

single body of each conformation for the purpose of verifying the proposed model. Another purpose is to

investigate whether the obtained pB(r) can distinguish different conformations of a single molecule. Note

that the method proposed in this article can be applied to the detection of the structural differences as shown

through the current example (open and closed in particular). Once we detect the structural differences, the

proposed method can provide the important foundation to the investigation of the rigid body motions or

flexibility between substructures of the complex, which forms the topic of future study.

The characteristic function is reconstructed as follows. First, given xi denoted as the coordinates of Ca in

PDB of the protein, uB(x) =
Pn

i = 1 d(x - xi), where n denotes the number of Ca. Then the reconstruction

formula gives

vB(ru) =
2

p

XL

l = 0

Xl

m = - l

Z 1
0

p2dp jl(pr) Ym
l (u)

Z
r0

Z
S2

uB(r0u0) jl(pr0) Ym
l (u0) r02dr0du0

� �
Note that

R
r

R
S2 ( � )r2drdu should be performed around the center of mass of the molecule, which is

essential scattering center of the molecule. The term with spatial integration can be replaced by the

summation as Z
r0

Z
S2

uB(r0u0) jl(pr0) Ym
l (u0) r02dr0du0 =

Xn

i = 1

jl(pri) Ym
l (ui) (73)

due to Dirac delta functions.

Figure 2 shows the results obtained by using Equation (22). We verified that numerical computations by

using both Equations (22) and (21) produce the same results. Note that in Equation (71), there is a special
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set of conditions that makes the integral divergent. In that case, we put an arbitrarily large number to apply

the recurrence relations, which still works for Equation (22). Figure 2a and b shows that indeed SAXS can

distinguish conformational information. And Figure 2c and d verifies our numerical computations of the

pair distribution function with direct evaluation by binning all inter-residue distances and creating a

histogram. Considering that pB(r)’s in Figure 2a are probability density functions (i.e., normalized so as to

its area is 1), the difference of pB(r)’s between 1LFG and 1LFH is significant enough to reflect the

conformational difference, which is also confirmed in Figure 2c and d with histograms of all inter-residue

distances.

7. CONCLUSIONS AND FUTURE WORK

In this article we model the data acquisition process in SAXS, which is a major method for gaining

insight into the structure of large biomolecular complexes. We established that integrals of products of

three spherical-Bessel functions arise when a body is described as a unit density (or characteristic) function

that is expanded in terms of spherical-Bessel functions in the radial direction. Then the the self-convolution

of the density produces expressions containing products of spherical-Bessel functions, which when ex-

pressed in the original basis requires computing the product of three such functions.

FIG. 1. Conformations of lac-

toferrin: (a) closed conformation

(1LFG); (b) open conformation

(1LFH). There are three rigid

clusters: head in blue, and left

and right clusters are denoted in

red and yellow, respectively

(Kim et al., 2005).

FIG. 2. (a) Plots of pB(r) for 1LFG

and 1LFH computed by the proposed

approach. (b) Plots of IB( p) by the ap-

proach. (c, d) Comparison of pB(r) with

brute-force calculation by calculating

the histograms of inter-distance of the

molecules. (c) and (d), respectively,

correspond to 1LFG and 1LFH. pB(r)

plots are normalized by the area so that

they become probability densities.
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Here we provided the motivation for this problem and showed how the integrals of products of three

spherical-Bessel functions can be computed recursively. This consists of two parts. First, we derived the

general recurrence relations, and second we derived the recurrence relations that are particularly suitable in

the computation of pB(r). In doing so we made use of the recurrence relations for individual spherical-

Bessel functions and used integration tricks such as changes of variables and integration by parts. We

observed the counter-intuitive phenomenon that the integral of products of three spherical-Bessel functions

has recurrence relations that are more well-behaved than the original functions themselves.

Finally, we demonstrated our method on a biologically meaningful example, the protein lactoferrin, and

showed that SAXS can distinguish conformational changes. And we verified our methodology against

brute-force computation of the pair distribution function by comparing with the histogram of all inter-

residue distances.

Equipped with this motivation and the recurrence relations, the next step will be to apply these to

develop numerical codes to solve problems of interest in structural biology. Future study includes the

investigation of the detection of rigid body motions between sub structures of the given complex, and the

treatment of flexibility of subparts during the motions.
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