
HAL Id: hal-00619751
https://hal.science/hal-00619751v1

Submitted on 10 Oct 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Finding Nested Common Intervals Efficiently
Guillaume Blin, David Célestin Faye, Jens Stoye

To cite this version:
Guillaume Blin, David Célestin Faye, Jens Stoye. Finding Nested Common Intervals Efficiently.
Journal of Computational Biology, 2010, 17 (9), pp.1183-1194. �hal-00619751�

https://hal.science/hal-00619751v1
https://hal.archives-ouvertes.fr

Finding Nested Common Intervals Efficiently

Guillaume Blin∗ David Faye† Jens Stoye‡

Abstract

In this paper, we study the problem of efficiently finding gene clusters formalized

by nested common intervals between two genomes represented either as permutations

or as sequences. Considering permutations, we give several algorithms whose running

time depends on the size of the actual output rather than the output in the worst

case. Indeed, we first provide a straightforward cubic time algorithm for finding all

nested common intervals. We reduce this complexity by providing a quadratic time

algorithm computing an irredundant output. We then show, by providing a third

algorithm, that finding only the maximal nested common intervals can be done in

linear time. Finally, we prove that finding approximate nested common intervals is

fixed parameter tractable. Considering sequences, we provide solutions (modifications

of previously defined algorithms and a new algorithm) for different variants of the

problem, depending on the treatment one wants to apply to duplicated genes. This

includes a polynomial-time algorithm for a variant implying a matching of the genes

in the cluster, a setting that for other problems often leads to hardness.

∗Université Paris-Est, LIGM - UMR CNRS 8049, France, gblin@univ-mlv.fr
†Université Paris-Est, LIGM - UMR CNRS 8049, France, Université Gaston-Berger, LANI, Saint-Louis,

Senegal, dfaye@igm.univ-mlv.fr
‡Technische Fakultät, Universität Bielefeld, Germany, stoye@techfak.uni-bielefeld.de

1

1 Introduction and related work

Computational comparative genomics is an active field of bioinformatics. One of the prob-

lems arising in this domain consists in comparing two or more species by seeking for gene

clusters between their genomes. A gene cluster refers to a set of genes appearing, in spatial

proximity along the chromosome, in at least two genomes. Genomes evolved from a common

ancestor tend to share some gene clusters. Therefore, they may be used for reconstructing

recent evolutionary history and inferring putative functional assignments for genes.

The genome evolution process, including – among others – fundamental evolutionary

events such as gene duplication and loss (Ohno, 1970), has given rise to various genome

models and cluster definitions. Indeed, genomes may be either represented as permutations

(allowing one-to-one correspondence between genes of different genomes) or sequences –

where the same letter (i.e. gene) may occur more than once (a more realistic model but with

higher complexity). In both those models, there may exist, or not, genes not shared between

two genomes (often called gaps).

Moreover, when modeling genomes for gene order analysis, one may consider either two

or multiple genomes, seeking for exact or approximate occurrences, finding all or just non-

extensible (i.e. maximal) occurrences.

There are numerous ways of mathematical formalizations of gene clusters. Among others,

one can mention common substrings (which require a full conservation), common intervals

(Uno and Yagiura, 2000; Schmidt and Stoye, 2004; Didier et al., 2007; Bergeron et al., 2008a)

(genes must occur consecutively, regardless of their order), conserved intervals (Bergeron and

Stoye, 2006; Angibaud et al., 2009) (common intervals, framed by the same two genes), gene

teams (Bergeron et al., 2002; He and Goldwasser, 2005; Zhang and Leong, 2009) (genes in a

2

cluster must not be interrupted by long stretches of genes not belonging to the cluster), and

approximate common intervals (Rahmann and Klau, 2006; Böcker et al., 2009) (common

intervals that may contain few genes from outside the cluster). For more details, please refer

to (Bergeron et al., 2008b).

In this article, we focus on another model – namely the nested common intervals – which

was mentioned in (Hoberman and Durand, 2005). In this model, an additional constraint –

namely the nestedness – (observed in real data (Kurzik-Dumke and Zengerle, 1996)) is added

to the cluster definition. Hoberman and Durand (Hoberman and Durand, 2005) argued

that, depending on the dataset, if the nestedness assumption is not excluding clusters from

the data, then it can strengthen the significance of detected clusters since it reduces the

probability of observing them by chance.

As far as we know, (Hoberman and Durand, 2005) was the only attempt to take into

account the nestedness assumption in a gene cluster model (namely gene teams) and yields to

a quadratic-time greedy bottom-up algorithm. In the following, we will give some efficient

algorithms to find all nested common intervals, for different definitions of such intervals,

between two genomes.

After providing basic definitions (Section 2), we will provide in Section 3 complexity

results for the problems of computing irredundant and maximal nested common intervals in

output-optimal time. In Section 4, we will provide algorithms to handle genomes represented

as sequences considering three different variants of the problem. Finally, in Section 5, we

will consider a natural extension of the problem, namely allowing gaps in the definition of

nested common intervals.

3

2 Definitions and previous works

Let π1 and π2 be our genomes, represented as permutations over N := {1, . . . , n}. For any

i ≤ j, π[i, j] will refer to the sequence of elements (π[i], π[i+ 1], . . . , π[j]). Let CS(π[i, j]) :=

{π[k] | k ∈ [i, j]} denote the character set of the interval [i, j] of π. A subset C ⊆ N is called

a common interval of π1 and π2 if and only if there exist 1 ≤ i1 < j1 ≤ n and 1 ≤ i2 < j2 ≤ n

such that C = CS(π1[i1, j1]) = CS(π2[i2, j2]). Note that this definition purposely excludes

common intervals of size one since they would not be considered in the more general nested

common interval definition. The intervals [i1, j1] and [i2, j2] are called the locations of C in

π1 and π2, respectively.

Note also that in case of multiple gene copies (i.e. considering sequences instead of permu-

tations), these definitions will be slightly different, as detailed in the beginning of Section 4.

Given two common intervals C and C ′ of π1 and π2, C contains C ′ if and only if C ′ ⊆ C.

This implies that the location of C ′ in π1 (resp. π2) is included in the location of C in π1

(resp. π2).

Definition 1 A common interval C is called a nested common interval of π1 and π2 if either

|C| = 2, or if |C| > 2 and it contains a nested common interval of size |C| − 1.

Note that this recursive definition implies that for any nested common interval C there

exists a series of nested common intervals such that C2 ⊆ C3 ⊆ · · · ⊆ C with |Ci| = i.

Definition 2 A nested common interval of size ` is maximal if it is not contained in a

nested common interval of size `+ 1.

A maximal nested common interval can however still be contained in a larger nested

4

common interval. For example, considering π1 := (3, 1, 2, 4, 5, 6) and π2 := (1, 2, 3, 4, 5, 6),

the maximal nested common interval [4, 6] in π1 is contained in [1, 6].

The general Nested Common Intervals problem may be defined as follows: Given

two genomes, find all their nested common intervals. One can then consider genomes either

as permutations or sequences and might also be interested in finding only the maximal nested

common intervals and/or allowing gaps. In the two following sections, we will give efficient

algorithms for both permutations and sequences without considering gaps. We will, then,

provide FPT solutions consisting of an extension of previously defined algorithms for finding

maximal nested common intervals considering gaps in both permutations and sequences

(except for the last variant that we leave as an open problem).

In (Bergeron et al., 2008a), a theoretical framework was introduced for computing com-

mon intervals based on a linear space basis. Of importance here is the technique proposed in

order to generate the PQ-tree (Booth and Lueker, 1976; Landau et al., 2005) corresponding

to a linear space basis for computing all the common intervals of K permutations. Gener-

ating this basis can be done in O(n) time for two permutations of size n. Then one can, by

a browsing of the tree, generate all the common intervals in O(n + z) time where z is the

size of the output. One can adapt this algorithm in order to find nested common intervals

in O(n+ z) time.

In this work, we do not follow that approach, but instead provide algorithms for a more

direct detection of the nested common intervals.

5

3 Nested common intervals on permutations

As described in (Uno and Yagiura, 2000; Schmidt and Stoye, 2004; Didier et al., 2007), when

considering permutations, both common substrings and common intervals can be found in

optimal, essentially linear time. As we will show, not surprisingly, finding nested common

intervals on permutations can also be done efficiently.

3.1 Finding all nested common intervals

First, one has to notice that the number of nested common intervals can be quadratic in

n (e.g. when π1 = π2). However, in many practical cases the number of nested common

intervals may be much smaller, such that one can still achieve lower time complexity by

developing methods whose running time depends on the size of the actual output and not

of the output in the worst case.

In the following, we will w.l.o.g. assume that π1 is the identity permutation and rename

π2 by π for ease of notation. A naive bottom-up algorithm, inspired from the one given

in (Hoberman and Durand, 2005) and straightforwardly following the definition of nested

common intervals, can be defined as in Algorithm 1.

Algorithm 1 uses a bottom-up approach; namely it tries to compute any nested common

interval from smaller ones by an extension procedure. More precisely, starting from a nested

common interval of size one, the algorithm tries to extend this last interval both to the left

and to the right by iteratively trying to add the left (resp. right) neighbor if it still induces

a common interval (i.e. l−−, l++, r−−, r++).

Clearly such an algorithm requires O(n+ z) time to report all nested common intervals

where z is the size of the output. However, the output may be highly redundant as several

6

Algorithm 1 Find all nested common intervals

1: for i← 1, . . . , n do
2: l← i, r ← i
3: repeat
4: l′ ← l, r′ ← r
5: if π[l′ − 1] = min(CS(π[l′, r′]))− 1 or π[r′ + 1] = max(CS(π[l′, r′])) + 1 then
6: while π[l − 1] = min(CS(π[l, r′]))− 1 do l−− done
7: while π[r + 1] = max(CS(π[l′, r])) + 1 do r++ done
8: else
9: while π[l − 1] = max(CS(π[l, r′])) + 1 do l−− done

10: while π[r + 1] = min(CS(π[l′, r]))− 1 do r++ done
11: end if
12: report all intervals [l′′, r′′] with l ≤ l′′ ≤ l′ and r′ ≤ r′′ ≤ r except [l′, r′]
13: until l = l′ and r = r′

14: end for

intervals will be identified more than once. The worst case is when one considers π =

(1, 2, . . . , n). More precisely, in this case some of the O(n2) nested common intervals will be

reported up to n times, giving a total worst-case runtime of O(n3).

Therefore, one may be interested in computing an irredundant output. The main im-

provement we propose consists in a simple preprocessing step that will speed up our al-

gorithm for nested common intervals. Let us define a run of two permutations π1 and π2

as a pair of intervals ([i1, j1], [i2, j2]) such that π1[i1, j1] = π2[i2, j2] or π1[i1, j1] =
←−−−−−
π2[i2, j2]

where ←−x := (xk, xk−1, . . . , x1) denotes the reverse of sequence x = (x1, x2, . . . , xk). A run is

maximal if it cannot be extended to the left or right. Since a run can also be of size one, two

permutations can always be decomposed into their maximal runs with respect to each other.

For example, in the following the maximal runs are underlined: π1 = (1, 2, 3, 4, 5, 6, 7, 8, 9)

and π2 = (4, 3, 2, 1, 5, 9, 6, 7, 8).

Given a decomposition of two permutations into their maximal runs with respect to each

other, a breakpoint will refer to any pair of neighboring elements that belong to different

runs. In the above example, π1 (resp. π2) contains three breakpoints (4, 5), (5, 6) and (8, 9)

7

(resp. (1, 5), (5, 9) and (9, 6)). By definition, the number of breakpoints is one less than the

number of runs. When considering one of π1 and π2 as being the identity permutation then

a run may be defined as a single interval.

Algorithm 2, hereafter defined, computes irredundant output by making use of the two

following simple observations. In fact, it tries to extend the actual nested common interval

by more than one position at each step using the notion of run.

Lemma 1 All subintervals of length at least 2 in a run are nested common intervals.

Lemma 2 In the procedure of constructing incrementally a nested common interval by ex-

tension, when one reaches up to one end of a run such that the begin/end of this run can

be included, then the whole run can be included and all subintervals ending/beginning in this

run can be reported as nested common intervals.

Proof. By definition, the elements of a run [i, j] in π with respect to the identity permuta-

tion are consecutive integers strictly increasing or decreasing. Therefore, in an incremental

construction by extension of a nested common interval nc that has a run [i, j] as its right

(resp. left) neighbor, if one may extend nc by i (resp. j) then, by definition, π[i] (resp. π[j])

is the minimal or maximal element among the elements of the extended interval. Thus, all

the elements of the run [i, j] may be added one by one, each leading to a new nested common

interval. 2

Consequently, by identifying the runs in a preprocessing step (which can be easily done

in linear time), whenever during an extension a border of a run is included, the whole run is

added at once and all sub-intervals are reported. The details are given in Algorithm 2 which

employs a data structure end defined as follows: if i is the index of the first or last element

8

of a run in π then end[i] is the index of the other end of that run; end[i] = 0 otherwise.

Algorithm 2 Find all nested common intervals, irredundant version

1: decompose π into maximal runs w.r.t. id and store them in a data structure end
2: for i← 1, . . . , n− 1 do
3: if end[i] > i then
4: l← i, r ← end[i]
5: report all intervals [l′′, r′′] with l ≤ l′′ < r′′ ≤ r
6: repeat
7: l′ ← l, r′ ← r
8: if π[l′−1] = min(CS(π[l′, r′]))− 1 or π[r′+1] = max(CS(π[l′, r′])) + 1 then
9: if π[l − 1] = min(CS(π[l, r′]))− 1 then l← end[l − 1] end if

10: if π[r + 1] = max(CS(π[l′, r])) + 1 then r ← end[r + 1] end if
11: else
12: if π[l − 1] = max(CS(π[l, r′])) + 1 then l← end[l − 1] end if
13: if π[r + 1] = min(CS(π[l′, r]))− 1 then r ← end[r + 1] end if
14: end if
15: report all intervals [l′′, r′′] with l ≤ l′′ ≤ l′ and r′ ≤ r′′ ≤ r except [l′, r′]
16: until l = l′ and r = r′

17: end if
18: end for

Theorem 1 Algorithm 2 has an O(n2) time complexity.

Proof. It is easily seen that the time complexity remains in O(n+z) with z being the output

size, except that this time the output is irredundant (i.e. each nested common interval is

reported exactly once). Since the number of nested common intervals is at most quadratic,

the complexity follows. 2

When applied to π := (1, 2, 3, 6, 4, 5) for example, one may check that Algorithm 2 will

report locations [1, 2], [1, 3], [2, 3] when i = 1, locations [5, 6], [4, 6], [1, 6], [2, 6], [3, 6] when

i = 5, and nothing for the other values of i. Let us prove this interesting property of

Algorithm 2.

Lemma 3 In Algorithm 2, any breakpoint is considered at most once during the extension

procedure described from lines 8 to 14.

9

Proof. In the following, a breakpoint will be passed through from left (resp. from right) when

considered during an extension procedure to the right (resp. left). Assume bp = (π[x], π[y])

is a breakpoint in π with respect to the identity permutation. Then y = x+ 1 and there are

only two possibilities for bp to be passed through twice: either (1) once from the left and

once from the right, or (2) twice from the same side.

Let us first consider the case where bp is passed through from both left and right. There-

fore assume that

π = (. . . , π[X], . . . , π[x], π[y], . . . , π[Y], . . .)

where C1 := CS(π[X, x]) and C2 := CS(π[y, Y]) are nested common intervals (otherwise bp

would not be passed through more than once). Further assume w.l.o.g. that bp is passed

in the extension of interval [X, x] (a similar proof handles the extension of [y, Y]) whose

maximum (or minimum) element is M := max(C1) (resp. m := min(C1)).

Then, in order for [X, x] to be extensible, either π[y] = M + 1 or π[y] = m − 1. Let us

assume that π[y] = M + 1 (the case where π[y] = m − 1 can be shown similarly). We will

show that bp cannot be passed through in the other direction, i.e. in an extension of [y, Y].

Since π[y] = M + 1 and each of the two intervals [X, x] and [y, Y] consists of consecutive

integers, we have that all elements in C1 are smaller than any element in C2. Thus, for an

extension in the left direction across bp, the largest element of C1 must be at its right end,

i.e. π[x] = M . However, if this was the case, then bp = (π[x], π[y]) = (M,M + 1) would not

be a breakpoint, a contradiction.

Now let us consider the case where bp is passed through twice from the same side, starting

10

with different runs. Therefore assume that

π = (. . . , π[X ′], . . . , π[X], . . . , π[x], π[y], . . .)

where C1 := CS(π[X, x]) and C2 := CS(π[X ′, x]) are nested common intervals derived from

different runs (i.e. reported from two different values of i), one in the interval [X, x] and

the other in the interval [X ′, X − 1]. Further assume w.l.o.g. that bp is passed through in

the extension of [X, x] (a similar proof handles the extension of [X ′, x]) whose maximum (or

minimum) element is M := max(C1) (resp. m := min(C1)).

Then, in order for [X, x] to be extensible, either π[y] = M + 1 or π[y] = m − 1. Let us

assume that π[y] = M + 1 (the case where π[y] = m − 1 can be shown similarly). We will

show that bp cannot be passed again in this direction, i.e. in an extension of [X ′, x]. Since

π[y] = M+1 and, by construction, C1 ⊂ C2, we have that all elements in CS(π[X ′, X−1]) are

smaller than any element in C1. Moreover, since bp is a breakpoint, we have that π[x] 6= M

and, more precisely, π[x] < M . Then, any extension of [X ′, X − 1] would not be able to

include M since at least one necessary intermediate element (namely π[x]) would not have

been previously included. Thus, all cases are covered and the lemma is proved. 2

Irredundancy of the locations of nested common intervals returned by Algorithm 2 follows

immediately.

Lemma 4 In Algorithm 2, starting from two different runs (cf. line 4) cannot yield to

reporting the same nested common interval twice.

Proof. In order to be possibly reported twice, an interval would have to cover (i.e. include

both) two different runs. However, in order to yield the interval, the breakpoint(s) between

11

these two runs would have to be passed through twice, which is not possible by Lemma 3.

2

3.2 Finding all maximal nested common intervals

As previously mentioned, one might also be interested in finding only the maximal nested

common intervals in optimal time O(n+z) where z is the number of maximal nested common

intervals of π1 and π2, since there will be fewer. In fact, we will first prove that the number

of maximal nested common intervals is in O(n) leading to an overall linear time algorithm.

Lemma 5 Every element of π is contained in at most three different maximal nested com-

mon intervals.

Proof. This follows immediately from the correctness of Lemma 3. Indeed, according to

Lemma 3 each position can be reached from at most two directions. Thus, the only case

where an element of π may be contained in exactly three different maximal nested common

intervals nc1 = [i1, j1], nc2 = [i2, j2] and nc3 = [i3, j3] is when i1 ≤ i2 ≤ i3 ≤ j1 ≤ j2 ≤ j3.

For example, considering π1 = (2, 1, 3, 4, 6, 5) and π2 = (1, 2, 3, 4, 5, 6), the element 3 in π1 is

contained in (2, 1, 3, 4), (3, 4) and (3, 4, 6, 5). 2

In order to get only the locations of maximal nested common intervals, one has to modify

Algorithm 2 such that only the locations at the end of an extension are reported. To do so,

one has simply to (1) remove from Algorithm 2 lines 5 and 15 and (2) report the unique

interval [l, r] – which is by definition maximal – just after the end of the repeat ... until

loop (currently line 16).

12

Clearly, the time complexity of this slightly modified version of Algorithm 2 is unchanged;

that is O(n + z) where z is the size of the output. Lemma 5 implies that the number of

maximal nested common intervals is in O(n), leading to an overall linear time.

13

4 Nested common intervals on sequences

In this section, we will give algorithms to handle genomes represented as sequences (i.e. genes

may be duplicated). In the following, we will assume that our genomes, denoted by S1 and

S2, are defined over a bounded integer alphabet Σ = {1, . . . , σ} and have maximal length

n. The precise definition of nestedness in sequences is subtle. Therefore, we propose three

different variants of the problem, depending on the treatment one wants to apply when,

during the extension of an interval, an element that is already inside the interval is met once

again. The definitions and the differences are illustrated by the running example of two

sequences S1 = (3, 1, 2, 3, 4, 5, 6) and S2 = (2, 3, 1, 3, 2, 4, 6, 3, 5), see also Figure 1.

First, one may just extend the interval “for free”, only caring about the “innermost

occurrence”; all other occurrences are considered as not contributing to the cluster content.

This definition follows the same logic as earlier ones used for common intervals (Schmidt and

Stoye, 2004; Didier et al., 2007) and for approximate common intervals (Böcker et al., 2009).

In our example, starting from the left in S1 with the characters 3 and 1 will immediately

yield three different locations of the character set C2 = {1, 3}: ([1, 2], [2, 3]), ([1, 2], [2, 4]) and

([1, 2], [3, 4]). Adding the next character in S1, 2, will also allow to add the following 3 (at

index 4) since a 3 already belonged to the cluster. Combined with the five possible intervals

in S2 that can be obtained by extending the three intervals containing {1, 3}, this yields

ten cluster locations for C3 = {1, 2, 3}: ([1, 3], [1, 3]), ([1, 3], [1, 4]), ([1, 3], [1, 5]), ([1, 3], [2, 5]),

([1, 3], [3, 5]), ([1, 4], [1, 3]), ([1, 4], [1, 4]), ([1, 4], [1, 5]), ([1, 4], [2, 5]), ([1, 4], [3, 5]).

A slight modification of our naive Algorithm 1 leads to an O(n3) algorithm. Indeed,

since the sequences may contain duplicates, one has to start the extension procedure with

all possible pairs (S1[i], S2[j]) where 1 ≤ i ≤ |S1| and 1 ≤ j ≤ |S2|. Moreover, after each

14

extension step all genes that are already members of the cluster have to be “freely” included.

This can be tested efficiently by storing the elements belonging to the current cluster in a

bit vector c[1, . . . , σ].

The resulting Algorithm 3 – which clearly runs in O(n3) time as each pair of index

positions (i, j) is considered at most once and for each of them the extension cannot include

more than n steps – only reports maximal gene clusters as previously done for permutations.

Second, one may forbid the inclusion of a second copy of a gene in a nested common

interval. In our example, for C2 = {1, 3} at indices 1 and 2 in S1 this would give only

the two locations ([1, 2], [2, 3]) and ([1, 2], [3, 4]), and the extension by character 2 would be

allowed in only one of the two possible directions, giving for C3 = {1, 2, 3} the locations

([1, 3], [1, 3]) and ([1, 3], [3, 5]). Note, however, that if one starts with the intervals [2, 3] or

[3, 4] in S1, more locations can be obtained for C3 = {1, 2, 3}.

This problem variant can also be solved easily, by a quite similar algorithm which stops

any extension when a gene already contained in the common interval is encountered.

Finally, one may be interested in finding a bijection (sometimes called matching in the

computational comparative genomics literature) where, inside a nested common interval,

each gene occurrence in S1 must match a unique gene occurrence in S2 from the same

gene family. In our example, of the ten locations for C3 = {1, 2, 3} listed above, only

those six with the same cardinality of characters are eligible as nested common intervals

of this type: ([1, 3], [1, 3]), ([1, 3], [3, 5]), ([1, 4], [1, 4]), ([1, 4], [2, 5]). Moreover, among the

possible matchings, only those are allowed for which the necessary smaller intervals exist.

For example, the pair of locations ([1, 4], [1, 4]) as an extension of the locations ([1, 3], [1, 3])

implies that the 3 at index 4 in S1 is matched with the 3 at index 4 in S2 and not with the

15

Algorithm 3 Find all maximal nested common intervals in two sequences

1: for i← 1, . . . , |S1| do
2: for each occurrence j of S1[i] in S2 do
3: for each k ← 1, . . . , σ do c[k]← (k = S1[i]) done
4: l1 ← i, r1 ← i
5: l2 ← j, r2 ← j
6: repeat
7: while c[S1[l1 − 1]] = true do l1−− done
8: while c[S1[r1 + 1]] = true do r1++ done
9: while c[S2[l2 − 1]] = true do l2−− done

10: while c[S2[r2 + 1]] = true do r2++ done
11: l′1 ← l1, r

′
1 ← r1

12: if S1[l1 − 1] = S2[l2 − 1] or S1[r1 + 1] = S2[r2 + 1] then
13: while S1[l1 − 1] = S2[l2 − 1] do
14: l1−−, l2−−, c[S1[l1]]← true
15: while c[S1[l1 − 1]] = true do l1−− done
16: while c[S2[l2 − 1]] = true do l2−− done
17: end while
18: while S1[r1 + 1] = S2[r2 + 1] do
19: r1++, r2++, c[S1[r1]]← true
20: while c[S1[r1 + 1]] = true do r1++ done
21: while c[S2[r2 + 1]] = true do r2++ done
22: end while
23: else
24: while S1[l1 − 1] = S2[r2 + 1] do
25: l1−−, r2++, c[S1[l1]]← true
26: while c[S1[l1 − 1]] = true do l1−− done
27: while c[S2[r2 + 1]] = true do r2++ done
28: end while
29: while S1[r1 + 1] = S2[l2 − 1] do
30: r1++, l2−−, c[S1[r1]]← true
31: while c[S1[r1 + 1]] = true do r1++ done
32: while c[S2[l2 − 1]] = true do l2−− done
33: end while
34: end if
35: until l1 = l′1 and r1 = r′1
36: report ([l1, r1], [l2, r2])
37: end for
38: end for

one at index 2.

Surprisingly, the nestedness constraint leads to a polynomial time algorithm whereas

16

S1 = (3 1 2 3 4 5 6)
1 2 3 4 5 6 7

S2 = (2 3 1 3 2 4 6 3 5)
1 2 3 4 5 6 7 8 9

([1..2], [2..3]) ([1..2], [3..4]) ([3..4], [1..2]) ([3..4], [4..5])

A
AK

J
J]

Z
Z
Z}

Q
Q

Qk

�
��

([1..3], [1..3]) ([1..3], [3..5]) ([2..4], [1..3]) ([2..4], [3..5]) ([3..5], [4..6])

�
��

�

XXX
XXX

XXXy

J
J]
XXX

XXX
XXXy

PP
PP

PPi
([1..4], [1..4]) ([1..4], [2..5]) ([2..5], [3..6]) ([4..7], [6..9])

�
��

PP
PP

PPi

PP
PP

PPi
([1..5], [2..6]) ([3..7], [5..9])

([1..7], [3..9])

Figure 1: Graph G for sequences S1 = (3, 1, 2, 3, 4, 5, 6) and S2 = (2, 3, 1, 3, 2, 4, 6, 3, 5).

for many other paradigms, considering matching and duplicates leads to hardness (Blin

et al., 2007). Unfortunately, we only know a very inefficient algorithm described hereafter.

The main idea is to, first, construct a directed acyclic graph G whose vertices correspond

to pairs of intervals ([i1, j1], [i2, j2]), one from S1 and one from S2, that contain the same

multiset of characters. In G, an edge is drawn from a vertex v = ([i1, j1], [i2, j2]) to a vertex

v′ = ([i′1, j
′
1], [i

′
2, j
′
2]) if and only if the corresponding interval pairs differ by one in length, i.e.

|(j1 − i1) − (j′1 − i′1)| = 1, and the shorter one is contained in the longer one, i.e. ((i1 = i′1)

or (j1 = j′1)) and ((i2 = i′2) or (j2 = j′2)). An illustration is given in Figure 1.

Since, for a given multiset of cardinality ` there are at most (n− ` + 1)2 vertices in the

graph, the total number of vertices in G is bounded by O(n3). Moreover, by definition, each

vertex has an output degree of at most four, hence the number of edges is also bounded by

O(n3). Finally, G can clearly be constructed in polynomial time.

One can easily see that there is a correspondence between nested gene clusters and

directed paths in G starting from vertices corresponding to multisets of size 2. Indeed, a

17

path (ci1, ci2, . . . , cik) in this DAG, where ci1, ci2, . . . , cik are common intervals, induces that

ci1 ⊆ ci2 ⊆ . . . ⊆ cik and for all j, 1 ≤ j < k, we have |cij| + 1 = |cij+1|. Therefore, since

any common interval of size 2 is a nested common interval, in any such path, if ci1 is of size

2 then, by definition, any common interval of this path is a nested common interval.

Thus, the nested gene clusters can be reported in polynomial time. Indeed, building the

DAG can be done in O(n3) time. Then, one has to browse any path starting from a vertex

corresponding to a common interval of size 2. Since there are at most n − 1 such common

intervals, and each vertex has an output degree of at most four, on the whole the number of

such paths is bounded by (n− 1) · 4(n− 2); i.e. O(n2).

18

5 Finding all maximal approximate nested common in-

tervals

As a natural extension of the problem, we will consider allowing gaps in the definition of

nested common intervals. Let us recall that an approximate common interval is a common

interval that may contain an overall bounded number of genes not belonging to the cluster

(called gaps). The natural extension of nested common intervals – approximate nested

common intervals – may thus be defined as follows: an approximate common interval [i, j]

is an approximate nested common interval if removing the gaps from [i, j] produces a nested

common interval.

The general Approximate Nested Common Intervals problem may be defined as

follows: Given two genomes, find all their approximate nested common intervals. As we will

show, this last problem is fixed parameter tractable (FPT) in the number of allowed gaps in

any approximate nested common interval.

Theorem 2 Given two genomes as permutations (resp. sequences), finding all their approx-

imate nested common intervals can be done in O(n · 3k) (resp. O(n3 · 15k)) where k is the

maximal number of allowed gaps.

We leave the problem of determining the complexity of the Approximate Nested

Common Intervals problem as an open problem.

19

5.1 Considering permutations

One can slightly modify Algorithm 2 in order to both, only report maximal occurrences

and allowing a bounded number of gaps. In order to find all maximal approximate nested

common intervals in two permutations, one has to call the expansion function defined in

Algorithm 4 for all the starting positions of any maximal run (i.e. each position i, 1 ≤ i ≤ |π|,

such that end[i] ≥ i):

expansion(maxgap, i, end[i],min(π[i], π[end[i]]),max(π[i], π[end[i]])).

Indeed, since one may use a gap to extend any maximal run, one has to start from every

maximal run, even from those of size one. Lines 4 to 21 of Algorithm 4 are similar to the code

of Algorithm 2 and correspond to the maximal expansion from positions l and r considering

min and max as the current minimum and maximum values. Indeed, since there may be

some gaps in [l, r], computing the minimum and maximum values from the character set is

not possible anymore. After this expansion process, we may report an approximate nested

common interval if it contains at least two elements (i.e. min 6= max) and then try to extend

it again by considering either the left neighbor (i.e. l− 1) or the right one (i.e. r+ 1) or both

as gaps (lines 25 to 35). This last part leads to the exponential complexity of the algorithm.

The overall time complexity is in O(n · 3k) where k is the maximal number of allowed gaps.

This is straightforward to see since when allowing gaps, Lemma 5 still holds for the extension

procedure and in lines 25 to 35, one has to call expansion procedure for each combination

of {(l − 1, r), (l, r + 1), (l − 1, r + 1)} untill nbgap becomes null. On the whole, in the worst

case, the execution of the algorithm may needs 3k calls to expansive (a call tree with nodes

20

Algorithm 4 Expansion function

1: expansion(nbgap, l, r,min,max){
2: //try to extend the approximate nested common interval [l, r] with at most nbgap
3: //considering that min and max are resp. the minimum and maximum elements of [l, r]
4: repeat
5: l′ ← l, r′ ← r
6: if π[l′−1] = min− 1 or π[r′+1] = max+ 1 then
7: if π[l − 1] = min− 1 then
8: min← min(min, π[end[l − 1]]); l← end[l − 1]
9: end if

10: if π[r + 1] = max+ 1 then
11: max← max(max, π[end[r + 1]]); r ← end[r + 1]
12: end if
13: else
14: if π[l − 1] = max+ 1 then
15: max← max(max, π[end[l − 1]]); l← end[l − 1]
16: end if
17: if π[r + 1] = min− 1 then
18: min← min(min, π[end[r + 1]]); r ← end[r + 1]
19: end if
20: end if
21: until l = l′ and r = r′

22: if min 6= max then
23: report [min,max]
24: end if
25: if nbgap > 0 then
26: if l − 1 ≥ 0 then
27: expansion(nbgap− 1, l − 1, r,min,max)
28: end if
29: if r + 1 ≤ |π| then
30: expansion(nbgap− 1, l, r + 1,min,max)
31: end if
32: if l − 1 ≥ 0 and r + 1 ≤ |π| and nbgap > 1 then
33: expansion(nbgap− 2, l − 1, r + 1,min,max)
34: end if
35: end if
36: }

of degree 3 and depth nbgap ; i.e. k).

21

5.2 Considering sequences

Considering sequences, one can similarly slightly modify Algorithm 3 in order to handle the

first two variants. In order to find all maximal approximate nested common intervals in

two sequences, one has to call the seq expansion function defined in Algorithm 5 for each

position i, 1 ≤ i ≤ |S1|, and for each occurrence j of S1[i] in S2 such that for all k, 1 ≤ k ≤ σ,

c[k] = S1[i]:

seq expansion(i, i, j, j, c).

As done in Algorithm 3, we use a bit vector c[1, . . . , σ] in order to store the elements

belonging to the current cluster and test efficiently if an element has already been added to

it.

Lines 4 to 34 are quite similar to the code of Algorithm 3 and correspond to the maximal

expansion from positions l1, r1 and l2, r2 considering c as the character set of the intervals

without including gaps. After this expansion process, we may report an approximate nested

common interval and then try to extend it again by considering (in lines 25 to 35) any

combination of left neighbors (i.e. l1 − 1 and l2 − 1) and right ones (i.e. r1 + 1 and r2 + 1)

as gaps.

This last part leads to the exponential complexity of the algorithm. The overall time

complexity is in O(n3 ·15k) where k is the maximal number of allowed gaps. This is straight-

forward to see since the expansion can still be done in O(n3) time, whereas one has to test

22

Algorithm 5 Find all maximal approximate nested common intervals in two sequences

1: seq expansion(nbgap, l1, r1, l2, r2, c){
2: //try to extend the a.n.c.i. ([l1, r1], [l2, r2]) with at most nbgap considering that
3: //c only contains elements of ([l1, r1], [l2, r2]) (excluding gaps).
4: repeat
5: while c[S1[l1 − 1]] = true do l1−− done
6: while c[S1[r1 + 1]] = true do r1++ done
7: while c[S2[l2 − 1]] = true do l2−− done
8: while c[S2[r2 + 1]] = true do r2++ done
9: l′1 ← l1, r

′
1 ← r1

10: if S1[l1 − 1] = S2[l2 − 1] or S1[r1 + 1] = S2[r2 + 1] then
11: while S1[l1 − 1] = S2[l2 − 1] do
12: l1−−, l2−−, c[S1[l1]]← true
13: while c[S1[l1 − 1]] = true do l1−− done
14: while c[S2[l2 − 1]] = true do l2−− done
15: end while
16: while S1[r1 + 1] = S2[r2 + 1] do
17: r1++, r2++, c[S1[r1]]← true
18: while c[S1[r1 + 1]] = true do r1++ done
19: while c[S2[r2 + 1]] = true do r2++ done
20: end while
21: else
22: while S1[l1 − 1] = S2[r2 + 1] do
23: l1−−, r2++, c[S1[l1]]← true
24: while c[S1[l1 − 1]] = true do l1−− done
25: while c[S2[r2 + 1]] = true do r2++ done
26: end while
27: while S1[r1 + 1] = S2[l2 − 1] do
28: r1++, l2−−, c[S1[r1]]← true
29: while c[S1[r1 + 1]] = true do r1++ done
30: while c[S2[l2 − 1]] = true do l2−− done
31: end while
32: end if
33: until l1 = l′1 and r1 = r′1
34: report ([l1, r1], [l2, r2])
35: for each valid combination of l′1 ∈ l1, l1 − 1, l′2 ∈ l2, l2 − 1, r′1 ∈ r1, r1 + 1, r′2 ∈ r2, r2 + 1

do
36: seq expansion(nbgap′, l′1, r

′
1, l
′
2, r
′
2, c) with nbgap′ = nbgap− |l′1− l1| − |l′2− l2| − |r′1−

r1| − |r′2 − r2|
37: end for

any of the 15 combinations when allowing gaps.

23

6 Conclusion

In this article, we proposed a set of efficient algorithms considering the nestedness assumption

in the common intervals model of gene clusters for genomes represented both as permutations

and as sequences. Two main questions remain open: (1) finding a more efficient algorithm for

the last variant of nested common intervals on sequences and (2) determining the complexity

of the Approximate Nested Common Intervals problem.

Acknowledgments

The authors wish to thank Ferdinando Cicalese, Martin Milanič and Mathieu Raffinot for

helpful suggestions on the complexity of finding nested common intervals on sequences and

on PQ-tree aspects.

References

Angibaud, S., Fertin, G., Rusu, I., Thévenin, A., and Vialette, S. (2009). On the approx-

imability of comparing genomes with duplicates. J. Graph Algor. Appl., 13(1):19–53.

Bergeron, A., Chauve, C., de Montgolfier, F., and Raffinot, M. (2008a). Computing com-

mon intervals of k permutations, with applications to modular decomposition of graphs.

SIAM J. Discret. Math., 22(3):1022–1039.

Bergeron, A., Corteel, S., and Raffinot, M. (2002). The algorithmic of gene teams. In

Proceedings of WABI 2002, volume 2452 of LNCS, pages 464–476.

Bergeron, A., Gingras, Y., and Chauve, C. (2008b). Formal models of gene clusters. In

24

Mandoiu, I. and Zelikovsky, A., editors, Bioinformatics Algorithms: Techniques and

Applications, chapter 8, pages 177–202. Wiley.

Bergeron, A. and Stoye, J. (2006). On the similarity of sets of permutations and its

applications to genome comparison. J. Comp. Biol., 13(7):1340–1354.

Blin, G., Chauve, C., Fertin, G., Rizzi, R., and Vialette, S. (2007). Comparing genomes

with duplications: a computational complexity point of view. ACM/IEEE Trans. Com-

put. Biol. Bioinf., 14(4):523–534.

Böcker, S., Jahn, K., Mixtacki, J., and Stoye, J. (2009). Computation of median gene

clusters. J. Comput. Biol., 16(8):1085–1099.

Booth, K. S. and Lueker, G. S. (1976). Testing for the consecutive ones property, interval

graphs and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci., 13(3):335–

379.

Didier, G., Schmidt, T., Stoye, J., and Tsur, D. (2007). Character sets of strings. J. Discr.

Alg., 5(2):330–340.

He, X. and Goldwasser, M. H. (2005). Identifying conserved gene clusters in the presence

of homology families. J. Comp. Biol., 12(6):638–656.

Hoberman, R. and Durand, D. (2005). The incompatible desiderata of gene cluster prop-

erties. In Proceedings of Recomb-CG 2005, volume 3678 of LNBI, pages 73–87.

Kurzik-Dumke, U. and Zengerle, A. (1996). Identification of a novel Drosophila melano-

gaster gene, angel, a member of a nested gene cluster at locus 59F4,5. Biochim. Bio-

phys. Acta, 1308(3):177–181.

Landau, G. M., Parida, L., and Weimann, O. (2005). Gene proximity analysis across whole

25

genomes via PQ trees. J. Comp. Biol., 12(10):1289–1306.

Ohno, S. (1970). Evolution by gene duplication. Springer Verlag.

Rahmann, S. and Klau, G. W. (2006). Integer linear programs for discovering approximate

gene clusters. In Proceedings of WABI 2006, volume 4175 of LNBI, pages 298–309.

Schmidt, T. and Stoye, J. (2004). Quadratic time algorithms for finding common intervals

in two and more sequences. In Proceedings of CPM 2004, volume 3109 of LNCS, pages

347–358.

Uno, T. and Yagiura, M. (2000). Fast algorithms to enumerate all common intervals of

two permutations. Algorithmica, 26(2):290–309.

Zhang, M. and Leong, H. W. (2009). Gene team tree: A hierarchical representation of

gene teams for all gap lengths. J. Comp. Biol., 16(10):1383–1398.

26

