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A Dynamical System for PageRank
with Time-Dependent Teleportation
David F. Gleich and Ryan A. Rossi

Abstract. We propose a dynamical system that captures changes to the network cen-
trality of nodes as external interest in those nodes varies. We derive this system by
adding time-dependent teleportation to the PageRank score. The result is not a single
set of importance scores, but rather a time-dependent set. These can be converted into
ranked lists in a variety of ways, for instance, by taking the largest change in the im-
portance score. For an interesting class of dynamic teleportation functions, we derive
closed-form solutions for the dynamic PageRank vector. The magnitude of the deviation
from a static PageRank vector is given by a PageRank problem with complex-valued
teleportation parameters. Moreover, these dynamical systems are easy to evaluate. We
demonstrate the utility of dynamic teleportation on both the article graph of Wikipedia,
where the external interest information is given by the number of hourly visitors to each
page, and the Twitter social network, where external interest is the number of tweets
per month. For these problems, we show that using information from the dynamical
system helps improve a prediction task and identify trends in the data.

1. Introduction

The PageRank vector of a directed graph is the stationary distribution of a
Markovian random surfer. At a node, the random surfer either
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1. transitions to a new node uniformly chosen from the set of out-edges, or

2. does something else (e.g., leaves the graph and then randomly returns)
[Page et al. 99, Langville and Meyer 06].

The probability that the surfer performs the first action is known as the damping
parameter in PageRank and is denoted by α. The second action is called tele-
porting and is modeled by the surfer picking a node at random according to a
distribution called the teleportation distribution vector or personalization vector.
This PageRank Markov chain always has a unique stationary distribution for ev-
ery 0 ≤ α < 1. In this paper, we focus on the teleportation distribution vector v
and study how changing teleportation behavior manifests itself in a dynamical
system formulation of PageRank.

To proceed further, we need to formalize the PageRank model. Let A be the
adjacency matrix for a graph, where Ai,j denotes an edge from node i to node j.
To avoid a proliferation of transposes, we define P as the transposed transition
matrix for a random walk on a graph:

Pj,i = probability of transitioning from node i to node j.

Hence, the matrix P is column-stochastic, in contrast to the more common row-
stochastic matrices found in probability theory. Throughout this manuscript, we
employ uniform random walks on a graph, in which case P = AT D−1 , where D

is a diagonal matrix with the out-degree of each node on the diagonal. However,
none of the theory is restricted to this type of random walk, and any column-
stochastic matrix will do. If any nodes have no out-links, we assume that they
are adjusted in one of the standard ways [Boldi et al. 07] (in our experiments,
this applies only to Twitter, in which case we added a uniform transition dis-
tribution to nodes with no out-links; this is the weakly personalized case). Let
v be a teleportation distribution vector such that vi ≥ 0 and

∑
i vi = 1. This

vector models where the surfer will transition when “doing something else.” The
PageRank Markov chain then has the transition matrix

αP + (1 − α)veT .

While finding the stationary distribution of a Markov chain usually involves
computing an eigenvector or solving a singular linear system, the PageRank
chain has a particularly simple form for the stationary distribution vector x:

(I − αP )x = (1 − α)v.

The sensitivity of PageRank with respect to v is fairly well understood. In
[Langville and Meyer 06], the authors devote a section to determining the Ja-
cobian of the PageRank vector with respect to v. The choice of v is often best
guided by an application-specific measure. By setting v = ei , that is, the ith
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canonical basis vector

ei =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0
1
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where the 1 is in the ith row, PageRank computes a highly localized diffusion
that is known to produce empirically meaningful clusters and theoretically sup-
ported clusters [Andersen et al. 06, Tong et al. 06]. By choosing v based on a
set of known-to-be-interesting nodes, PageRank will compute an expanded set
of interesting nodes [Gyöngyi et al. 04, Singh et al. 07]. Yet in all of these cases,
v is chosen once for the graph application or particular problem.

In the original motivation of PageRank [Page et al. 99], the distribution v
should model how users behave on the Web when they do not click a link. When
this intuition is applied to a site like Wikipedia, it suggests that the teleportation
function should vary as particular topics become interesting. For instance, in
our experiments (Section 5), we examine the number of page views for each
Wikipedia article during a period during which a major earthquake occurred.
Suddenly, page views to “Earthquake” spiked, presumably because that word
was being searched. We wish to include this behavior in our PageRank model
to understand what is now important in light of radically different behavior.
One option would be to recompute a new PageRank vector given the observed
teleporting behavior at the current time. Our proposal for a dynamical system
is another alternative. That is, we define a new model in which teleportation is
the time-dependent function v(t).

At each time t, v(t) is a probability distribution of the places to which the
random walk teleports. Figure 1 illustrates this model. We return to a comparison
between this approach and solving PageRank systems in Section 4.

The dynamical system we propose is a generalization of PageRank in the
sense that if v(t) is a constant function in time, then we converge to the stan-
dard PageRank vector (Theorem 2.4). Additionally, we can analyze the dynam-
ical PageRank function for some simple oscillatory teleportation functions v(t).
Bounding the deviation of these oscillatory PageRank values from the static
PageRank vector involves solving a PageRank problem with complex teleporta-
tion [Horn and Serra-Capizzano 07, Constantine and Gleich 10]. This result is,
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Figure 1. On the left, we have PageRank with static teleportation. At each step,
the teleportation is to each node with uniform probability 1/5. On the right,
we have the PageRank model with dynamic teleportation. In this case, the tele-
portation distribution (illustrated to the side of each node) changes with time.
Thus, the upper nodes are teleported to more frequently during the middle time
regime. In both cases, the graph is fixed. We study the effect of such dynamic
teleportation on the PageRank scores.

perhaps, the first nonanalytical use of PageRank with a complex teleportation
parameter.

In our new dynamical system, we do not compute a single ranking vector as
others have done with time-dependent rankings [Grindrod et al. 11]. Rather,
we compute a time-dependent ranking function x(t), the dynamic PageRank
vector at time t, from which we can extract different static rankings (Sec-
tion 2.4). There are two complications that arise from the use of empirically
measured data. First, we must choose a time scale for our ODE based on the
period of our page-view data (Section 2.5). Put a bit informally, we must choose
the time unit for our ODE; it is not dimensionless. We show analytically that
some choices of the time scale amount to solving the PageRank system for each
change in the teleportation vector. Second, we also investigate smoothing the
measured page-view data (Section 2.6). To compute this dependent ranking
function x(t), we discuss ordinary differential equation (ODE) integrators in
Section 3.

We discuss the impact of these choices on two problems: page views from
Wikipedia and a network from Twitter. We also investigate how the rankings
extracted from our methods differ from those extracted by other static rank-
ing measurements. We can use these rankings for a few interesting applications.
Adding the dynamic PageRank scores to a prediction task decreases the aver-
age error (Section 6.1) for Twitter. Clustering the dynamic PageRank scores
yields many of the standard time-series features in social networks (Section 6.2).
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ı the imaginary unit
n number of nodes in a graph
e the vector of all ones

P column stochastic matrix
α damping parameter in PageRank
v teleportation distribution vector
x solution to the PageRank computation: (I − αP )x = (1 − α)v

x(t) solution to the dynamic PageRank computation for time t

v(t) a teleportation distribution vector at time t

c the cumulative rank function
r the variance rank function
d the difference rank function

vk the teleportation distribution for the kth observed page-views vector
θ decay parameter for time-series smoothing
s the time scale of the dynamical system

tm ax the last time of the dynamical system

Table 1. Summary of notation. Matrices (e.g., P ) are denoted by boldface up-
percase italic letters; vectors (e.g., e) are denoted by boldface lowercase roman
letters; scalars (e.g., s and θ) are nonboldface italic or Greek letters. Indexed ele-
ments are vectors if they are in boldface (e.g., vk ) and scalars if not (e.g., tm ax ).

Finally, using Granger causality testing on dynamic PageRank scores helps us
find a set of interesting links in the graph (Section 6.3).

We have made our code and data available in the spirit of reproducible re-
search.1

2. PageRank with Time-Dependent Teleportation

We begin our discussion by summarizing in Table 1 the notation introduced
thus far. In order to incorporate changes in the teleportation into a new model
for PageRank, we begin by reformulating the standard PageRank algorithm in
terms of changes to the PageRank values for each page. This step allows us to
state PageRank as a dynamical system, in which case we can easily incorporate
changes into the vector.

The standard PageRank algorithm is the power method for the PageRank
Markov chain [Langville and Meyer 06]. After simplifying this iteration by

1 Available at http://www.cs.purdue.edu/homes/dgleich/codes/dynsyspr-im.
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assuming that eT x = 1, it becomes

x(k+1) = αPx(k) + (1 − α)v.

In fact, this iteration is equivalent to the Richardson iteration for the PageRank
linear system (I − αP )x = (1 − α)v. This fact is relevant because the Richard-
son iteration is usually defined as

x(k+1) = x(x) + ω
[
(1 − α)v − (I − αP )x(k)

]
.

For ω = 1, we have

Δx(k) = x(k+1) − x(k) = αPx(k) + (1 − α)v − x(k) = (1 − α)v − (I − αP )x(k) .

Thus, changes in the PageRank values at a node evolve, based on the incre-
ment (1 − α)v − (I − αP )x(k) . We reinterpret this update as a continuous-time
dynamical system

x′(t) = (1 − α)v − (I − αP )x(t). (2.1)

To define the PageRank problem with time-dependent teleportation, we make
v(t) a function of time.

Definition 2.1. The dynamic PageRank model with time-dependent teleportation is
the solution of

x′(t) = (1 − α)v(t) − (I − αP )x(t), (2.2)

where x(0) is a probability distribution vector and v(t) is a probability distribu-
tion vector for all t.

In the dynamic PageRank model, the PageRank values x(t) may not “settle” or
converge to some fixed vector x. We see this as a feature of the new model, since
we plan to utilize information from the evolution and changes in the PageRank
values. For instance, in Section 2.4, we discuss various functions of x(t) that
define a rank. Next, we state the solution of the problem.

Lemma 2.2. The solution of the dynamical system

x′(t) = (1 − α)v(t) − (I − αP )x(t)

is

x(t) = exp[−(I − αP )t]x(0) + (1 − α)
∫ t

0
exp[−(I − αP )(t − τ)]v(τ) dτ.
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This result is found in standard texts on dynamical systems, for example
[Berman et al. 89].

Given this solution, let us quickly verify a few properties of this system.

Lemma 2.3. The solution of a dynamical PageRank system x(t) is a probability
distribution (x(t) ≥ 0 and eT x(t) = 1) for all t.

Proof. The model requires that x(0) be a probability distribution. Thus, x(0) ≥
0 and eT x(0) = 1. Assuming that the sum of x(t) is 1, then the sum of the
derivative x′(t) is 0, as a quick calculation shows. The closed-form solution above
is also nonnegative, because the matrix exp[−(I − αP )] = exp(αP ) exp(−1) is
nonnegative, and both x(0) and v(t) are nonnegative for all t. (This property is
known as exponential nonnegativity, and it is another property of M -matrices
such as I − αP [Berman et al. 89].)

2.1. A Generalization of PageRank

This closed-form solution can be used to solve a version of the dynamic problem
that reduces to the PageRank problem with static teleportation. If v(t) = v is
constant with respect to time, then∫ t

0
exp[−(I − αP )(t − τ)]v(τ) dτ = (I − αP )−1v

− exp[−(I − αP )t](I − αP )−1v.

Hence, for constant v(t),

x(t) = exp[−(I − αP )t](x(0) − x) + x,

where x is the solution to static PageRank: (I − αP )x = (1 − α)v. Because all
the eigenvalues of −(I − αP ) are less than 0, the matrix exponential terms
disappear over a sufficiently long time horizon. Thus, when v(t) = v, nothing
has changed. We recover the original PageRank vector x as the steady-state
solution

lim
t→∞x(t) = x, the PageRank vector.

This derivation shows that dynamic teleportation PageRank is a generalization
of the PageRank vector. We summarize this discussion in the following theorem.

Theorem 2.4. PageRank with time-dependent teleportation is a generalization of
PageRank. If v(t) = v, then the solution of the ordinary differential equation

x′(t) = (1 − α)v − (I − αP )x(t)



Gleich and Rossi: A Dynamical System for PageRank with Time-Dependent Teleportation 195

converges to the PageRank vector

(I − αP )x = (1 − α)v

as t → ∞.

2.2. Choosing the Initial Condition

There are three natural choices for the initial condition x(0). The first choice
is the uniform vector x(0) = 1

n e. The second choice is the initial teleportation
vector x(0) = v(0). And the third choice is the solution of the PageRank problem
for the initial teleportation vector (I − αP )x(0) = (1 − α)v(0). We recommend
either of the latter two choices in order to generalize the properties of PageRank.
Note that if x(0) is chosen to solve the PageRank system for v(0), then x(t) =
x for all t is the solution of the PageRank dynamical system with constant
teleportation (Theorem 2.4).

2.3. PageRank with Fluctuating Interest

One of the advantages of the PageRank dynamical system is that we can study
problems analytically. We now do so with the following teleportation function,
or forcing function as it would be called in the dynamical systems literature:

v(t) =
1
k

k∑
j=1

vj

(
cos

(
t + (j − 1)

2π

k

)
+ 1

)
,

where vj is a teleportation vector. Here, the idea is that vj represents the propen-
sity of people to visit certain nodes at different times. To be concrete, we might
have v1 correspond to news websites that are visited more frequently during
the morning, v2 correspond to websites visited at work, and v3 correspond to
websites visited during the evening. This function has all the required properties
that we need for it to be a valid teleportation function. At the risk of being
overly formal, we shall state these properties as a lemma.

Lemma 2.5. Let k ≥ 2. Let v1 , . . . ,vk be probability distribution vectors. The time-
dependent teleportation function

v(t) =
1
k

k∑
j=1

vj

(
cos

(
t + (j − 1)

2π

k

)
+ 1

)

satisfies the two properties
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1. v(t) ≥ 0 for all t,

2.
∑n

i=1 v(t)i = 1 for all t.

Proof. The first property follows directly, since the minimum value of the cosine
function is −1, and thus v(t) is always nonnegative. The second property is also
straightforward. Note that

n∑
i=1

v(t)i = 1 +
k∑

j=1

cos
(

t + (j − 1)
2π

k

)
= 1 +

k∑
j=1

�
{

exp
(

ıt + ı(j − 1)
2π

k

)}
.

Let rj (t) = exp(ıt + ı(j − 1)2π/k). For t = 0, these terms express the kth roots
of unity. For any other t, we simply rotate these roots. Thus we have

∑
j rj (t) = 0

for every t, because the sum of the kth roots of unity is 0 if k ≥ 2. The second
property now follows because the sum of the real component is still zero.

For this function, we can solve for the steady-state solution analytically.

Lemma 2.6. Let k ≥ 2, 0 ≤ α < 1, P be column-stochastic, v1 , . . . ,vk be probability
distribution vectors, and

v(t) =
1
k

k∑
j=1

vj

(
cos

(
t + (j − 1)

2π

k

)
+ 1

)
=

1
k

V cos(t + f) +
1
k

V e,

where V =
[
v1 , . . . ,vk

]
and fj = (j − 1)2π/k, j = 1, . . . , k. Then the steady-

state solution of

x′(t) = (1 − α)v(t) − (I − αP )x(t)

is

x(t) = x + �{s exp(ıt)} ,

where x is the solution of the static PageRank problem

(I − αP )x = (1 − α)
1
k

V e,

and s is the solution of the static PageRank problem with complex teleportation(
I − α

1 + ı
P

)
s = (1 − α)

1
k(1 + ı)

V exp(ıf).
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Proof. This proof is mostly a derivation of the expression for the solution by
guessing the form. First note that if

x(t) = x + y(t),

then

y′(t) = (1 − α)
1
k

V cos(t + f) − (I − αP )y(t).

That is, we have removed the constant term from the teleportation function
by looking at solutions centered on the static PageRank solution. To find the
steady-state solution, we look at the complex-phasor problem

z′(t) = (1 − α)
1
k

V exp(ıt + ıf) − (I − αP )z(t),

where y(t) = �{z(t)}. Suppose that z(t) = s exp(ıt). Then

z′(t) = ıs exp(ıt) = (1 − α)
1
n

exp(ıt) exp(ıf) − (I − αP )s exp(ıt).

The statement of s in the theorem is exactly the solution after the phasor
exp(ıt) is canceled. We now have to show that this solution is well defined.
PageRank with a complex teleportation parameter γ exists for every column-
stochastic P if |γ| < 1 (see [Horn and Serra-Capizzano 07, Constantine and
Gleich 10]). For the problem defining s, we have γ = α/(1 + ı) and |γ| = α/

√
2.

Thus, such a vector s always exists.

We conclude with an example of this theorem. Consider a four-node graph
with adjacency matrix and transition matrix given by

A =

⎡
⎢⎢⎢⎢⎢⎣

0 0 1 0

0 0 1 0

0 1 0 1

1 1 0 0

⎤
⎥⎥⎥⎥⎥⎦ and P =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0.5

0 0 0.5 0.5

1 1 0 0

0 0 0.5 0.

⎤
⎥⎥⎥⎥⎥⎦

Let vj = ej for j = 1, . . . , 4. That is, interest oscillates among all four nodes in
the graph in a regular fashion. We show the evolution of the dynamical system
for 20 time units in Figure 2. This evolution quickly converges to the oscillators
predicted by the lemma. In the interest of simplifying the plot, we do not show
the exact curves, since they are visually indistinguishable from those plotted for
t ≥ 4. By solving the complex-valued PageRank to compute s, we can compute
the magnitude of the fluctuation:

|s| = [0.0216 0.0261 0.0122 0.0235]T .

This vector accurately captures the magnitude of these fluctuations.
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Figure 2. The dashed lines represent the average PageRank vector computed
for the teleportation vectors. The curves show the evolution of the PageRank
dynamical system for this example of teleportation. We see that the dynamic
PageRanks fluctuate about their average PageRank vectors. Lemma 2.6 predicts
the magnitude of the fluctuation.

2.4. Ranking from Time Series

The above equations provide a time series of dynamic PageRank vectors for
the nodes, denoted formally by x(t), 0 ≤ t ≤ tmax. Applications, however, often
want a single score, or small set of scores, to characterize sets of interesting
nodes. There are a few ways in which these time series give rise to scores. Many
of these methods were explained in [O’Madadhain and Smyth 05] in the context
of ranking sequences of vectors. Having a variety of different scores derived from
the same data frequently helps in using those scores as features in a prediction
or learning task [Becchetti et al. 08, Constantine and Gleich 10].

2.4.1. Transient Rank. We call the instantaneous values of x(t) a node’s transient
rank. This score gives the importance of a node at a particular time.

2.4.2. Summary, Variance, and Cumulative Rank. Any summary function s of the time
series, such as the integral, average, minimum, maximum, or variance, is a single
score that encompasses the entire interval [0, tmax]. We utilize the cumulative
rank c and variance rank r in the forthcoming experiments:

c =
∫ tm a x

0
x(t) dt and r =

∫ tm a x

0

(
x(t) − 1

tmax
c
)2

dt.

2.4.3. Difference Rank. A node’s difference rank is the difference between its maxi-
mum and minimum ranks over all time, or a limited time window:

d = max
t

[x(t)] − min
t

[x(t)], dW = max
t∈W

x(t) − min
t∈W

x(t).

Nodes with high difference rank should reflect important events that occurred
within the range [0, tmax] or the time window W . We suggest using a window
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W that omits the initial convergence region of the evolution. In the context of
Figure 2, we would set W to be [4, 20] to approximate the vector |s| numerically.
In Section 6 and Figure 6, we see examples of how current news stories arise as
articles with high difference rank.

2.5. Modeling Activity

In the next two sections of our introduction to the dynamic teleportation Page-
Rank model, we discuss how to incorporate empirically measured activity into
the model. Let p1 , . . . ,pk be k observed vectors of activity for a website. In the
cases we examine below, these activity vectors measure page views per hour on
Wikipedia and the number of tweets per month on Twitter. We normalize each
of them into teleportation distributions, and conceptually think of the collection
of vectors as a matrix

v1 , . . . ,vk → V = [v1 , . . . ,vk ].

Let e(i) be a functional form representing the vector ei . The time-dependent
teleportation vector we create from these data is

v(t) = V e(
t� + 1) = v
t�+1 .

For this choice, the time units of our dynamical system are given by the time
unit of the original measurements. Other choices are possible too. Consider

vs(t) = V e(
t/s� + 1) = v
t/s�+1 .

If s > 1, then time in the dynamical system slows down. If s < 1, then time
accelerates. Thus, we call s the time scale of the system. Note that

x(sj), j = 0, 1, . . . ,

represents the same effective time point for every time scale. Thus, when we wish
to compare different time scales s, we examine the solution at such scaled points.

In the experimental evaluation, the parameter s plays an important role. We il-
lustrate its effect in Figure 3(a) for a small subnetwork extracted from Wikipedia.
As we discuss further in Section 3, for large values of s, v(t) looks constant for
long periods of time, and hence x(t) begins to converge to the PageRank vector
for the current, and effectively static, teleportation vector. Thus, we also plot
the converged PageRank vectors as a step function. We see that as s increases,
the lines converge to these step functions, but for s = 1 and s = 2, they behave
differently.



200 Internet Mathematics

s = 1 s = 2 s = 6

(a) time scale s

θ = 0.1 θ = 1 θ = 10

(b) smoothing θ

α = 0.5 α = 0.85 α = 0.99

(c) damping parameter α

Figure 3. The evolution of PageRank values for one node due to dynamical tele-
portation. The horizontal axis is time [0, 20], and the vertical axis encompasses
the interval [0.01, 0.014]. In figure (a), α = 0.85, and we vary the time-scale pa-
rameter (Section 2.5) with no smoothing. The solid dark line corresponds to the
step function of solving PageRank exactly at each change in the teleportation
vector. All samples are taken from the same effective time points as discussed in
the text. In figure (b), we vary the smoothing (Section 2.6) of the teleportation
vectors with s = 2 and α = 0.85. In figure (c), we vary α with s = 2 and there is
no smoothing. We used the ode45 function in Matlab, a Runge–Kutta method,
to evolve the system.

2.6. Smoothing Empirical Activity

So far, we have defined a time-dependent v(t) that changes at fixed intervals
based on empirically measured data. A better idea is to smooth out these “jumps”
using an exponentially weighted moving average. As a continuous function of
time, this yields

v̄′(t; θ) = θv(t) − θv̄(t; θ).

To understand why this smooths the sequence, consider an implicit Euler ap-
proximation

v̄(t) =
1

1 + hθ
v̄(t − h; θ) +

hθ

1 + hθ
v(t).
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This update can be written more simply as

v̄(t; θ) = γv(t)︸ ︷︷ ︸
new data

+ (1 − γ)v̄(t − h; θ)︸ ︷︷ ︸
old data

,

where γ = hθ/(1 + hθ). When v(t) changes at fixed intervals, then v̄(t; θ) will
slowly change. If θ is small, then v̄(t; θ) changes slowly. We recover the “jump”
changes in v(t) in the limit θ → ∞.

The effect of θ is shown in Figure 3(b). Note that we quickly recover behavior
that is effectively the same as using jumps in v(t) (θ = 1, 10). So we expect
changes with smoothing only for θ < 1.

2.7. Choosing the Teleportation Factor

Choosing α even for static PageRank problems is challenging; see [Gleich et al. 10]
and [Constantine and Gleich 10] for some discussion. In this manuscript, we do
not perform any systematic study of the effects of α beyond Figure 3(c). This
simple experiment shows one surprising feature. Common wisdom for choosing
α in the static case suggests that as α approaches 1, the vector becomes more
sensitive. For the dynamic teleportation setting, however, the opposite is true.
Small values of α produce solutions that more closely reflect the teleportation
vector—the quantity that is changing—whereas large values of α reflect the
graph structure, which is invariant with time. Hence, with dynamic teleportation,
using a small value of α is the sensitive setting. Note that this observation is a
straightforward conclusion from the equations of the dynamic vector

x′(t) = (1 − α)v(t) + αPx(t) − x(t),

so α small implies a larger change due to v(t). Nevertheless, we found it surprising
in light of the existing literature.

3. Methods for Dynamic PageRank

In order to compute the time sequence of PageRank values x(t), we can evolve the
dynamical system (2.2) using any standard method—usually called an integrator.
We discuss both the forward Euler method and a Runge–Kutta method next.
Both methods, and indeed, the vast majority of dynamical system integrators,
require only a means to evaluate the derivative of the system at a time t given
x(t). For PageRank with dynamic teleportation, this corresponds to computing

x′(t) = (1 − α)v(t) − (I − αP )x(t).
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The dominant cost in evaluating x′(t) is the matrix–vector product Px. For the
explicit methods we explore, all of the other work is linear in the number of
nodes, and hence these methods easily scale to large networks. Both of these
methods may also be used in a distributed setting if a distributed matrix–vector
product is available.

3.1. Forward Euler

We first discuss the forward Euler method. This method lacks high accuracy,
but is fast and straightforward. Forward Euler approximates the derivative with
a first-order Taylor approximation,

x′(t) ≈ x(t + h) − x(t)
h

,

and then uses that approximation to estimate the value at a short time step in
the future:

x(t + h) = x(t) + h [(1 − α)v(t) − (I − αP )x(t)] .

This update is the original Richardson iteration with h = ω. We present the
forward Euler method as a formal algorithm as our Algorithm 1 in order to
highlight a comparison with the power and Richardson methods. That is, the
forward Euler method is simply running a power method but changing the vec-
tor v at every iteration. However, we derived this method based on evolving
(2.2). Thus, by studying the relationship between (2.2) and Algorithm 1, we can
understand the underlying problem solved by changing the teleportation vector
while running the power method.

3.1.1. Long Time Scales. Using the forward Euler method, we can analyze the situa-
tion with a large time-scale parameter s. Consider an arbitrary x(0), α = 0.85,
s = 100, h = 1, and no smoothing. In this case, the forward Euler method will
run the Richardson iteration 100 times before observing the change in v(t) at
t = 100. The difference between x(k) and the exact PageRank solution for this
temporarily static v(t) is ‖x(k) − x‖1 ≤ 2αk . For k > 50, this difference is small.
Thus, a large s and no smoothing corresponds to solving the PageRank problem
for each change in v.

3.1.2. Stability. The forward Euler method with time step h is stable if the eigen-
values of the matrix −h(I − αP ) are within distance 1 of the point −1. The
eigenvalues of P are all between −1 and 1 because it is a stochastic matrix, and
so this is stable for every h < 2/(1 + α).
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Algorithm 1. The forward Euler method for evolving the dynamical system: x′(t) = (1 − α)v(t) − (I −
αP )x(t). The resulting procedure looks remarkably similar to the standard Richardson iteration to compute a
PageRank vector. One key difference is that there is no notion of convergence.
Input:

a graph G = (V, E) and a procedure to compute P x for this graph
a maximum time tm ax
a function to return v(t) for any 0 ≤ t ≤ tm ax
a damping parameter α
a time step h

Output: X , where the kth column of X is x(0 + kh) for all 1 ≤ k ≤ tm ax/h (or any
desired subset of these values)

t ← 0; k = 1
x(0) ← v(0) (or any other desired initial condition)
while t ≤ tm ax − h do

x(t + h) ← x(t) + h [(1 − α)v(t) − (I − αP )x(t)]
X(:, k) ← x(t + h)
t ← t + h; k ← k + 1

3.2. Runge–Kutta

Runge–Kutta [Runge 95, Kutta 01] numerical schemes are some of the most
familiar and most widely used. They achieve far greater accuracy than the simple
forward Euler method, at the expense of a greater number of evaluations of the
function x′(t) at each step. We use the implementations of Runge–Kutta methods
available in the Matlab ODE suite [Shampine and Reichelt 97]. The step size
is adapted automatically based on a local error estimate, and the solution can
be evaluated at any desired point in time. The stability region for Runge–Kutta
includes the region for forward Euler, so these methods are stable. These methods
are also fast. To integrate the system for Wikipedia with over 4 million vertices
and 60 million edges, it took between 300 and 600 seconds, depending on the
parameters.

3.3. Maintaining Interpretability

Based on the theory of the dynamic teleportation system, we expect that x(t) ≥
0 and eT x(t) = 1 for all time. Although this property should be true of the
computed solution, we often find that the sum diverges from 1. Consequently,
for our experiments, we include a correction term

x′(t) = (1 − α)v(t) − (γI − αP )x(t),

where γ = (1 − α)eT v(t) + αeT x(t). Note that γ = 1 if x(t) has sum exactly
1. If eT x(t) is slightly different from 1, then the correction with γ ensures that
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eT x′(t) = 0 numerically. Similar issues arise in computing static PageRank [Wills
and Ipsen 09], although the additional computation in the Runge–Kutta methods
exacerbates the problem.

4. Related Work

Note that we previously studied this idea in a conference paper [Rossi and
Gleich 12]. These ideas have been significantly refined for this manuscript.

The relationship between dynamical systems and classical iterative methods
has been utilized by [Embree and Lehoucq 09] to study eigenvalue solvers. It was
also noted in the early paper [Tsaparas 04] that there is a relationship between
the PageRank and HITS algorithms and dynamical systems.

In the past, others studied PageRank approximations on graph streams [Das
Sarma et al. 08]. More recently, [Bahmani et al. 12] studied how accurately an
evolving PageRank method could estimate the true PageRank of an evolving
graph that is accessed only via a crawler. The method used here solved each
PageRank problem exactly for the current estimate of the underlying graph. A
detailed study of how PageRank values evolve during a web crawl was done in
[Boldi et al. 05]. In the future, we plan to study dynamic graphs via similar ideas.

As explained in Section 3 and Algorithm 1, our proposed method is related to
changing the teleportation vector in the power method as it is being computed.
It was noted in [Bianchini et al. 05] that the power method will still converge if
either the graph or the vector v changes a few times during the method, albeit
to a new solution given by the new vector or graph. Our method capitalizes on
a closely related idea, and we use the intermediate quantities explicitly. Another
related idea is the online page importance computation (OPIC) [Abiteboul et
al. 03], which integrates a PageRank-like computation along with a crawling
process. The method does nothing special if a node has changed when it is
crawled again.

While we described PageRank in terms of a random-surfer model, another
characterization of PageRank is that it is a sum of damped transitions:

x = (1 − α)
∞∑

k=0

(αP )kv.

These transitions are a type of probabilistic walk, and [Grindrod et al. 11] in-
troduced the related notion of dynamic walks for dynamic graphs. We can inter-
pret these dynamic walks as a backward Euler approximation to the dynamical
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system:

x′(t) = αA(t)x(t), x(0) = e,

with time step h = 1 and A a time-dependent adjacency matrix. This relation-
ship suggests that there may be a range of interesting models between our dy-
namic teleportation model and existing evolving graph models.

Outside of the context of web-ranking, [O’Madadhain and Smyth 05] proposes
EventRank, a method of ranking nodes in dynamic graphs, which uses the Page-
Rank propagation equations for a sequence of graphs. We use the same idea but
place it within the context of a continuous dynamical system. In the context of
popularity dynamics [Ratkiewicz et al. 10], our method captures how changes
in external interest influence the popularity of nodes and the nodes linked to
those nodes in an implicit fashion. Our work is also related to modeling human
dynamics, namely, how humans change their behavior when exposed to rapidly
changing or unfamiliar conditions [Bagrow et al. 11]. In one instance, our method
shows the important topics and ideas relevant to humans before and after one
of the largest Australian earthquakes (Figure 6).

In closing, we wish to note that our proposed method does not involve updating
the PageRank vector, a related problem that has received considerable attention
[Chien et al. 04, Langville and Meyer 04]. Nor is it related to tensor methods for
dynamic graph data [Sun et al. 06, Dunlavy et al. 11].

5. Examples of Dynamic Teleportation

We now use dynamic teleportation to investigate page view patterns on
Wikipedia and user activity on Twitter. In the following experiments, unless
otherwise noted, we set s = 1, α = 0.85, do not use smoothing (“θ = ∞”), and
use the ode45 method from Matlab to evolve the system. We study this model
on two datasets.

5.1. Datasets

We provide some basic statistics of the Wikipedia and Twitter datasets in Ta-
ble 2. For Wikipedia, the time unit for s = 1 is an hour, and for Twitter, it is
one month.

5.1.1. Wikipedia Article Graph and Hourly Page Views. Wikipedia provides access to copies
of its database. We downloaded a copy of its database on March 6, 2009, and
extracted an article-by-article link graph, where an article is a page in the main
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Dataset Nodes Edges tm ax Period Average pi Max pi

wikipedia 4 143 840 72 718 664 48 hours 1.4243 353 799
twitter 465 022 835 424 6 months 0.5569 1056

Table 2. Dataset properties. The page views for each page on Wikipedia or total
tweets for each user on twitter is denoted by p, and we show the maximum and
average for any page at any time.

Wikipedia namespace, a category page, or a portal page.2 All other pages and
links were removed. See [Gleich et al. 07] for more information.

Wikipedia also provides hourly page views for each page.3 These are the num-
ber of times a page was viewed in a given hour. These are not unique visits. We
downloaded the raw page counts and matched the corresponding page counts to
the pages in the Wikipedia graph. We used the page counts starting from March
6, 2009, and moving forward in time. Although it would seem as though measur-
ing page views would correspond to measuring x(t) instead of v(t), one of our
earlier studies showed that users hardly ever follow links on Wikipedia [Gleich
et al. 10]. Thus, we can interpret these page views as a reasonable measure of
external interest in Wikipedia pages.

5.1.2. Twitter Social Network and Monthly Tweet Rates. The Twitter social network consists
of a set of users that follow each other’s tweets, or small 140-character messages.
Thus, Twitter has both a network structure, the follower graph, and activity on
top of this graph, the tweet stream. We built the follower graph by starting with
a few seed users and crawling follow links for several iterations. (The particular
crawl we used is from 2008.) We then took the set of users from the follower graph
and extracted their tweets for a period of six months between 2008 and 2009.
Each tweet is time-stamped, and we construct a sequence of vectors to represent
the number of tweets from each user in each month. (We briefly explored finer
levels of granularity for Twitter activity, but these choices led to sparser vectors.)
These vectors are the basis for the teleportation time series in our time-dependent
PageRank.

5.2. Rankings from Transient Scores

First, we evaluate the rankings from dynamic PageRank using the intersec-
tion similarity measure [Boldi 05]. Given two vectors x and y, the intersection

2 See http://en.wikipedia.org/wiki/Wikipedia:Database download.
3 See http://dumps.wikimedia.org/other/pagecounts-raw/.
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(a) In-degree
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(b) Static PageRank (Uniform)
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(c) Average page views
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(d) Static PageRank (avg. page views)

Figure 4. Intersection similarity of rankings derived from dynamic PageRank.
We compute the intersection similarity of the difference, variance, and cumulative
rankings given by dynamic PageRank and compare these with the rankings given
by the in-degree, average page views, static PageRank with uniform teleportation,
and static PageRank with average page views as the teleportation vector. For
dynamic PageRank, we set the initial value x(0) to be the solution of the static
PageRank system, which uses v(0) as the teleportation vector.

similarity metric at k is the average symmetric difference over the top j sets for
each j ≤ k. If Xk and Yk are the top k sets for x and y, then

isimk (x,y) =
1
k

k∑
j=1

|XjΔYj |
2j

,

where Δ is the symmetric set-difference operation. Identical vectors have an
intersection similarity of 0.

For the Wikipedia graph, Figure 4 shows the similarity profile comparing a few
ranking measures from dynamic PageRank to reasonable baselines. In particular,
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we compare d, r, c (from Section 2.4) to in-degree, average page views, static
PageRank with uniform teleportation, and static PageRank using average page
views as the teleportation vector. The results suggest that dynamic PageRank
is different from the other measures, even for small values of k. In particular,
combining the external influence with the graph appears to produce something
new. The only exception is in Figure 4(d), where the cumulative rank is shown
to give a similar ordering to static PageRank using average page views as the
teleportation.

5.3. Difference Ranks

Figures 5 and 6 show the time series of the top 100 pages by the difference
measure for Wikipedia with s = 1 and s = 4 without smoothing. Many of these
pages reveal the ability of dynamic PageRank to mesh the network structure with
changes in external interest. For instance, in Figure 6, we find pages related to
an Australian earthquake (43, 84, 82), the “recently” released movie “Watchmen”
(98, 23–24), a famous musician who died (2, 75), recent “American Idol” gossip
(34, 63), a remembrance of Eve Carson from a contestant on “American Idol”
(88, 96, 34), news about the murder of a Harry Potter actor (60), and the Skittles
social media mishap (94). These results demonstrate the effectiveness of dynamic
PageRank to identify interesting pages that pertain to external interest. The
influence of the graph results in the promotion of pages such as the Richter
magnitude scale (84). That page was not in the top 200 from page views.

6. Applications of Time-Dependent Teleportation

This section explores the opportunity of using dynamic PageRank for a variety
of applications outside of the context of ranking.

6.1. Predicting Future Page Views and Tweets

We begin by studying how well the dynamical system can predict the future.
Formally, given a lagged time series pt−w , . . . ,pt−1 ,pt [Ahmed et al. 10], the
goal is to predict the future value pt+1 (actual page views or number of tweets).
This type of temporal prediction task has many applications, such as actively
adapting caches in large database systems or dynamically recommending pages.

Suppose that f̄ is a feature vector derived from pt or any other information that
should be correlated with pt . We performed one-step-ahead predictions (t + 1)
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Figure 5. The top-100 Wikipedia pages that fluctuate the most as determined by
the difference ranking from our dynamic PageRank approach. The dashed curves
are the transient scores, and the light solid curves are the raw page-view data.
The horizontal axis is 24 hours, and the vertical axes are normalized to show the
range of the data.

using linear regression. That is, we learn a model of the form[
f̄(t − 1) f̄(t − 2) . . . f̄(t − w)

]
b ≈ p(t),

where w is the window size, and f̄(·) is either page views or both page views and
transient scores. After fitting b, we see that the model predicts p(t + 1) to be[

f̄(t) f̄(t − 1) · · · f̄(t − w + 1)
]

b.

We use the symmetric mean absolute percentage error (sMAPE) [Ahmed et
al. 10] measure to evaluate the prediction:

sMAPE =
1
|T |

|T |∑
t=1

|pt − p̂t |
(pt + p̂t)/2

.

This relative error measure averages all the relative prediction errors over all the
time steps. We then average it over nodes.

There are three relevant details in how we applied this methodology. First, we
created two models. The base model uses only the time series of page views or
tweets as the feature vectors f̄ . The dynamic teleportation model uses both the
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Figure 6. We again plot the top 100 pages from the difference rank, now using
s = 4. The dashed curves are the transient scores, and the light solid curves are
the raw page-view data. The horizontal axis is 24 hours, and the vertical axes are
normalized to show the range of the data. This choice gives a similar ordering to
that from our previous forward Euler iteration method from [Rossi and Gleich 12].
Note the large change between the transient scores for “MainPage” between this
figure and Figure 5.

transient scores with smoothing and page views as the feature vectors f̄ . We sam-
pled the transient scores once for each change in v(t) based on the raw data. In
our final numbers, we looked at the relative decrease in error after adding these
new features to indicate whether adding the dynamic teleportation information
improved the prediction, that is, we checked whether the quantity dynamic tele-
portation sMAPE divided by baseline sMAPE was less than 1. Second, we built
a model for blocks of 1000 nodes at a time and averaged the sMAPE scores over
those predictions. Third, we varied w through all choices in order to demonstrate
that our results are not sensitive to a particular choice. We did this by setting
w = 1 and using a model learned on the first time step to predict the second;
then we set w = 2 and used the first two time steps to predict the third, and so
on. We repeated this until we had predicted all time steps (up to t = tmax − 1
and w = tmax − 2). Each choice of w resulted in a single sMAPE score, which we
again averaged.

As an aside, we note that setting w to a fixed constant and using AIC to learn
the value of w for each one-step-ahead prediction did not change our results. We
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Error Ratio
s (timescale)

Dataset Type θ 1 2 6 ∞
twitter stationary 0.01 0.450 0.898 0.836 0.967

0.50 0.258 0.611 0.858 0.775
1.00 0.527 0.531 0.849 0.791

nonstationary 0.01 0.500 0.874 0.662 1.240
0.50 0.461 0.499 0.658 0.835
1.00 0.458 0.489 0.652 0.848

wikipedia stationary 0.01 0.978 0.991 0.989 0.978
0.50 1.140 1.130 1.004 0.990
1.00 1.084 0.976 1.010 0.990

nonstationary 0.01 0.968 1.011 0.968 1.004
0.50 1.218 0.994 1.030 1.031
1.00 1.241 0.996 0.957 0.998

Table 3. The ratio between the base model and the model with dynamic tele-
portation scores with s = 1, 2, 6,∞ for three smoothing parameters. (Here, s = ∞
corresponds to solving the PageRank problem exactly for each change in telepor-
tation.) If this ratio is less than 1, then the model with the dynamic telepor-
tation scores improves the prediction performance. We also distinguish between
prediction problems with highly volatile nodes (nonstationary) and nodes with
relatively stable behavior (stationary). The results show a much stronger benefit
for Twitter than for Wikipedia.

felt that using all possible w allowed us to better understand the effectiveness
of using dynamic PageRank for prediction. For practical applications, there may
be other benefits to choosing w carefully.

We evaluated these models for prediction on stationary and nonstationary time
series. Informally, a time series is weakly stationary if it has properties (mean and
covariance) similar to those of the time-shifted time series. We considered the top
and bottom 10 000 nodes from the difference ranking as nodes that are approx-
imately nonstationary (volatile) and stationary (stable), respectively. Table 3
compares the predictions of the models across time for nonstationary and sta-
tionary prediction tasks. Our findings indicate that the dynamic PageRank time
series provides valuable information for forecasting future tweet rates; however,
it adds little (if any) accuracy in forecasting future page views on Wikipedia.

For Twitter, the dynamic teleportation model improves predictions the most
with the nonstationary nodes. The diffusion of activity captured by the model
allows our model to detect, early on, when the external interest of vertices will
change before that change becomes apparent in the external interest of the ver-
tices. This is easiest to detect when there is a large sudden change in external
interest of a neighboring vertex.
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Figure 7. Vertices with similar dynamic properties are grouped together. The
visualization reveals the important dynamic patterns (spikes, trends) present
from March 6, 2009, in our large collection of time series from Wikipedia. For
each hour, we sample twice from the continuous function x(t) and use these
intermediate values in the clustering.

6.2. Clustering Transient Score Trends

Identifying vertices with similar time series is important for modeling and un-
derstanding large collections of multivariate time series. We now group vertices
according to their transient scores. Using the difference rank measure d for s = 4,
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we cluster the top 5000 vertices using k-means with k = 5, repeat the clustering
2000 times, and take the minimum distance clustering identified.

The cluster centroids are temporal patterns, and the main patterns in the dy-
namic PageRanks are visualized in Figure 7(a). Pattern 2 represents Eurocentric
behavior, whereas the others correspond to spikes or unusual events occurring
within the dynamic PageRank system. Figure 7(b) plots the 20 closest vertices
matching the patterns above. A few pages from the five groups are consistent
with our previously discussed results from Figure 6. One such unusual event is
related to the death of a famous musician/actor from the Philippines (see pages
1–20).

The pages from the third cluster (41–60) are related to “American Idol” and
other TV shows/actors. Also, some of the pages from the fourth cluster relate
to Bernard Madoff (63, 66, 67, 70, 73) six days before he pleaded guilty in the
largest financial fraud in U.S. history. This grouping reveals many of the standard
patterns in time series such as spikes and increasing/decreasing trends [Yang and
Leskovec 11].

6.3. Toward Causal Link Relationships

In this section, we use Granger causality tests [Granger 69] on the collection
of transient scores to attempt to understand which links are most important.
The Granger causality model, briefly described below, ought to identify a causal
relationship between the time series of any two vertices connected by a directed
edge. This is because there is a causal relationship between their time series
in our dynamical system. However, due to the impact of the time-dependent
teleportation, only some of these links will be identified as causal. We wish to
investigate this smaller subset of links.

Intuitively, if a time series X causally affects another Y , then the past values
of X should be helpful in predicting the future values of Y , above what can
be predicted based on the past values of Y alone. This is formalized as follows:
the error in predicting ŷt+s from yt , yt−1 , . . . should be larger than the error in
predicting ŷt+s from the joint data yt , yt1 , . . . , xt , xt−1 , . . . if X causes Y . As our
model, we chose to use the standard vector-autoregressive (VAR) model from
econometrics [Box et al. 11]. This is implemented in Matlab in [LeSage 99].
The standard p-lag VAR model takes the form

[
yt

xt

]
= c +

p∑
i=1

Mi

[
yt−i

xt−i

]
+ et ,
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Earthquake Granger Causes p-value
Seismic hazard 0.003535

extensional tectonics 0.003033
landslide dam 0.002406

earthquake preparedness 0.001157
Richter magnitude scale 0.000584

fault (geology) 0.000437
aseismic creep 0.000419
seismometer 0.000284

epicenter 0.000020
seismology 0.000001

Table 4. Example of causality in Wikipedia. We consider only pages with a p-
value less than 0.01 to be statistically significant. The page with values “caused”
by “Earthquake” represent ideas related to earthquakes. All pages below are
significant with p-value < 0.01.

where c is a vector of constants, M i are the n × n coefficient (or autoregressive)
mixing matrices, and et is the unobservable white noise. For the results shown
below, p = 2. We then use the standard F-test to determine significance.

In Table 4, we show the causal relationships identified among the out-links of
the article “Earthquake.” Recall that there was a major earthquake in Australia
during our time window. We wish to understand which of the out-links appeared
to be sensitive to this large change in interest in “Earthquake.” We used a sig-
nificance cutoff of 0.01 and tested for Granger causality among the time series
with s = 4.

7. Conclusion

PageRank is one of the most widely used network centrality measures. Our
dynamical system reformulation of PageRank permits us to incorporate time-
dependent teleportation in a relatively seamless manner. Based on the results
presented here, we believe this to be an interesting variation on the PageRank
model. For instance, we can analyze certain choices of oscillating teleportation
functions (Lemma 2.6). Our empirical results show that the maximum change in
the transient rank values identifies interesting sets of pages. Furthermore, this
method is simple to implement in an online setting using either a forward Euler
or Runge–Kutta integrator for the dynamical system. We hope that it might find
a use in online monitoring systems.
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One important direction for future work is to treat the inverse problem. That
is, suppose that the observed page views reflect the behavior of these random
surfers. Formally, suppose that we equate page views with samples of x(t). Then
the goal would be to find v(t) that produces this x(t). This may not be a problem
for websites such as Wikipedia, due to our argument that the majority of page
views reflect search-engine traffic. But for many other cases, we suspect that x(t)
may be much easier to observe.
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