
Decreased Effective Connectivity from Cortices
to the Right Parahippocampal Gyrus

in Alzheimer’s Disease Subjects

Guangyu Chen, B. Douglas Ward, Gang Chen, and Shi-Jiang Li

Abstract

The purpose of this study was to detect effective connectivity (EC) changes in the default mode network and
hippocampus network in 20 patients with Alzheimer’s disease (AD) and 20 cognitively normal (CN) subjects,
using multivariate Granger causality. The authors used the maximum coefficients in the multivariate autoregres-
sion model to quantitatively measure the different EC strength levels between the CN and AD groups. It was
demonstrated that the EC strength difference can classify AD from CN subjects. Further, the right parahippocam-
pal gyrus (PHP_R) showed imbalanced bidirectional EC connections. The PHP_R received weaker input con-
nections from the neocortices, but its output connections were significantly increased in AD. These findings
may provide neural physiological mechanisms for interpreting AD subjects’ memory deficits during the encoding
processes.
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Introduction

Alzheimer’s disease (ad) is a progressive, age-related
neurodegenerative disease that is the most frequent

form of age-related dementia. AD destroys brain cells, caus-
ing memory, cognitive, and behavioral problems. This is
often severe, affecting work, lifelong hobbies, and social
life. Resting-state functional magnetic resonance imaging
(R-fMRI) has been used extensively to diagnose AD (Chen
et al., 2011; Greicius et al., 2004; Li et al., 2002) and assess
treatment (Goveas et al., 2011; Li et al., 2012; Sole-Padulles
et al., 2013). These studies were based on the cross-correlation
coefficient between the spontaneous blood oxygen level-
dependent (BOLD) signals in the brain. However, the
functional connectivity calculations, which are based on a
synchronous relationship, provided no directional informa-
tion, known as effective connectivity (EC) or causal connec-
tion, among brain regions.

Recent developments demonstrated that the EC between
two signals can be detected with two popular methods:
Granger causality (GC) (Granger, 1969) and dynamic causal
modeling (DCM) analyses (David et al., 2006). Both meth-
ods have shown distinct and complementary functions in re-
lation to the detection of causality (Friston et al., 2013). They

differ in that the DCM method is highly dependent on the
predefined or hypothesis models, whereas the GC technique
does not need predefined model. On the other hand, the spec-
ification and interrogation of the DCM model allow us to bet-
ter determine the hidden causality (Boly et al., 2012), which
is specified by the model assumption. The present study fo-
cused on the GC-based analysis method.

GC has been employed to successfully map the EC from
the frontal areas to the parietal areas in the brains of subjects
during a visuomotor mapping task (Goebel et al., 2003). In
the R-fMRI studies, the test proved to be a feasible method
to study the EC network architecture at voxel (Wu et al.,
2013) or regional (Deshpande et al., 2011; Liao et al.,
2010; Uddin et al., 2009) levels. It also improved disease
classification (Deshpande et al., 2010). Several studies inves-
tigated brain EC, using GC on subjects with AD (Liu et al.,
2012; Miao et al., 2011) and amnestic mild cognitive impair-
ment (Adamcio et al., 2010; Liang et al., 2014), which is often
considered to be prodromal AD. However, these studies had
several limitations. For example, the degree of nodes in the
EC network was quantitatively compared between AD and
cognitively normal (CN) subjects, but the EC strength was
not directly measured (Liu et al., 2012). In another study, the
independent component analysis was employed to investigate
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the EC between different brain networks, but the causality be-
tween different brain regions was not available (Miao et al.,
2011). In using the multivariate GC method, it was reported
that scattered EC strength changes occurred in subjects with
amnestic mild cognitive impairment (Adamcio et al., 2010),
compared with CN subjects. The result did not correct the mul-
tiple comparison error. The brain regions showed EC changes
that did not relate to the functional areas of memory, such as
the parahippocampal gyrus and hippocampus.

In this study, the authors employed the GC to understand
the neural mechanisms of AD memory deficits. It was shown
that, in early AD, the episodic memory deficit, in particular,
occurred with the memory-encoding deficit (White and
Ruske, 2002) rather than during memory retrieving (Greene
et al., 1996).They hypothesized that the EC network pattern
related to the memory-encoding process would be signifi-
cantly impaired, and those related to memory-retrieving
processes would also be affected. They employed the multi-
variate GC to quantify the EC strength among brain regions
in the classic default mode network (DMN) (Greicius et al.,
2003) and the hippocampus network (HN) (Allen et al.,
2007). They utilized the support vector machine (SVM) to
determine EC patterns and further classify the CN and AD,
using the Leave-One-Out (LOO) algorithms to validate the
power of the classification method.

Materials and Methods

MRI data acquisition and subjects

This Institutional Review Board-approved study was con-
ducted in compliance with the HIPAA regulations. Each par-
ticipant provided written informed consent. A total of 40
human participants, including 20 CN subjects (11 males, 9
females, age 74.6 – 6.6 years, mini-mental state examination
(MMSE) scores: 29 – 1.3) and 20 mild AD subjects (14
males, 6 females, age 77.57 – 6.57 years, MMSE scores:
24.75 – 2.6), were recruited for this study. Due to limited
brain coverage, one AD subject and three CN subjects were
excluded from the further data analysis. Specific MRI imag-
ing protocols were previously described (Chen et al., 2011).
In brief, MRI measurements were carried out using a 3T
GE Signa whole-body scanner with a standard transmit–
receive head coil. High-resolution SPGR three-dimensional

images were acquired in the axial direction for anatomical ref-
erence (echo time [TE] = 4 msec, repetition time [RT] = 10
msec, inversion time = 450 msec, flip angle = 12�, 144 slices,
slice thickness = 1 mm and matrix size = 256 · 192). For the
R-fMRI measurement, 36 sagittal slices were obtained in
6 min with a single-shot gradient echo–echo planar imaging
(EPI) pulse sequence with TE of 25 msec, TR of 2 sec, flip
angle of 90�, slice thickness of 4 mm, matrix size of 64 · 64,
and field of view of 24 cm. The subjects were instructed to
close their eyes during the scan.

Data analysis

Image preprocessing: The fMRI data analysis was carried
out using the AFNI software (http://afni.nimh.nih.gov/afni)
and MATLAB programs (The MathWorks, Inc., Natick,
MA). In brief, motion correction was performed by volume
registration on the R-fMRI data (3dvolreg); detrending was
carried out to remove Legendre polynomials (3dDetrend).
Averaged signals from white matter and cerebrospinal fluid
and the six-motion vectors were removed from each voxel
time series as nuisance repressors. In addition, global signals
were regressed out from the whole brain. Finally, a band-
pass filter was applied to keep only low-frequency fluctua-
tions within 0.015 and 0.1 Hz frequency range.

The authors employed the multivariate GC method (Bli-
nowska et al., 2004) and selected 20 brain regions from the
HN (Allen et al., 2007) and DMN (Greicius et al., 2004), as
shown in Figure 1. The 20 regions of interest for the GC anal-
ysis include the bilateral cerebellar tonsil (CBT_L and
CBT_R), hippocampus (HIP_L and HIP_R), parahippocam-
pal gyrus (PHP_L and PHP_R), medical frontal cortex
(MFC_L and MFC_R), posterior cingulated cortex (PCC_L
and PCC_R), dorsolateral prefrontal cortex (DLPFC_L and
DLPFC_R), inferior parietal cortex (IPC_L and IPC_R),
lateral parietal cortex (LPC_L and LPC_R), superior frontal
cortex (SFC_L and SFC_R), paracentral gyrus (PAR_L and
PAR_R). R, right; L, left.

Their coordinates are listed in the Supplementary Table S1
(Supplementary Data are available online at www.liebertpub
.com/brain). Each region was represented with a cube of 27
adjacent voxels around the center coordinates. The average
time series over the 27 voxels for each region was extracted
and there were 20 regionwise time series.

FIG. 1. Twenty regions of
interest (ROI) for Granger
causality analysis: the bilat-
eral cerebellar tonsil (CBT),
hippocampus (HIP), parahip-
pocampal gyrus (PHP), med-
ical frontal cortex (MFC),
posterior cingulated cortex
(PCC), dorsolateral prefron-
tal cortex (DLPFC), inferior
parietal cortex (IPC), lateral
parietal cortex (LPC), supe-
rior frontal cortex (SFC),
paracentral gyrus (PAR). R,
right; L, left.
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Analysis of GC

As described above, the 20 regionwise time series may be
expressed as follows in Equation 1.

X(t) = (x1(t), x2(t), . . . , xm(t)) (1)

where m represented the number of brain regions. The mul-
tivariate auto regression (MVAR) model (Eq. 2) was
employed to measure the values of all possible EC strengths
from all other regions to region j.

xj(t) = +
p

i = 1

Aj(i)X(t� i)þEj(t) (2)

where Aj(i) = (aj1(i), aj2(i), . . . . . . , ajm(i)) are the regression
coefficients. The parameter p is the model order or the lag pa-
rameter. Aj(i) is the regression coefficient matrix, E is the re-
sidual error matrix. X is the time series matrix of different
regions. To determine the optimal lag parameter p, Akaike
Information Criterion (AIC) (Akaike, 1974) was used to min-
imize the chosen criterion (AIC) and was calculated as fol-
lows (Eq. 3):

AIC = 2p · mþ n ln
1

n
+
n

i = 1

E2
j (i)

� �� �
(3)

where n is the number of time points. In their study, they
found that the optimal time lag p is 2, which was consistent
with a previous study (Harrison et al., 2003).

To find the EC between regions j and k, partial regression
(Eq. 4) for each regionwise time series was calculated:

xk
j (t) = +

p

i = 1

Ajk(i)(x1(t� i), . . . , xk� 1(t� i),

xkþ 1(t� i), . . . , xm(t� i))T þUjk(t)

(4)

where the lag parameter p is 2, as determined above, Ujk(t) is
the module residual.

The F-test (Eq. 5) was calculated as follows:

Fjk =
+
T

i = 1

U2
j (t)� +

T

i = 1

E2
j (t)

� �
=p

+
T

i = 1

E2
j (t)

� �
=(T � 2p� 1)

(5)

If the result of the F-test of residuals of full (Eq. 2) and
partial (Eq. 4) regressions is significant, the EC of k causes
j is significant. Previous studies employed the F-test of resid-
uals to determine the significance of EC, however, the EC
strength was not provided (Goebel et al., 2003). In the pres-
ent study, the authors used the maximum value of the regres-
sion coefficient matrix A in Equations (2) and (4) to represent
the EC strength. Let Amax be the EC strength matrix. The
entry (Amax(ij)) represents the EC strength from region i to
region j. The Amax(ij) is calculated by:

Amax(ij) = max(jaij(1)j , jaij(2)j, . . . , jaij(p)j) (6)

Group-level analysis

For each individual subject, there is one EC matrix (Amax);
the matrix size is 20 by 20. To find a difference pattern in
Amax between the CN group and the AD group, for each EC
(region i to region j) edge, the Wilcoxon Rank Sum test was
used to compare the mean between the CN and AD groups.

The Wilcoxon Rank Sum test results revealed a set of
edges whose EC strengths were significantly different be-
tween the AD and CN groups without correcting multiple
comparison errors. To correct this error and establish a
threshold, Monte Carlo simulation was performed, using
1000 random permutations between AD and CN subjects.
They determined that a brain region has significant EC con-
nections ( p < 0.05), if it had at least three edges with individ-
ual significant EC strengths. In other words, they deemed a
brain region insignificant, if it had less than three significant
EC connections.

Classification methodology

The above EC pattern may discriminate between AD and
CN subjects. The difference in EC strengths between CN and
AD groups may be separated into two different patterns. One
set of edges, the Increased Network, showed higher EC strength
in AD subjects, as opposed to CN subjects. The other set of
edges, the Decreased Network, showed significantly lower
EC strength in AD subjects than in the CN subjects. That is

Increased Network = f(i, j)jmean(AAD
max(ij))

>mean(ACN
max(ij)))g

(7)

Decreased Network = f(i, j)jmean(AAD
max(ij))

<mean(ACN
max(ij)))g

(8)

where mean(AAD
max(ij)) and mean(ACN

max(ij)) are averaged values
of EC strength between regions i and j in AD and CN groups,
respectively. For the increased network, they calculated the
increased network index (INI) for each subject s, as follows:

INI(s) = +
i

+
j

ECij(s)

# edges (Increased Network)
(9)

where ECij(s) is the EC strength between region i and j for
subject s, #edges refers to the total number of EC of the in-
creased network. Similarly, they calculated the decreased
network index (DNI) for subject s, as below:

DNI(s) = +
i

+
j

ECij(s)

# edges (Decreased Network)
(10)

where ECij(s) is the EC strength for subject s in the decreased
network.

For classification, the two index (INI and DNI) values
were obtained for each individual subject. Then, an SVM au-
tomatic classification algorithm was employed to separate
CN subjects from AD subjects (Mourao-Miranda et al.,
2005).

Because the same subjects were used for training and
classification, this could result in an overly optimistic esti-
mate of the error rate. When data sets have a limited size,
as in the present situation, the LOO Method is often used
to cross-validate the classifier (Richard and Johnson, 1982;
Sergios Theodoridis, 2006). That is, the classification criteria
are determined, using all subjects except the one subject to be
evaluated. This entire process is repeated for each subject,
one at a time, providing an unbiased estimate of the classifi-
cation error rate. The most important variable is the classifi-
cation threshold (CT) value. Specifically, they performed 36
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LOO processes. With each LOO procedure, they performed a
classification with 181 different CT values. Then, the mis-
classification probabilities were estimated by the following
equations (Cont = CN) and generate all values in the ROC
curve as plotted in Figure 3.

P(AD j Cont) = mCont=nCont = 1� Specificity

P(Cont j AD) = mAD=nAD = 1� Sensitivity
(11)

The LOO method pseudocodes, which were applied spe-
cifically to their EC-based classification method, are listed
in the Supplementary Table S2.

Results

Group analysis of EC strength

Wilcoxon Rank Sum test was performed for each EC be-
tween CN and AD. Figure 2A demonstrates the difference in
the directional EC network wherein the ECs have signifi-
cantly different strengths between AD and CN. The red
edges are bidirectional and the non-red edges are unidirec-
tional. This difference network was further separated into a
set of decreased EC strength connections (Fig. 2B) and a
set of increased EC strength connections (Fig. 2C) in the AD
group compared with the CN group. Specifically, the EC
strengths from 10 neocortex regions (SFC_L, LPC_L, IPC_L,
MFC_L, PAR_L, PCC_L, PAR_R, MFC_R, DLPFC_R, and
LPC_R) connecting to the PHP_R were significantly decreased,
whereas the EC strength from PHP_R connected to the neocor-
tex regions of SFC_L, PAR_L, PCC_R, DLPFC_R, and IPC_R
was significantly increased.

The weights of INI and DNI in SVM classification

The weights for INI and DNI in the SVM classification are
1.34 and 1, respectively (Supplementary Fig. S1). The in-
creased EC network has 34% more weight on classifying
AD than the decreased EC network. That means the INI
index has more relative importance when classifying the
AD index, as opposed to that of the DNI. The model of
the SVM classification is C = 0.2 + 1.34 · INI�DNI. C is
the model value for each subject. If C < 0, then the subject
is classed as CN. If C > 0, the subject is classified as AD.

The power of the EC-based classification

The classification error rate was estimated using the LOO
method. At this point, a Type I Error indicates a false positive
in that a CN subject was falsely classified as an AD subject.
Conversely, a Type II Error, or false negative means that an
AD subject was falsely classified as a CN Subject. The prob-
ability of a Type I or II error was estimated by the proportion
of misclassifications within each group. The results from the
SVM classification with INI and DNI indices and the LOO
error correction were plotted in the receiver operating char-
acteristic (ROC) curve, as shown in Figure 3. The ROC
curves show the tradeoff between sensitivity and specificity.
The ROC area under the curve is 0.83.

FIG. 2. Difference in effective connectivity (EC) patterns between Alzheimer’s disease (AD) and cognitively normal (CN)
group. (A) The different EC connection patterns between AD and CN groups. Red edges show bidirectional EC; blue edge show
unidirectional EC. The different EC patterns were separated into two different patterns, according to their EC strengths. (B) The
decreased EC strength in which the AD group has significantly weaker strength of each edge than the CN group. (C) The in-
creased EC strength in which the AD group has significantly higher strength of each edge than the CN group. Red arrows in-
dicate the EC direction. The arrow direction indicates the causal relationship between the nodes from one to the other.

FIG. 3. The receiver operating characteristic (ROC) curve
of the classification between CN and AD groups, which is
cross-validated with the Leave-One-Out method. The area
under the ROC curve is 0.83.
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Brain atrophy

Previous neuroimaging studies demonstrated that brain at-
rophy exists in AD (Buckner et al., 2005; Greicius et al.,
2004). Because brain atrophy could confound the EC mea-
surement, it was important to check if the atrophy was pres-
ent in the selected brain regions (the cubes of 27 voxels). The
authors conducted voxel-based morphometry analysis
(Mechelli et al., 2005), using the SPM software. Figure 4
shows that brain atrophy existed; however, it did not overlap
with selected regions.

Discussion

Their results corroborate earlier findings and also extend
them in four important ways. First, this study adopted the
multivariate GC method to test and compare the ECs
among 20 brain regions in DMN and HN between AD and
CN groups. They further employed the method to quantita-
tively measure the EC strength by using the maximum
MVAR model coefficients. This approach made it possible
to compare the different levels of EC strength between CN
and AD groups and provide a new biomarker to classify
CN and AD subjects by measuring INI and DNI indices.

Second, previous studies demonstrated asymmetric atro-
phy in AD (Derflinger et al., 2011). Moreover, the right
side PHP deficit correlated best with memory and mental sta-
tus decline (Keilp et al., 1996; Schmidt-Wilcke et al., 2009).
Their results are consistent with these previous findings.
They found that the AD asymmetric alterations showing
the largest changed area was located in PHP_R, however,
there were minor changes in PHP_L. The authors further
showed that EC strengths have directional connection infor-
mation. In fact, these strengths, which were connected to
the PHP_R region from 10 neocortical regions, were signif-

icantly decreased. These directional EC connection patterns
may better characterize the disease progression.

Third, the PHP is an essential link between the neocortex and
hippocampus (de Curtis and Pare, 2004; van Strien et al., 2009).
Indeed, this important region is involved in many complex func-
tions, such as memory, sensory representation, spatial orienta-
tion, and object recognition (Hayes et al., 2007; Murray and
Richmond, 2001). The PHP regions they selected included
the entorhinal and perirhinal cortices (coordinates in Talairach
space [x, y, z] for the right PHP is [25, �26, �14] and for
the left is [�25,�26,�14]). Anatomically, the entorhinal cor-
tex is the source of perforant pathway, which projects to all
hippocampal formation fields. The perirhinal cortex receives
sensory information from all sensory regions of the neocortex.
Therefore, the PHP regions that they selected represented the
anatomical gate for the hippocampus to receive and send infor-
mation to the neocortex. The observed decreased EC input
from the neocortical regions to PHP in this study may suggest
that the gate function of the PHP may be disrupted in the AD
group. It is conceivable that this disrupted gateway may result
in memory encoding deficit symptoms in patients with AD.

Fourth, the most challenging and complicated question is
why the PHP_R showed imbalanced bidirectional EC con-
nections. That is, how does one explain why the PHP_R
received weaker input connections from the neocortical re-
gions, yet its output connections to these regions were signif-
icantly increased with the presence of AD. Their hypothesis
is that the weaker input connections from the neocortices
may be related to their disrupted feedback system in the neo-
cortices (Lavenex and Amaral, 2000) and the stronger output
connections from the PHP to the neocortex may be associ-
ated with the detrimental feed-forward systems in the PHP.

It has been suggested that layers II/III/V/VI in two brain re-
gions have most of the feedback synaptic connections, whereas

FIG. 4. Possible brain at-
rophy in the selected 20 ROIs
for Granger causality analy-
sis. The selected 20 ROIs
(red) were not overlapping
with the atrophic areas
(green) in the AD group.
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layer IV has major feed-forward synaptic connections (Markov
et al., 2013). Previous studies showed that AD has major neu-
rofibrillary tangle accumulation in layer III/V of temporal, pa-
rietal, and frontal association cortices (Arnold et al., 1991;
Pearson et al., 1985). Patients with AD lose large pyramidal
neurons in layers III and V (Brun and Englund, 2002). It is con-
ceivable that the presence of neurofibrillary tangle and the loss
of pyramidal neurons in layers III/V may have had an impact
on the feedback synaptic connections. These mechanisms
may have served as a means of interpreting the observed de-
crease in EC strength from the neocortices to the PHP.

In discussion of observed EC strength increase from the
PHP to the neocortices, it is important to note that the acetyl-
choline level in normal subjects is enhanced during memory
encoding (Hasselmo and McGaughy, 2004). The high acetyl-
choline level partially suppresses excitatory feed-forward
connections, which project from the PHP area to associate
neocortex (Hasselmo, 1999, 2006). On the contrary, due to
the cholinergic degeneration evident in patients with AD
(Francis et al., 1999), the inhibitory function of the acetyl-
choline could be weakened, resulting in increased EC
strengths from the PHP to the neocortices.

Limitations

Although they provided inferences to interpret why the
PHP_R showed imbalanced bidirectional EC connections
in the AD subject group, a few questions still remain. For ex-
ample, due to the limitation of the spatial resolution (i.e.,
3.75 mm) in the EPI images, they could not distinguish the
signals at the laminar level of the cortices. They could not
separate feedback connections from feed-forward connec-
tions, as proposed recently in a bow-tie model (Markov
et al., 2013). In the future, they will develop an ultra-high
resolution functional MRI technique that can achieve
0.4 mm or less of in-plane resolution to test their hypothesis.

In addition to the limited spatial resolution, the current
study also is limited by the temporal resolution of the TR
of 2 sec. To find the EC, the GC test requires specifying
the lag time points in their algorithm (Eq. 2). They employed
the commonly used AIC method (Goebel et al., 2003; Roe-
broeck et al., 2005; Uddin et al., 2009) and found the lag
time is 4 sec. However, the spontaneous BOLD signal is an
indirect measure of neural activity. Although there is no lit-
erature to confirm the true causal relationships within such
long time interval of 4 sec in R-fMRI data, the ECs of
fMRI BOLD signals showed the robustness to a wide variety
of changes in hemodynamic response properties (Seth et al.,
2013). It is expected that the recent advanced fast imaging
technique (Zahneisen et al., 2012) could reduce TR to 100
msec to alleviate the limitation in the spatial resolution.

The small sample size of this study could limit the study’s
power. This will result in an overestimate of the classifica-
tion. Although a relatively unbiased LOO method was ap-
plied to error estimation, it was imperfect. In the future,
they will study more subjects to examine the EC between
AD and CN and use another independent group to validate
the classification method.

Author Disclosure Statement

No competing financial interests exist.

References

Adamcio B, Sperling S, Hagemeyer N, Walkinshaw G, Ehren-
reich H. 2010. Hypoxia inducible factor stabilization leads
to lasting improvement of hippocampal memory in healthy
mice. Behav Brain Res 208:80–84.

Akaike H. 1974. A new look at the statistical model identifica-
tion. IEEE Trans Automat Control 19:8.

Allen G, Barnard H, McColl R, Hester AL, Fields JA, Weiner MF,
Ringe WK, Lipton AM, Brooker M, McDonald E, Rubin CD,
Cullum CM. 2007. Reduced hippocampal functional connec-
tivity in Alzheimer disease. Arch Neurol 64:1482–1487.

Arnold SE, Hyman BT, Flory J, Damasio AR, Van Hoesen GW.
1991. The topographical and neuroanatomical distribution of
neurofibrillary tangles and neuritic plaques in the cerebral
cortex of patients with Alzheimer’s disease. Cereb Cortex
1:103–116.

Blinowska KJ, Kus R, Kaminski M. 2004. Granger causality and
information flow in multivariate processes. Phys Rev E Stat
Nonlin Soft Matter Phys 70:050902.

Boly M, Moran R, Murphy M, Boveroux P, Bruno MA, Noir-
homme Q, Ledoux D, Bonhomme V, Brichant JF, Tononi
G, Laureys S, Friston K. 2012. Connectivity changes under-
lying spectral EEG changes during propofol-induced loss of
consciousness. J Neurosci 32:7082–7090.

Brun A, Englund E. 2002. Regional pattern of degeneration in
Alzheimer’s disease: neuronal loss and histopathological
grading. Histopathology 41:40–55.

Buckner RL, Snyder AZ, Shannon BJ, LaRossa G, Sachs R,
Fotenos AF, Sheline YI, Klunk WE, Mathis CA, Morris
JC, Mintun MA. 2005. Molecular, structural, and functional
characterization of Alzheimer’s disease: evidence for a rela-
tionship between default activity, amyloid, and memory. J
Neurosci 25:7709–7717.

Chen G, Ward BD, Xie C, Li W, Wu Z, Jones JL, Franczak M,
Antuono P, Li SJ. 2011. Classification of Alzheimer disease,
mild cognitive impairment, and normal cognitive status with
large-scale network analysis based on resting-state functional
MR imaging. Radiology 259:213–221.

David O, Kiebel SJ, Harrison LM, Mattout J, Kilner JM, Friston
KJ. 2006. Dynamic causal modeling of evoked responses in
EEG and MEG. Neuroimage 30:1255–1272.

de Curtis M, Pare D. 2004. The rhinal cortices: a wall of inhibi-
tion between the neocortex and the hippocampus. Prog Neu-
robiol 74:101–110.

Derflinger S, Sorg C, Gaser C, Myers N, Arsic M, Kurz A, Zim-
mer C, Wohlschlager A, Muhlau M. 2011. Grey-matter atro-
phy in Alzheimer’s disease is asymmetric but not lateralized.
J Alzheimers Dis 25:347–357.

Deshpande G, Li Z, Santhanam P, Coles CD, Lynch ME,
Hamann S, Hu X. 2010. Recursive cluster elimination
based support vector machine for disease state prediction
using resting state functional and effective brain connectiv-
ity. PLoS One 5:e14277.

Deshpande G, Santhanam P, Hu X. 2011. Instantaneous and
causal connectivity in resting state brain networks derived
from functional MRI data. Neuroimage 54:1043–1052.

Francis PT, Palmer AM, Snape M, Wilcock GK. 1999. The cho-
linergic hypothesis of Alzheimer’s disease: a review of prog-
ress. J Neurol Neurosurg Psychiatry 66:137–147.

Friston K, Moran R, Seth AK. 2013. Analysing connectivity
with Granger causality and dynamic causal modelling. Curr
Opin Neurobiol 23:172–178.

Goebel R, Roebroeck A, Kim DS, Formisano E. 2003. Investi-
gating directed cortical interactions in time-resolved fMRI

EFFECTIVE CONNECTIVITY ALTERATIONS IN AD PATIENTS 707



data using vector autoregressive modeling and Granger cau-
sality mapping. Magn Reson Imaging 21:1251–1261.

Goveas JS, Xie C, Ward BD, Wu Z, Li W, Franczak M, Jones JL,
Antuono PG, Li SJ. 2011. Recovery of hippocampal network
connectivity correlates with cognitive improvement in mild
Alzheimer’s disease patients treated with donepezil assessed
by resting-state fMRI. J Magn Reson Imaging 34:764–773.

Granger CWJ. 1969. Investigating causal relations by economet-
ric models and cross-spectral methods. Econometrica 37:5.

Greene JD, Baddeley AD, Hodges JR. 1996. Analysis of the epi-
sodic memory deficit in early Alzheimer’s disease: evidence
from the doors and people test. Neuropsychologia 34:537–551.

Greicius MD, Krasnow B, Reiss AL, Menon V. 2003. Functional
connectivity in the resting brain: a network analysis of the de-
fault mode hypothesis. Proc Natl Acad Sci U S A 100:253–258.

Greicius MD, Srivastava G, Reiss AL, Menon V. 2004. Default-
mode network activity distinguishes Alzheimer’s disease
from healthy aging: evidence from functional MRI. Proc
Natl Acad Sci U S A 101:4637–4642.

Harrison L, Penny WD, Friston K. 2003. Multivariate autoregres-
sive modeling of fMRI time series. Neuroimage 19:1477–1491.

Hasselmo ME. 1999. Neuromodulation: acetylcholine and mem-
ory consolidation. Trends Cogn Sci 3:351–359.

Hasselmo ME. 2006. The role of acetylcholine in learning and
memory. Curr Opin Neurobiol 16:710–715.

Hasselmo ME, McGaughy J. 2004. High acetylcholine levels set
circuit dynamics for attention and encoding and low acetyl-
choline levels set dynamics for consolidation. Prog Brain
Res 145:207–231.

Hayes SM, Nadel L, Ryan L. 2007. The effect of scene context
on episodic object recognition: parahippocampal cortex me-
diates memory encoding and retrieval success. Hippocampus
17:873–889.

Keilp JG, Alexander GE, Stern Y, Prohovnik I. 1996. Inferior
parietal perfusion, lateralization, and neuropsychological
dysfunction in Alzheimer’s disease. Brain Cogn 32:365–
383.

Lavenex P, Amaral DG. 2000. Hippocampal-neocortical interac-
tion: a hierarchy of associativity. Hippocampus 10:420–430.

Li SJ, Li Z, Wu G, Zhang MJ, Franczak M, Antuono PG. 2002.
Alzheimer disease: evaluation of a functional MR imaging
index as a marker. Radiology 225:253–259.

Li W, Antuono PG, Xie C, Chen G, Jones JL, Ward BD, Franc-
zak MB, Goveas JS, Li SJ. 2012 Changes in regional cerebral
blood flow and functional connectivity in the cholinergic
pathway associated with cognitive performance in subjects
with mild Alzheimer’s disease after 12-week donepezil treat-
ment. Neuroimage 60:1083–1091.

Liang P, Li Z, Deshpande G, Wang Z, Hu X, Li K. 2014. Altered
causal connectivity of resting state brain networks in amnesic
MCI. PLoS One 9:e88476.

Liao W, Mantini D, Zhang Z, Pan Z, Ding J, Gong Q, Yang Y,
Chen H. 2010. Evaluating the effective connectivity of rest-
ing state networks using conditional Granger causality. Biol
Cybern 102:57–69.

Liu Z, Zhang Y, Bai L, Yan H, Dai R, Zhong C, Wang H, Wei
W, Xue T, Feng Y, You Y, Tian J. 2012. Investigation of the
effective connectivity of resting state networks in Alz-
heimer’s disease: a functional MRI study combining inde-
pendent components analysis and multivariate Granger
causality analysis. NMR Biomed 25:1311–1320.

Markov NT, Ercsey-Ravasz M, Van Essen DC, Knoblauch K,
Toroczkai Z, Kennedy H. 2013. Cortical high-density coun-
terstream architectures. Science 342:1238406.

Mechelli A, Price CJ, Friston KJ, Ashburner J. 2005. Voxel-
based morphometry of the human brain: methods and appli-
cations. Curr Med Imaging Rev 1:105–113.

Miao X, Wu X, Li R, Chen K, Yao L. 2011. Altered connectivity pat-
tern of hubs in default-mode network with Alzheimer’s disease:
an Granger causality modeling approach. PLoS One 6:e25546.

Mourao-Miranda J, Bokde AL, Born C, Hampel H, Stetter M.
2005. Classifying brain states and determining the discrimi-
nating activation patterns: support vector machine on func-
tional MRI data. Neuroimage 28:980–995.

Murray EA, Richmond BJ. 2001. Role of perirhinal cortex in ob-
ject perception, memory, and associations. Curr Opin Neuro-
biol 11:188–193.

Pearson RC, Esiri MM, Hiorns RW, Wilcock GK, Powell TP.
1985. Anatomical correlates of the distribution of the patho-
logical changes in the neocortex in Alzheimer disease. Proc
Natl Acad Sci U S A 82:4531–4534.

Richard A, Johnson DWW. 1982. Applied Multivariate Statisti-
cal Analysis. Upper Saddle River, NJ: Prentice-Hall.

Roebroeck A, Formisano E, Goebel R. 2005. Mapping directed
influence over the brain using Granger causality and fMRI.
Neuroimage 25:230–242.

Schmidt-Wilcke T, Poljansky S, Hierlmeier S, Hausner J, Ibach B.
2009. Memory performance correlates with gray matter density
in the ento-/perirhinal cortex and posterior hippocampus in pa-
tients with mild cognitive impairment and healthy controls—a
voxel based morphometry study. Neuroimage 47:1914–1920.

Sergios Theodoridis KK. 2006. Pattern Recognition. Waltham,
MA: Academic Press.

Seth AK, Chorley P, Barnett LC. 2013. Granger causality anal-
ysis of fMRI BOLD signals is invariant to hemodynamic con-
volution but not downsampling. Neuroimage 65:540–555.

Sole-Padulles C, Bartres-Faz D, Llado A, Bosch B, Pena-Gomez
C, Castellvi M, Rami L, Bargallo N, Sanchez-Valle R, Moli-
nuevo JL. 2013. Donepezil treatment stabilizes functional
connectivity during resting state and brain activity during
memory encoding in Alzheimer’s disease. J Clin Psychophar-
macol 33:199–205.

Uddin LQ, Kelly AM, Biswal BB, Castellanos FX, Milham MP.
2009. Functional connectivity of default mode network com-
ponents: correlation, anticorrelation, and causality. Hum
Brain Mapp 30:625–637.

van Strien NM, Cappaert NL, Witter MP. 2009. The anatomy of
memory: an interactive overview of the parahippocampal-
hippocampal network. Nat Rev Neurosci 10:272–282.

White KG, Ruske AC. 2002. Memory deficits in Alzheimer’s
disease: the encoding hypothesis and cholinergic function.
Psychon Bull Rev 9:426–437.

Wu GR, Stramaglia S, Chen H, Liao W, Marinazzo D. 2013.
Mapping the voxel-wise effective connectome in resting
state FMRI. PLoS One 8:e73670.

Zahneisen B, Hugger T, Lee KJ, LeVan P, Reisert M, Lee HL,
Asslander J, Zaitsev M, Hennig J. 2012. Single shot concen-
tric shells trajectories for ultra fast fMRI. Magn Reson Med
68:484–494.

Address correspondence to:
Shi-Jiang Li

Department of Biophysics
Medical College of Wisconsin
8701 Watertown Plank Road

Milwaukee, WI 53226

E-mail: sjli@mcw.edu

708 CHEN ET AL.


